
 1 

Media Companion: Delivering Content-oriented Web 
Services to Internet Media 

Wei-Ying Ma, Chun Yuan, Xing Xie, Yu Chen, Liang Sun, Wanghong Yuan 
Microsoft Research Asia 

3F, Sigma Center, No 49 Zhichun Road 
Beijing 100080, China  

{wyma, i-cyuan, i-xingx, i-yuchen}@microsoft.com

ABSTRACT 
In the past few years we have seen a huge industrial investment on 
the development of content delivery networks (CDNs) which 
provide a large number of caches and storage devices at the edge 
of network to push content closer to the user for fast and reliable 
delivery. This development has triggered the beginning of a so-
called “edge computing” where applications and computational 
resources are also moving to the edge for intelligent media 
services. To cope with the growing diversity and heterogeneity of 
the Internet, these edge servers offer a natural place to extend the 
capability of network intermediaries for content-oriented services 
such as automatic adaptation for small devices, personalization, 
location-aware data insertion and virus scanning. 

In this paper we present our investigation on using a network of 
edge servers for delivering content-oriented web services to 
Internet media. Similar to CDNs, our design goal is to make the 
content-oriented services part of the Internet infrastructure 
services accessible to content providers and content consumers 
via a subscription model. A prototype system called “Media 
Companion” which is built to evaluate our design principles is 
described in the paper, and the experimental results of deploying 
this system in our corporate network are also discussed.  

Keywords 
Content delivery network, web services, adaptive content delivery, 
personalized content, multimedia, media proxy 

1. INTRODUCTION 
As the Internet is moving toward the service-centric model, more 
and more storages and computational resources are being put into 
the network infrastructure and provided as services to customers. 
In the content networking world, for instance, this trend can be 
seen on the development of content delivery networks (CDNs) 
[1][10][25] which make content distribution a network 
infrastructure service available to content providers and network 
access providers. Furthermore, the progress on standardization 
and development of Web services has marked the beginning of a 
new era that every computational resource and service on the 
Internet can be connected to provide new user experiences on 
accessing, sharing, and using information anytime, anywhere, 
from any device. The Microsoft’s .NET initiative has been aiming 
to realize this vision by providing the platform and foundation 
Web services. The .NET My Services [23], previously codenamed 
Hailstorm, is being developed to provide a set of user-centric 
XML Web services oriented around people. For example, services 
such as myInbox, myCalendar, myContacts, myAddress, 

myProfile, myWallet, myLocation, and myNotifications will be 
provided to people to help manage their information and 
interactions across all the applications, devices, and services in 
their lives. These foundation Web services use standard 
communication interfaces and protocols based on XML, SOAP 
[15], UDDI [34], and WSDL [9] so that other service providers 
could use them to compose and develop new Web services for 
people.  

While the user-centric Web services are being addressed, there 
still remains the problem of making sure that content (or media) 
on the Internet can be adapted according to network environment 
for universal access. Also, other content-oriented processing such 
as personalization, customization, local content injection, 
watermarking, data hiding, and virus scanning are becoming more 
and more important while the content flows from one end to the 
other end of the Internet. It would be extremely useful if such 
content-oriented processing could also be made as Web 
infrastructure services to process the content on behalf of people 
and content providers. Figure 1 illustrates our ultimate goal of 
using both user-centric and content-oriented Web services to 
provide users pervasive and personal media experiences. 

The content-oriented Web services will require a very different 
mechanism to deploy in comparison to traditional Web services, 
as they need to be injected into the current content delivery path. 
A simple distinction is that these content-oriented services will be 

Figure 1. The user-centric web services help users manage their 
information across all the devices while the content-oriented web 
services process content and media objects to enable universal 
access and personal experience from any devices.  

Wireless

Thin

Fat

HTML/text
Audio/music

Image
Video

graphics
Applications

Content-oriented web services 
for universal access and 
personalization

User-centric web services 
(myInbox, myCalendar, 
myWallet, …)

Origin Servers



 2 

enabled in network intermediaries such as proxy caches and 
delegates while traditional Web services are essentially server 
services. As of today, such a Web middleware infrastructure for 
content-oriented services is still in its infancy, and there are many 
open research issues need to be further investigated.  

Having realized the importance of content-oriented services on 
the Internet, the current CDN providers are increasingly looking 
into upgrading their current delivery networks to enable such 
value-added services. In our previous work [21], we have 
proposed a system architecture and protocols for building such 
intelligent CDNs. In this paper, we describe our latest progress on 
further refining and developing such a system. In particular, we 
focus on the mechanism of binding the subscribed services with 
the content to instruct edge servers to perform necessary actions. 
Our goal is to make the content-oriented Web services an 
infrastructure service accessible to customers that could be 
content providers, end users, ISPs, or traditional CDN providers. 
This service agreement is uploaded to the edge servers and 
instructs them to perform services while data is flowing through 
them across the Internet. To achieve this goal, we also ensure that 
the service model interacts with other existing network elements 
collaboratively and seamlessly so as not to undermine the success 
of end-to-end nature of Internet client/server interactions.  

Here we summarize the novel contributions of our work: 

1. The idea of enabling a large scale of content-oriented 
processing on the Internet as subscription-based Web 
middleware services is first introduced in the literature.  

2. A framework which defines the required mechanisms and 
system interactions between various network entities to 
accomplish the task is proposed.  

3. A first working prototype called Media Companion has been 
developed to demonstrate our vision and usefulness of the 
system. Five major content-oriented services have been 
developed and are available for subscription and real usage. 

This paper is organized as follows: We discuss the framework of 
content services network and its two major parts, i.e. service 
delivery overlay and service-enabled proxy in Section 2. Section 3 
talks about how to deliver content-oriented service in the network 
intermediaries using a subscription model. Section 4 describes our 
prototype system and several developed content services. The 
related works are discussed in Section 5. Section 6 summarizes 
our work and presents our future directions. 

2. CONTENT SERVICES NETWORK 
In content delivery networks (CDNs), a large number of caching 
proxies is deployed at the network edge and used as a distribution 
channel to push content closer to the end user. The content is 
replicated to a set of edge servers based on estimated demand and 
a caching policy, and the DNS-based redirection technology is 
used to ensure the network and server load are balanced. It also 
ensures the availability of the content by making multiple copies 
within the distribution network. As the current CDNs only move 
content and makes sure it is delivered reliably and promptly to 
end-users, they do not modify the content by adding value to it.  

To inject content-oriented services into the current content 
delivery path, the caching proxies of content delivery works need 
to include a certain new capabilities. A new network infrastructure 
which constitutes of an overlay network of application servers for 

deploying and replicating the content-oriented services also need 
to be in place. Our design principle is to separate the roles of 
storage (caching) and computation (processing and transcoding) 
in the network infrastructure. As traditional Web caches have 
been specially designed to perform efficient hashing for finding if 
the requested content is in local storage and then quickly respond 
to the request, putting additional processing burden in web caches 
will compromise the caching performance. Therefore, we propose 
two layers of network infrastructures, which keep the original 
content distribution layer (i.e., CDNs) as it is in providing web 
caching service while another layer offers computational 
resources to deliver value-added services in the content delivery 
path (see Figure 2).  

These two overlays together create the so-called content services 
network (CSN), which will provide intelligent content-oriented 
services while moving the content on the Internet. One thing to 
note is that there are mainly two types of edge servers in the CSN 
framework: one is the service-enabled proxy of the content 
delivery layer which extends the functions of a traditional web 
cache for performing value-added services; the other is the 
application server of the service delivery layer which acts as a 
remote call-out server for the first.  

The amount of new work need to be done in the service-enabled 
proxy should be minimized to mostly checking if an additional 
processing or special handling is necessary for a given content. 
The heavy-weight processing is conducted by an application 
server via a remote call-out protocol (e.g. SOAP). We will discuss 
the additional functionalities which need to be equipped in the 
service-enabled proxy in Section 2.2. And service binding and 
service execution which make the two layers collaborate together 
will be discussed in Section 3.  

2.1 Service delivery overlay 
The service delivery overlay provides the distribution channel to 
push applications (media processing and transcoding) to the edge. 

 

Figure 2. The content services network (CSN) consists of two 
separate overlay networks. In the content delivery layer, 
service-enabled proxies are needed in order to interact and 
collaborate with application edge servers in the service delivery 
layer. SOAP and XML message are used in the communication 
protocols between these two layers to inject content-oriented 
services in the content delivery path.  

Origin 
Server 

Client 

Service Delivery Overlay 

XML & SOAP XML & SOAP 

Content Delivery Network 

Application Application 
server server 

Service Service - - enabled enabled 
proxy proxy 



 3 

As shown in Figure 3, it consists of the following three major 
elements: 

Application servers: host the software of content-oriented 
processing for content delivery. These application servers 
provide computational resources to process content on behalf 
of content providers or content consumers. 

Service delivery and management (SDM) servers: are 
responsible for the following tasks: (a) they register and 
publish the content services provided by service providers. (b) 
They distribute the application within the service delivery 
overlay by replicating the corresponding services to a set of 
edge servers based on the estimated demand. (c) After initial 
service registration, publication and distribution, SDM servers 
continue to monitor the performance of each service and 
dynamically adapt the scale of distribution and deployment of 
the service according to its demand. (d) SDM servers 
aggregate the information about usage of services and then 
provide it back to the redirection servers. The redirection 
servers use this information to perform network and server 
load balancing. (e) SDM server also provides management, 
accounting and billing functionalities to service providers. (f) 
Each SDM server is responsible for collecting information 
about its domain and periodically exchanges the information 
with other cooperating SDM servers. 

Redirection servers: Direct service request to an application 
server according to a number of attributes and measurements. 
It receives information from SDM servers. 

The application servers and SDM servers communicate with the 
caching proxies in the CDN layer to complete the service 
subscription and rendering. We will discuss the detailed system 
interactions in Section 3.  

2.2 Service-enabled proxy 
The service-enabled proxy is the key component to enable content 
delivery layer to interact with the service delivery layer in the 
CSN framework. Figure 4 shows the framework of service-
enabled proxy, which consists of six main parts: (1) an instruction 
parser, (2) a message parser, (3) an instruction processor, (4) a 
service execution module, (5) an instruction cache and (6) a result 
cache. We build our proxy prototype using Microsoft ISA Server 
2000 [24]. The detail of our implementation will be discussed in 
Section 4.1.  

Below we describe the basic operations performed in the service-
enabled proxy: 

Service provision: 

(a) Instructions are transferred from the SDM servers to service-
enabled proxy. These instructions represent service subscription 
information from content providers or end users. 

(b) The instruction parser compiles the instructions received from 
the SDM servers and stores it in a local instruction cache. 

Operations in the run time:  

(1) A registered type of messages defined in the instruction will 
trigger the proxy to activate the message parser which will then 
parse current message (HTTP request or response) to extract 
necessary information such as content type or language. 

(2) The instruction processor loads related instructions from the 
cache. It either calls a local service execution module or invokes a 
remote service.  

(3) If necessary, service execution module will be employed to 
invoke a remote service in the application servers through the 
SOAP protocol. 

 (4) After processing, the results will be saved in a result cache for 
future use. At the moment, we only consider serving the saved 
result to the original service subscriber due to privacy issue.  

Note that the local service execution module is only meant to 
perform light-weight processing. For these local services, there is 
a need to define a standard runtime environment in the proxy so 
that a common platform can be used to develop new applications. 
The IETF working group on OPES [27] has been formed to define 
such a standard. Once the behavior of future service-enabled 
proxy can be agreed upon, it will facilitate the integration of web 
services and content networking worlds.  

 

R 

AP 

AP 

AP AP 

AP 

AP 

AP 

AP 

AP 

AP 

AP 

AP 

SDM 

SDM 

SDM 

R 

R 

R 

R 

R 

Application (AP) server 

Services distribution and 
management (SDM) server 

Redirection (R) server 

Information exchange & update 
between cooperating SDM servers   

SDM server provides information to 
the redirection servers in its domain 

SDM server distributes, monitor, and 
manage the applications in its domain 

ISP 

ISP 

Content Providers Users Users 

Internet Backbone 

SDM server’s domain 

Figure 3. The system overview of service delivery overlay to 
push content-oriented services to the edge of network 

Figure 4. Framework of a service-enabled proxy 



 4 

2.3 Using UDDI for Service Registration, 
Publication, and Discovery 
Universal Description and Discovery Integration (UDDI) [34] is 
an open and global registry which allows businesses to register 
information about their Web services so that other businesses can 
find them. CSN uses UDDI to publish content-oriented services 
for public discovery and access. Service subscription/un-
subscription, query and configuration interfaces are registered in 
UDDI so that end users or content providers who are interested in 
a particular service may send the requests to CSN according to 
service type specifications found in UDDI.  

3. DELIVERING CONTENT-ORIENTED 
SERVICES VIA A SUBSCRIPTION MODEL  
Several steps are involved to deliver content-oriented services at 
the edge of network. The first step is to register and deploy 
content-oriented services in the edge servers, which include 
application servers in the service delivery layer and the service-
enabled proxy in the content delivery layer. The second step is for 
service subscribers to specify what services need to be bound to 
their domains, media objects, or user identities. The services are 
invoked by edge servers during the run time according to the 
service instructions.  

3.1 Service registration and deployment 
As we have discussed previously, the content services network 
provides the necessary network infrastructure to distribute and 
deploy content-oriented web services in a scalable and fault-
tolerant manner. Before the service becomes available, it needs to 
be registered in the UDDI registry first. CSN receives components 
such as service specifications and binaries from service providers 
and stores them in the database. It then publishes service 
information to the UDDI for public discovery and access.  

Along with the service registration and publication, the 
corresponding application or executable module is provided to the 
SDM server of service delivery overlay, which then dynamically 
selects a number of edge servers to deploy the service based on 
estimated demand and required geographical coverage.  

There are two types of edge servers in CSN to host applications 
and executable modules. The light-weight services can be 
provided as executable modules uploaded to service-enabled 
proxies and executed in the content delivery path. The heavy-
weight services are installed in the application servers and 
invoked by the service-enabled proxies through the SOAP 
protocol as described in Section 2.2.  

For each registered service, a service specification should be 
provided to describe invocation interface and execution 
environment of the service, such as parameter types and transport 
protocols that the service operates on, and the associated 
conditions (such as content type, user preference, device 
capability, location, and network bandwidth) to invoke the service 
in the edge servers. Binaries include applications running on 
application servers and executable modules running on service-
enabled proxies. Figure 5(a) shows the system interaction between 
different components in CSN. Figure 5(b) describes the process of 
service registration of deployment. 

3.2 Service subscription and binding 
One fundamental requirement to enable content-oriented Web 
intermediary services is determining whether current content (e.g. 
HTTP messages) should be serviced and how to invoke the 
service (service instruction). Because service contracts are 
between service providers and communication ends such as origin 
content servers and clients, there needs a way to make the edge 
servers aware of the binding between the content requested or 
delivered by the subscriber and the subscribed services.  

There are several possible solutions to service subscription and 
binding. A straightforward approach is to label the content (e.g. 
HTTP messages) to indicate that it needs special handling. 
Proxies that intercept the labeled content will take appropriate 
actions according to the instruction. For content labeling, there 
are two choices: 1) embed service instructions directly into 
content (e.g. HTTP headers), or 2) attach an indicator (URI) to the 

 

Service 
Subscription

Service 
Subscription

Service 
Registration

Service 
Registration

Edge ServersEdge Servers

Application 
Servers

Application 
Servers

Service-enabled 
Proxies

Service-enabled 
Proxies

Service 
Provider

Service 

Provider

End UserEnd User

Content 

Provider

Content 

Provider

Service 
Database

Service 
Database

UDDI 
Registry

UDDI 

Registry

(1)

(3)

(2)

(8)

(7)

(6)

(5)
(4)

SDM Servers

DeployManage

SOAP

Service registration and deployment:  

(1) The service provider provides its content-oriented service 
(2) The corresponding service and the service specification are 
stored in the service database 
(3) The service is registered in UDDI registry for public discovery 
and access 

(4) The service is deployed and enabled in edge servers 

Service subscription and binding:  

(5) The subscriber finds the service from UDDI registry 
(6) The subscriber sends the subscription request to the SDM 

server 
(7) The subscription service stores the subscriber-service bindings 

in the service database 
(8) Service instructions representing subscriber-service bindings 

are transferred to service-enabled proxies 

(a) 

(b) 

(c) 

Figure 5. (a) The system interaction between various 
components in the CSN framework. (b) The process of 
service registration and deployment. (c) The process of 
service subscription and binding. 

 



 5 

content which refers to an external document that describes 
service instructions. However, both methods require the change 
on origin content server (if the subscriber is a content provider) 
and user agent in client device (if the subscriber is an end user), a 
significant obstacle for CSN deployment.  

Another approach is to let the subscriber and the service provider 
determine on the service contract, and then let CSN translate that 
contract into a service binding which describe the association 
between the subscribed services and the end user or the domain 
name/media objects (if the subscriber is a content provider). 
Service bindings are maintained by CSN which knows the current 
status of subscription and constantly updates service-enabled 
proxies with the latest service instructions (see next section). The 
subscriber or the service provider only needs to interact with CSN, 
which allows the service delivered transparently in the existing 
infrastructure.  

Content providers and content consumers find their interested 
services in the UDDI registry first, and then follow the access 
point to CSN’s service subscription interface. Once the subscriber 
confirms the subscription of the service and related configuration, 
CSN will store the binding in the database. The binding enables 
the future delivery of the subscribed services to the content. It also 
contains the conditions on which the service should be invoked. 
The following are examples of service binding. Figure 5(c) 
illustrates the process of service subscription and binding. 

<binding type="end user"> 
    <user id="R&$%GHJU"/> 
    <service name="web page adaptation"> 
         <condition> 

<condition name="user-agent" matches="Pocket PC"/> 
         <operator name="and"/> 
         <condition name="MIME-type" matches="text/html"/> 
         </condition> 
    </service> 
</binding> 
 
<binding type="content provider"> 
    <domain name="www.microsoft.com"/> 

<service name="watermarking"> 
    <condition> 

            <condition name="MIME-type" matches="image/jpeg"/> 
            <operator name="and"/> 
            <condition name="request-path" matches="/gallery/*"/> 
        </condition> 
    </service> 
</binding> 

3.3 Service enabling and execution 
A service instruction represents a binding to a single service and 
contains the actual service access point. The instructions will be 
transferred from SDM servers to the service-enabled proxies that 
the subscriber is associated with so that it will act according to the 
instructions to execute services for the subscriber at appropriate 
moments. The transfer may be eager (SDM server sends the 
instructions to the proxy immediately after the subscription) or 
lazy (the proxy fetches the instructions from CSN for the 
subscriber on a periodical or per-session basis). The proxy has a 
cache/replica to store service instructions representing a subset of 
service bindings for its domain and keeps them up-to-date. 

The proxy verifies whether the message needs additional services 
according to the instructions. If the message and its related 

context satisfy the condition specified in the instruction to execute 
a service, the proxy will provide the service locally or pass the 
message and related parameters to the application servers. The 
processed result is returned to the proxy and then goes to its 
original destination.  

A service may be executed on the client request or the server 
response of a session. Request filtering and security adaptation 
[14] belong to the former type, while many other services belong 
to the latter type, such as Web page adaptation, watermarking, 
virus scanning. Figure 6 and 7 depicts the service execution in 
these two cases.  

Application 

Server 

Service-

enabled 

Proxy 

Client Content 

Server 

(6) 

(1) 

(5) 

(4) 

(3) (2) 

(1) The client sends a request message 
(2) The service-enabled proxy checks the message and detects it 

needs additional service; it forwards the message to a remote 
application server or invokes a local executable module 

(3) The application server returns the result to the proxy 
(4) The proxy forwards the modified request (assuming the 

processing result allows so) 
(5) The content server returns a response message 
(6) The proxy forwards the response to the client. 

Figure 6. Service executed on client requests. 

Application 

Server 

Service-

enabled 

Proxy 

 

Client Content 

Server 

(1) 

(6) 

(2) 

(3) 

(4) (5) 

Figure 7. Service executed on server responses. 

(1) The client sends a request message 
(2) The service-enabled proxy forwards the request to the content 

server 
(3) The content server returns a response message 
(4) The proxy checks if the message needs additional service; if so 

it forwards the message to a remote application server or 
invokes a local executable module 

(5) The application server returns the result to the proxy 
(6) The result is delivered to the client 



 6 

4. Media Companion: The Prototype System 
We have built a prototype system called Media Companion to 
evaluate our system design. This system is currently deployed in 
the corporate network of Microsoft Research Asia with five 
example services available for subscription. We describe the 
details of our implementation in the following.  

4.1 Implementing a service-enabled proxy 
As we have mentioned previously, the service-enabled proxy is 
the key component of CSN. We build a prototype of such proxy 
based on Microsoft Internet Security and Acceleration (ISA) 
Server 2000 [24]. 

Microsoft ISA Server 2000 is an extensible firewall and Web 
cache server. It provides Internet Server API (ISAPI, previously 
available with Microsoft International Information Server) that 
can be used to develop users’ own extensions named Web filters 
which may provide functions like virus scanning, compression, 
logging or data encryption. Web filters allow you to intervene in 
the processing of HTTP requests. They are dynamic-link libraries 
that are loaded when the ISA Server is started and stay in memory 
until the service shuts down. Web filters can be configured to 
receive special filter-event notifications that occur with each 
HTTP request that the proxy receives and with each response 
returned through proxy. 

We use the HTTP port to deliver the service instructions from 
SDM servers to this service-enabled proxy. If the proxy receives a 
message whose first line is “CSN Instructions”, then it will read 
the following lines as an “instruction module” and save it into a 
local cache. In our prototype, an instruction module contains 
instructions for a single content provider or a single content 
consumer. A newly uploaded module will completely replace the 
old one. An instruction module typically contains several 
instructions for service binding.  

We developed a Web filter named content service filter (CS filter) 
using ISAPI which enables additional processing on HTTP 
messages. After installing the CS filter, the ISA Server is turned 
into a service-enabled proxy. It will analyze HTTP messages 
(either request or response) passing by and performs necessary 
processing according to predefined instructions. These 
instructions are received from the SDM servers and contain 
service-binding information. The content processing may be 
executed locally on the proxy server or by another application 
server through a remote callout interface. In our prototype, we use 
SOAP Toolkit 2.0 [31] to implement the remote callout interface. 

The identification of users is useful in many content services like 
personalization. In our implementation, we use authentication 
mechanism of the ISA Server to identify different clients, and 
therefore each client is required to log on to the proxy before 
using the personalization service. This method enables a more 
precise way of identifying individual user than judging from the 
IP address.  

4.2 Service subscription interface 
The Media Companion uses Microsoft Visual Studio .NET for 
developing service binding and enabling. The system consists of a 
Web interface written in ASP.NET and a middle layer written in 
C# which parses Web requests from users and accesses the service 
database which is built using Microsoft Access. The database is 

used to store binding relationships between subscribers and 
services. It also contains service-related information such as 
execution conditions, parameters and location. Figure 8 shows the 
main service subscription interface of Media Companion. 

When a subscriber logons to Media Companion, it must first 
identify itself as an end user or content provider since the 
identification will determine the type of instruction which will 
affect the proxy behavior in message parsing and preparing for 
subsequent service execution. If he/she is an end user, the identity 
should also be provided to Media Companion. Service-enabled 
proxies will use this identity to execute services for different user. 
Our implementation uses Integrated Windows authentication to 
obtain the identity of the end user automatically. The same 
identity will also be obtained by ISA proxy server when the user 
requests content through it and the proxy will activate the services 
he/she has subscribed to. 

If he/she is a content provider, it is required to identify the domain 
name where the content is provided and accessed. The domain 
name will be used by proxies to execute services for content from 
the corresponding domain. After the identification, Media 
Companion queries the service database to get the subscriber’s 
subscription records and shows the list of available services for 
subscription/unsubscription and current configuration. 

The subscriber may decide to subscribe to a new service or 
unsubscribe to a service he/she has subscribed to. When Media 
Companion receives a subscription request, it adds the new 
subscriber-service binding record to the service database. After 
reading the bindings related to the subscriber and the information 
about the services, it composes the service instruction and 
transfers it to the service-enabled proxy where the end user is 

 
Figure 8: The service subscription interface of Media 
Companion. Five content-oriented services are available for 
subscription. 



 7 

 

Figure 9: Media Companion provides an interface for subscribers 
to configure the services in a finer granularity.  

associated. The proxy will update its cache with the new 
instruction for the subscriber. The unsubscription process follows 
similar steps. 

The subscriber can also configure a service he/she has subscribed 
to. When Media Companion receives such a request, it presents 
the interface showing his/her old configuration (see Figure 9). The 
subscriber can modify the settings. After the modification is 
submitted, Media Companion refreshes the corresponding 
configuration stored in the service database and also composes a 
new service instruction and transfers it to the service-enabled 
proxy to change the service invocation accordingly.  

For extensibility reasons, each service (if it needs configuration to 
work) is required to provide a component implementing an 
interface defined by our Media Companion system. The 
component is responsible for generating the Web interface of 
service configuration, restoring old settings and transforming user 
submissions back to settings which are recognizable by Media 
Companion.  

4.3 Developed services 
We have developed five different content-oriented services 
available in our corporate network. Each of them is described in 
the following. 

4.3.1 Webpage adaptation for Pocket PC 
The explosive growth of small Internet devices such as handheld 
computers, personal digital assistants (PDAs) and smart phones 
have been used to leverage the capabilities of the Internet and 
provide users ubiquitous access to information than ever before. 
Despite the proliferation of these devices, their usage for 
accessing today’s Internet is still largely constraint by their small 
form factors such as small screen and limited input capabilities. 
Particularly, most today’s web content has been designed with 
desktop computers in mind, and often contains large web pages 
which do not fit into the small screens of these devices.  

Although some web sites and portals have started to provide 
special version of content tailored for wireless and mobile devices, 
the mobile user often encountered the need to browse traditional 
Web sites as they are still their primary information sources. 
Browsing a traditional web page in a small device like Pocket PC 
is like seeing a mountain in a distance from a telescope. It requires 
the user to manually scroll the small window horizontally and 
vertically to find and position the view correctly for reading 

information. This tedious and time-consuming browsing 
procedure has largely limited the usefulness of these devices.  

To resolve this problem, we have developed a bi-level web page 
representation which allows a large web page to stay as a unit and 
preserve its original looking but with new zoomable and auto-
positioning capabilities. This representation makes the browsing 
of a large web page in a small device an easy task. Based on this 
page representation scheme, we also developed an automatic web 
page analysis algorithm which analyzes the content and structure 
of a given web page and then generate a corresponding bi-level 
web page representation.  

Figure 10(a) shows the process of our automatic page analysis. 
The algorithm utilizes the content, HTML tags and structure of a 
web page and then partitions it into a number of blocks which best 
fit into a targeted size of screen. The original web page is split 
into two levels. The top level contains a thumbnail representation 
of the page and the bottom level consists of all the small blocks as 
individually viewable pages. Each block is color-coded in the 
thumbnail to indicate it is individually zoomable. So the result is a 
two-step browsing process. When a user requests a web page 
using a small-screen device, the thumbnail is first presented to 
him for quick overview and easy navigation. Then he can decide 
to go to view a particular block of information by clicking the 

Page Analysis

…

Page Split

Thumb nail

Details

(a)

Figure 10. (a) Web page analysis to extract representation structure. 
(b) Efficient web browsing and navigation on Pocket PC. 

(b)



 8 

corresponding region in the thumbnail. Figure 10(b) shows an 
example of browsing the MSN homepage on Pocket PC.  

This webpage adaptation is made as a subscription-based service 
in our Media Companion prototype system. Though it is currently 
only available within our corporate network, our ultimate goal is 
make this service easily accessible to any content providers and 
end users to facilitate information delivery to the wireless Internet.  

4.3.2 Adaptive video delivery 
There has been much research work on delivering a video to the 
wireless Internet. The technical challenges include dealing with 
the limitation of bandwidth, signal fading and packet loss in the 
communication channel, and power consumption. In our Media 
Companion system, we deploy a simple adaptive video delivery 
scheme as a subscription-based service to the mobile user. Before 
streaming the entire video, the user can decide to first view the 
summary (a sequence of keyframes) of the video, which is created 
dynamically by our content services network at the edge of 
network. This video summary causes very little bandwidth to 
transmit and offers a table of content to index into individual 
video segment for nonlinear streaming [18]. In addition, an 
adaptive frame dropping [20] could be also used to improve the 
user experiences. This service is available for both stored and live 
video.  

Figure 11 shows an example of our adaptive video delivery 
service to a variety of mobile devices. As can be seen, a live 
MPEG2 video stream of a meeting room recorded by a camera is 
transmitted to a smart phone (Microsoft emulation), a handheld 
computer (HP Jornada 720), and a Pocket PC (Compaq iPAQ 
3670). The video adaptation performs a modality transform to 
convert the live video stream into a sequence of keyframes which 
summarize the video. As these devices are simply not powerful 
enough to decode a live MPEG2 video, the video summary 
provides the user an efficient way to access the most important 
information in the video. This service is valuable to a lot of 
scenarios in the wireless and mobile space.  

Our keyframe extraction algorithm is based on a triangle model of 
perceived motion energy (PME) developed in our lab [19]. In our 

prototype system, the user can also set his preferred density of 
keyframes to achieve the best user experience.  

4.3.3 Personalization Service 
A personalized content insertion is also enabled in our system. 
When subscribing to this service, the user can specify his interest 
on receiving what types of content (e.g., news, links, or images) 
inserted on the top of his requested web page.  

Figure 12 shows the personalized version of Microsoft homepage. 
The service-enabled proxy detects that the current client comes 
from Microsoft Research Asia, and therefore, a photo of the lab 
director and the link to the lab’s internal homepage is 
automatically added to the header.  

We are currently exploring the best mechanism for content 
providers to leverage such personalization service. We would like 
them to be able to subscribe to this service so that personalized 
advertisement can be added to their content intelligently. Our 
ultimate goal is to hook up with the myProfile service of .NET My 
Services so that content providers could make use of the user’s 
profile information to insert a more relevant AD. 

4.3.4 Language translation 
We integrate Altavista’s BabelFish translation service [2] into our 
system. It supports language translation among English, Chinese, 
French, German, Italian, Japanese, Korean, Portuguese and 
Spanish. Since it does not provide a standard interface for web 
service, we only use its CGI interface for a demo purpose. 

The user can specify his preferred language to translate the web 
page. The requested web page is sent to Altavista’s BabelFish for 
translation by our service-enabled proxy. After the translation is 
completed, it is then forwarded to the user. This whole procedure 
can be made transparent to end users. Figure 13 shows the result 
of English-to-Chinese translation of the Microsoft homepage. 
Content providers can also subscribe to this service to make their 
content readable to more people. The language translation service 
demonstrates the usefulness of a common service delivery 
platform to compose and incorporate services provided by third-
party service providers. 

5. RELATED WORKS 
The service-enabled proxy is related to the IETF working groups 
on Open Pluggable Edge Services (OPES) [27], which is 
addressing the problem of extending the functionality of a caching 

A variety of devices

Origin content server

Services-enabled proxy

Video adaptation service

Figure 11. Adaptive video delivery to a variety of mobile devices. 

 

Figure 12. Personalized content is inserted at the top of web page 
according to the user specified context. In this example, the link 
to the lab’s internal homepage is provided to the clients from 
Microsoft Research Asia. 



 9 

 

(a) 

(b) 

Figure 13. Language translation service provided by our system. The 
above example shows the result of English-to-Chinese translation for 
Microsoft homepage. (a) Original web page. (b) The result of translation.  

p
roxy for providing additional services that mediate, modify, and 
monitor object requests and responses. In this working group, 
other relevant components such as Intermediary Rule Markup 
Language (IRML) and the remote call-out protocols such as the 
use of SOAP or Internet Content Adaptation Protocol (ICAP) [17] 
are being discussed. Edge Side Include (ESI) [11] is a mechanism 
allowing an embedded script in the HTML file to instruct a proxy 
server at the edge of network to assemble content accordingly.  

Adaptive content delivery has also been studied quite extensively 
in the past few years. Example works include Spyglass [32], 
ProxiNet [28], Intel QuickWeb [16], IBM Transcoding proxy [30], 
WBI [5], UC-Berkeley TranSend [12], Digestor [6], Mobiware 
[4], and Smart Client [36]. More recently, iMobile [29] 
investigated the issues of building mobile services using a proxy. 
The proxy maintains user and device profiles, accesses and 
processes internet resources on behalf of the user by performing 
content transformations according to the device and user profiles. 
Compared to content services network, these works did not 
address the service model and necessary mechanisms to make it a 
web middleware service available to content providers and end 
users. 

Other related works include BARWAN [7] which studied the 
cluster-based computing for Internet services like content 
adaptation and caching. Active Cache [8] and Gemini [26] studied 
the possibility of delivering some code from server to the proxy in 
order to have a better control over the cached content. Active 
Names [35] provides a flexible resource location and transport 
solution taking advantage of DNS-like name resolution 
mechanism. Services can be associated with names and resources 

and executed over them for customized location and transport. 
The problem with this work is that it is not transparent to existing 
web applications.  

Active Network [33] intends to improve the extensibility of the 
network by putting computations inside into routers. Active 
Service framework [3] restricts such computations to those not 
affecting packet routing semantics and provide a scalable cluster 
platform for hosting services/computations. Services in both 
approaches usually perform packet-level operations and are not 
suitable to handle application-level objects such as web pages. 
CANS [13], ICEBERG [22] and Ninja [14] explore service 
composition and achieve service portability by means of path 
construction and adaptation from existing or discovered 
intermediary services. Services such as simple content format and 
transport protocol transformations were considered.  

6. SUMMARY AND FUTURE WORK 
In this paper we presented our work on delivering content-
oriented web services to Internet media. We described the 
framework of content services network which consists of a new 
service delivery layer and the service-enabled proxy in the CDN 
layer. These two layers interact with each other collaboratively to 
provide content-oriented processing into the current content 
delivery path. The services are enabled based on a subscription 
model which allows content providers and content consumers to 
easily leverage this resource at the edge of Internet to deliver or 
access information more effectively.  

To demonstrate the idea and evaluate our system design principles, 
a system called Media Companion has been developed and 
deployed in our corporate network. We provided five different 
services for people to subscribe to, including the transcoding of 
large web pages to facilitate web browsing on small devices, 
adaptive delivery of stored and live video streams based on video 
summarization, personal content insertion, and language 
translation service. These services have shown to be very useful to 
our users. Our next step is to further expand the types of services 
by incorporating more media technologies into our system. Our 
goal is to eventually make advanced multimedia processing, 
analysis, and interactive delivery technologies part of the Internet 
infrastructure services that can be easily accessed and used like 
commodity by anyone from any device.  

Many research issues for realizing such a goal still remain 
uninvestigated. For example, we need to further work on the 
problem of dynamic service distribution and management based 
on a set of metric (the estimated demand of services, the history of 
servers’ load, and demography). How to enable service 
composition, federation, or service-peering is another interesting 
and important research direction. Furthermore, the issue of data 
integrity also needs to be addressed as the content is going to be 
modified by a third-party service provider. There is a need to 
develop a proper security mechanism and trust model to ensure 
the content is modified in a desirable way. We will continue to 
work on these issues in the future. 

7. ACKNOWLEDGMENTS 
We are thankful to Zheng Zhang for many valuable suggestions in 
shaping up this work. 



 10 

8. REFERENCES 
[1] Akamai. http://www.akamai.com/ 

[2] Altavista – World/Translate. http://world.altavista.com 

[3] E. Amir, S. McCanne, R. Katz. An Active Service 
Framework and its Application to Real-time Multimedia 
Transcoding. Proceedings of ACM SIGCOMM '98, 
Vancouver, British Columbia, Sep 1998 

[4] O. Angin, A.T. Campbell, M.E. Kounavis and R.R.-F. Liao. 
The Mobiware Toolkit: Programmable support for adaptive 
mobile networking. IEEE Personal Communications, Vol. 5, 
No. 4, August 1998, pp. 32-43 

[5] R. Barrett and P.P. Maglio. Intermediaries: An approach to 
manipulating information streams. IBM Systems Journal, 
38:629-641, 1999 

[6] T. Bickmore and B. Schilit. Digestor: Device Independent 
Access to the World Wide Web. Proceedings of the Sixth 
International World Wide Web Conference, Santa Clara, 
California, 1999 

[7] E.A. Brewer, R.H. Katz et al. A Network Architecture for 
Heterogeneous Mobile Computing. IEEE Personal 
Communications, October 1998 

[8] P. Cao, J. Zhang and K. Beach. Active Cache: Caching 
Dynamic Contents on the Web. Proceedings of IFIP 
International Conference on Distributed Systems Platforms 
and Open Distributed Processing (Middleware '98), pp. 373-
388, 1998 

[9] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana. 
Web Services Description Language (WSDL) 1.1. W3C Note, 
March 2001. http://www.w3.org/TR/wsdl 

[10] Digital Island. http://www.digitalisland.com/ 

[11] Edge Side Includes (ESI) Web Page. http://www.esi.org/ 

[12] A. Fox, S.D. Gribble, Y. Chawathe and E.A. Brewer. 
Adapting to Network and Client Variation Using 
Infrastructural Proxies: Lessons and Perspectives. IEEE 
Personal Communications, 5(4):10-19, Aug. 1998 

[13] X. Fu, W. Shi, A. Akkerman and V. Karamcheti. CANS: 
Composable, Adaptive Network Services Infrastructure. 
USENIX Symposium on Internet Technologies and Systems 
(USITS), March 2001 

[14] S.D. Gribble, M. Welsh, R. von Behren, E.A. Brewer, D. 
Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. 
Joseph, R.H. Katz, Z.M. Mao, S. Ross and B. Zhao, The 
Ninja Architecture for Robust Internet-Scale Systems and 
Services. Computer Networks: Special Issue on Pervasive 
Computing, Vol 35, No. 4, pp473-497, Mar. 2001 

[15] M. Gudgin, M. Hadley, J.-J. Moreau and H.F. Nielsen. 
SOAP Version 1.2 Part 1: Messaging Framework. W3C 
Working Draft, October 2001. 
http://www.w3.org/TR/soap12-part1/ 

[16] Intel QuickWeb. http://www.intel.com/quickweb 

[17] Internet Content Adaptation Protocol (ICAP) Web Page. 
http://www.i-cap.org/ 

[18] S.-J. Lee, W.-Y. Ma and B. Shen. An Interactive Video 
Delivery and Caching System Using Video Summarization. 
Computer Communications, vol. 25, no. 4, March 2002, pp. 
424-435. 

[19] T.M. Liu, H.J. Zhang and F.H. Qi. A Novel Video Key 
Frame Extraction Algorithm. Accepted by ISCAS 2002, 
Arizona, 2002 

[20] T.M. Liu, H.J. Zhang and F.H. Qi. Modeling User 
Satisfaction to Frame Dropping and Its Application in 
Adaptive Video Delivery. Microsoft Research Asia Internal 
Report, 2002 

[21] W.-Y. Ma, B. Shen and J. Brassil. Content Services Network: 
The Architecture and Protocols. Proceedings of the Sixth 
International Workshop on Web Caching and Content 
Distribution, June 2001 

[22] Z.M. Mao and R.H. Katz. Achieving Service Portability 
using Self-adaptive Data Paths. IEEE Communications 
Magazine special Issue on Service Portability and Virtual 
Home Environment, January 2002, pp. 108-114 

[23] Microsoft .NET My Services. 
http://www.microsoft.com/myservices/ 

[24] Microsoft Internet Security and Acceleration Server, 
http://www.microsoft.com/isaserver/ 

[25] Mirror Image. http://www.mirror-image.com/ 

[26] A. Myers, J. Chuang, U. Hengartner, Y. Xie, W. Zhuang and 
H. Zhang. A Secure, Publisher-Centric Web Caching 
Infrastructure. Proceedings of Infocom '01, 2001 

[27] Open Pluggable Edge Services (OPES) Web Page. 
http://www.ietf-opes.org/ 

[28] ProxiNet. http://www.proxinet.com 

[29] C.H. Rao, Y.R. Chen, D. Chang and M. Chen. iMobile: A 
Proxy-Based Platform for Mobile Services. Proceedings of 
the First ACM Workshop on Wireless Mobile Internet 
(WMI2001), Rome, Jul. 2001 

[30] J. Smith, R. Mohan and C. Li. Scalable multimedia delivery 
for pervasive computing. ACM Multimedia, 1999 

[31] SOAP Toolkit 2.0. http://msdn.microsoft.com/library 

[32] Spyglass-Prism. http://www.spyglass.com 

[33] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J. 
Wetherall and G.J. Minden. A Survey of Active Network 
Research. IEEE Communications Magazine, Vol. 35, No. 1, 
pp80-86. Jan. 1997 

[34] Universal Description, Discovery, and Integration (UDDI) 
Web Page. http://www.uddi.org/ 

[35] A. Vahdat, M. Dahlin, T. Anderson and A. Aggarwal. Active 
Names: Flexible Location and Transport of Wide-Area 
Resources. Proceedings of the Second USENIX Symposium 
on Internet Technologies and Systems, Oct. 1999 

[36] C. Yoshikawa et al. Using Smart Clients to Build Scalable 
Services. Proc. Winter 1997 USENIX Tech. Conf., January 
1999


