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Abstract—We address the problem of joint path selection and
source rate allocation in order to optimize the media specific
quality of service in streaming of stored video sequences on mul-
tipath networks. An optimization problem is proposed in order
to minimize the end-to-end distortion, which depends on video
sequence dependent parameters, and network properties. An
in-depth analysis of the media distortion characteristics allows
us to define a low complexity algorithm for an optimal flow rate
allocation in multipath network scenarios. In particular, we show
that a greedy allocation of rate along paths with increasing error
probability leads to an optimal solution. We argue that a network
path shall not be chosen for transmission, unless all other available
paths with lower error probability have been chosen. Moreover,
the chosen paths should be used at their maximum available
end-to-end bandwidth. Simulation results show that the optimal
flow rate allocation carefully adapts the total streaming rate
and the number of chosen paths, to the end-to-end transmission
error probability. In many scenarios, the optimal rate allocation
provides more than 20% improvement in received video quality,
compared to heuristic-based algorithms. This motivates its use in
multipath networks, where it optimizes media specific quality of
service, and simultaneously saves network resources at the price
of a very low computational complexity.

Index Terms—Multipath networks, path selection, rate alloca-
tion, video distortion.

I. INTRODUCTION

W
ITH the development of novel network infrastructures

and increasing available bandwidth, multimedia appli-

cations over the Internet become attractive for both businesses

and home users. Fast deployment of broadband last-mile con-

nections, increase in wireless coverage of remote living areas,

and the long awaited debut of 3G wireless services offer as many

inter-operable communication solutions.

However, the viability of a streaming application mostly de-

pends on its ability to meet stringent requirements (e.g., con-

trolled error rate and low delay) and on medium and long term

stability of the transport infrastructure. As the Internet is still

far from providing any widely deployed guarantee of service

solution, efficient media streaming strategies have to be devised

to get the best out of the network infrastructure. Lately, multi-

path streaming emerged as a valid solution to overcome some

of the lossy Internet path limitations [1], [2]. It allows for an in-

crease in streaming bandwidth, by balancing the load over mul-
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tiple network paths between the media server and the client. It

also provides means to limit packet loss effects, when combined

with error resilient streaming strategies and scalable encoding

capabilities of the latest encoding standards [3]–[6]. Most of the

research work dedicated to multipath streaming focuses on the

process itself (media caching and scheduling aspects), but gen-

erally not towards finding which paths should ideally be used for

the streaming application, for a given network topology between

a streaming server and a client. These works rely on classic

routing algorithms that find the best path (or set of paths) given

some established network metrics. While this may be optimal

in terms of network utilization, it is certainly suboptimal from

the viewpoint of the media streaming application. In 30–80% of

the cases, the best paths found by classic routing algorithms are

suboptimal from a media perspective [7].

This work proposes to address the problem of streaming

path allocation in a multipath network, which takes into ac-

count media aware metrics during the decision process. The

early work in [8] derives a few empirical rules on what paths

should be considered by the streaming application, based on

experimental data. These rules consider network metrics (e.g.,

available bandwidth, loss rate, and hop distance), and other

media aware metrics (e.g., link jointness/disjointness, video

distortion). Our work provides a more general framework for

the analysis of joint path selection and flow rate allocation in

multipath streaming, driven by media-specific metrics. We con-

sider a multipath network model that supports the partitioning

of a media sequence into multiple media flows. We further

assume that the streaming server that can perform simple

adaptation of the streaming rate of pre-encoded packet media

streams (by packet filtering, or by taking advantage of scalable

coding, for example). A generic video distortion metric is

proposed, which encompasses both the source distortion that is

mostly driven by the streaming rate, and the channel distortion

that depends on the loss probability.

Finding the optimal flow rate allocation in multipath networks

is a very complex problem in generic scenarios. However, in our

specific scenario, we show that a careful analysis of the video

distortion evolution allows to derive a linear complexity algo-

rithm for the joint optimal path selection, and flow rate alloca-

tion. In other words, our main objective is to jointly find i) the

optimal streaming rate for a given, pre-encoded video packet

stream so that the quality at receiver is maximized and, ii) which

network paths should be used for relaying the video stream to

the client. Interestingly enough, our conclusions demonstrate

that the answer to these two questions is represented by a careful

tradeoff among available network bandwidth (translated into

video streaming rate), transmission loss process, and number

of utilized paths. And, in contrary to the commonly admitted

opinion, flooding the network in pushing the streaming rate to

the limits the total available bandwidth, rarely provides efficient
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Fig. 1. Multipath network scenario.

strategies in the absence of complex and expensive transcoding

strategies for stored video streams.

The main contributions of this paper can be briefly summa-

rized as follows.

• We propose a general framework for streaming of pre-en-

coded media data in multipath networks, which encom-

passes network and media aware metrics.

• We perform the first theoretical media flow analysis on

the optimality of number, and choice of network paths, in

terms of end-to-end Quality of Service.

• We provide a linear time media aware routing algorithm

that outputs the optimal set of network paths to be used in

the streaming process, along with the corresponding flow

rate distribution.

The paper is organized as follows: Section II presents the

streaming framework and formulates our optimization problem.

The theoretical analysis of the streaming process is developed

in Section III. Section IV presents the routing algorithm and

Section V presents our main results. We present the related work

in Section VI, and conclude the paper in Section VII.

II. DISTORTION OPTIMIZED MULTIPATH MEDIA STREAMING

A. Multipath Network Model

We consider a framework where the media streaming appli-

cation uses a multipath network, which can be represented as

follows. The available network between a media server and a

client is modeled as a graph , where is the

set of nodes in the network, and is the set of links or segments

(see Fig. 1). Each link connecting nodes

and has two associated positive metrics

• available bandwidth expressed in some appropriate

unit (e.g., kbps);

• average loss probability , assumed to be inde-

pendent of the streaming rate.

Let denote the set of available loop-free

paths between the server and the client in , with the

total number of nonidentical end-to-end paths. A path

is defined as an ordered list of nodes and

their connecting links, such that no node appears more than

once, and that each link between two consecutive nodes in

the path belongs to the set of segments . Let further and

denote respectively the end-to-end bandwidth and loss proba-

bility of path . We define the bandwidth of an individual path

as the minimum of the bandwidths among all links on the

path (i.e., the “bottleneck bandwidth”). Hence, we have

(1)

Under the commonly accepted assumption that the loss

process is independent on two consecutive segments, the

end-to-end loss probability on path becomes a multiplicative

function of the individual loss probabilities of all segments

composing the path. It can be written as

(2)

Finally, the media application sends data at rate on path

, with a cost . The cost represents the price to be paid by

the streaming application, for using path . As, in general, the

underlying transport medium should be transparent for the ap-

plication, we define the cost function as dependent only on the

total flow rate sent by the application on path . A linear cost

relation is simply expressed as follows:

if is used, with

if is not used
(3)

where is a constant (i.e., the cost factor is identical for any path

in ). In this network model, efficient streaming strategies

have to carefully allocate the rate between the different network

paths. The goal of the next sections is to get the best out of the

multipath network, both in terms of cost, and from a media-

driven quality of service perspective.

B. From Network Graph to Flow Tree

In order to study the flow rate allocation problem in multipath

networks, we use a flow tree representation of the network graph

. The media server becomes the root of the tree, and each flow

represents the share of the overall media stream, which is

sent on a network path . The media stream is the composition

of individual media flows, and the client is represented as a set

of leaf nodes, with one leaf per flow. Note that several methods

in graph theory have been proposed for constructing such trees,

and we rather concentrate in this paper on the rate allocation

problem, among the branches of the tree. In this case, the rate

allocation becomes a flow assignment problem.

Considering that there is (at most) one flow for each network

path , we can transform the original network graph into

a flow tree by duplicating any network edge and vertex that is

shared by more than one network path, as represented in Fig. 2.

Since the transformation from paths to flows is bijective, each

flow is characterized by a maximal end-to-end streaming rate,

and an end-to-end loss probability, as computed in Section II-A.

The flow on path uses a streaming rate , with a loss

probability , and a cost .

Due to the assumption of rate independent loss process, any

two flows in the tree are independent in terms of loss probability.

However, flows may be dependent in terms of aggregated band-

width, since they may share joint bottleneck links. The flow tree

representation allows us to explicit the constraints imposed on

a valid rate allocation. These constraints are imposed by band-

width limitation on the network links, and flow conservation in

the network nodes. The necessary and sufficient conditions for

the flow tree model to be a valid representation of the original

network graph can finally be grouped into single flow, and mul-

tiple flow constraints, and expressed as follows.
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Fig. 2. Equivalent transformation between a network graph and a tree of paths between the server and the client.

1) Single Flow Constraints:

• path bandwidth limitations: , ;

• flow conservation at intermediate nodes: for every node

, , where and are the

incoming and respectively outgoing rates of passing

through node .

2) Multiple Flow Constraints:

• link bandwidth limitations:

• flow conservation at intermediate nodes: for every node

:

C. Media-Driven Quality of Service

The end-to-end distortion, as perceived by the media client,

can generally be computed as the sum of the source distortion,

and the channel distortion. In other words, the quality depends

on both the distortion due to a lossy encoding of the media infor-

mation, and the distortion due to losses experienced in the net-

work. The source distortion is mostly driven by the source or

streaming rate , and the media sequence content, whose char-

acteristics influence the performance of the encoder (e.g., for

the same bit rate, the more complex the sequence, the lower the

quality). The source distortion decays with increasing encoding

rate; the decay is quite steep for low bit rate values, but it be-

comes very slow at high bit rate. The channel distortion is

dependent on the average loss probability , and the sequence

characteristics. It is roughly proportional to the number of video

entities (e.g., frames) that cannot be decoded correctly, and an

increase in loss probability augments the channel distortion .

Overall, the end-to-end distortion can thus be written as

(4)

where represents the set of parameters that describe the

media sequence. This generic distortion model is quite com-

monly accepted, as it can accommodate a variety of streaming

scenarios. For example, when error correction is available, the

total streaming rate has to be split between the video source

rate that drives the source distortion and the channel rate,

which directly influence the video loss rate [9].

The total streaming rate , and the end-to-end loss proba-

bility directly depend on the path selection, and the flow rate

allocation. In the multipath scenario described before, the media

application uses rate allocation , where the flow

rate , with , represents the streaming rate on path

. The total media streaming rate is expressed as

(5)

The overall loss probability experienced by the media appli-

cation can be computed as the average of the loss probabilities

of the paths

(6)

It is important to note that increasing with the addition of

a path reduces the source distortion. However, the addition of a

path generally impacts the loss probability , and may augment

the channel distortion. The optimal flow rate allocation therefore

results from a trade-off between increase the streaming rate, and

controlling the end-to-end loss probability. Finally, since paths

may not be completely disjoint, is a valid rate allocation on the

network graph , if and only if can simultaneously accom-

modate the flow rates on all paths in . A necessary condition

for the equality in the right side of (5) to be verified requires that

all bottleneck links of the streaming paths are disjoint. Suffi-

cient conditions for valid rate allocation are analyzed in the next

section.

D. Multipath Rate Allocation: Problem Formulation

We consider the problem of the optimal routing and rate allo-

cation strategy, for a given video stream that can be split into

flows sent on different network paths between the streaming

server, and the media client. The rate constraints are directly

given by the network status, as shown before, and the overall

streaming rate can be adapted by simple operations at the server

(e.g., packet filtering). We can formulate the optimal multipath

rate allocation problem as follows.

Given a network graph , the optimization problem consists

in jointly finding the optimal sending rate for a video packet

stream, along with the optimal subset of network paths to be

used for transmission, such that the end-to-end distortion is

minimized. Equivalently, using the flow tree representation of

the network graph proposed in Section II-B, the optimization

problem translates into finding the optimal rate allocation for

each of the flows in the tree, such that the video distortion is

minimized. It can be formulated as follows.

Multimedia Rate Allocation Problem (MMR): Given the

network graph , the number of different paths or flows ,

the video sequence characteristics , and the total streaming



1230 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

budget , find the optimal rate allocation

that minimizes the distortion metric :

(7)

where and , under the

following constraints.

1) Budget Constraints: .

2) Single Flow Constraints.

3) Multiple Flow Constraints.

In the next section, we present a detailed analysis of a typical

distortion model for video sequences. While the nonconvexity

of the optimization metric will not allow for an easy solution by

integration of the constraints into a Lagrangian formulation, our

analysis eventually allows us to define a simple algorithm, able

to find the optimal rate allocation with linear time complexity.

III. FLOW RATE ALLOCATION ANALYSIS

A. End-to-End Distortion Model

We introduce in this section a quite generic distortion model,

which is able to capture the influence of the average encoding

rate on the source distortion, as well as the impact of losses on

the channel distortion. Recall that our objective is to find the

best flow rate allocation, on a multipath networks with known

average statistics. Hence, we are looking for an average distor-

tion model, which is able to estimate the video quality of service

in a stationary regime.

In low to medium bit rate video streaming, it is commonly

accepted that the source distortion is a decaying exponential

function on the encoding rate, while the channel distortion is

proportional to the number of lost packets (i.e., the packet loss

probability, when the number of packet per frame is indepen-

dent of the bit rate) [10]. Hence, we can explicitly formulate the

Mean-Square Error distortion metric as:

(8)

where and are parameters that de-

pend on the video sequence. This distortion model is a simple

and general approximation that follows closely the behavior of

more sophisticated distortion measures, such as those proposed

in [11]–[13]. Since it is suitable for most common streaming

strategies where the number of packets per frame is independent

of the encoding rate, we use the model of (8) in the remainder of

that paper. It can be noted that our simple model does not take

into account the exact characteristics of the loss process, and that

it mostly captures the effect of independent losses. We assume

that bursts of losses on the video packet stream are quite unlikely

due to the partitioning in multiple flows. Simple interleaving can

also be applied to reduce the effects of bursts, if delay permits it.

Finally, we should stress out that bursts of video packets losses

are in general less penalizing for the channel distortion [14], so

that our model has the advantage to provide a worst case esti-

mate of the end-to-end distortion.

Fig. 3. Overall distortion measure for two network paths in function of avail-
able rates, � = 1:76 � 10 , � = �0:658, � = 1750, p = 0:02, and
p = 0:04.

Before going deeper in the analysis of flow rate allocation,

we propose a simple example to illustrate the behavior of the

end-to-end video distortion in a multipath scenario. We con-

sider a basic network scenario consisting of two disjoint network

paths, and , with bandwidth , and

loss probabilities and , respectively. Consider

two independent flows and composing the same video

stream, and traversing the two network paths with streaming

rates , and . The evolution of the distortion

function given in (8) is presented in Fig. 3, for a test video se-

quence (i.e., Foreman CIF).

As expected, we observe that the decrease in distortion is

larger if we increase the rate of flow , than if we equivalently

increase the rate of flow . This behavior is due to the lower

loss probability that affects the path followed by the flow . In

the same time, we observe that the distortion metric is always

decreasing with the increase of , hence it is optimal to fully

utilize the bandwidth of the path with the smallest loss prob-

ability. In this case, for a given packet loss rate, it is better to

increase the quality of each video frame by augmenting the rate

, as expected.

More interestingly, Fig. 4 shows that the behavior of the dis-

tortion as a function of the rate , depends on the value of the

rate . For high values of , the distortion can even increase

with growing rate . Beyond a given value of the streaming rate

on the most reliable network path, adding an extra flow can de-

grade the end-to-end quality of the media application since the

packet loss rate increases. In this case, the negative influence of

the error process on the second network path is greater than the

improvement brought by additional streaming rate. Such a be-

havior is the key to explain why using all the paths to their full

bandwidth does not necessarily result in an efficient streaming

strategy. Finally, the same type of behavior can be observed for

stored video packet streams that are built on video packets, and

error control packets (e.g., Forward Error Correction). In this

case, the sensitivity of the channel distortion is obviously lower

for low error rates, but rapidly increases when the channel pro-

tection becomes insufficient.
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Fig. 4. Overall distortion behavior as a function of r , for various fixed values
of r .

B. Maximum or Null Flows

We now generalize the previous observations, and derive the-

orems that guide the design of an optimal rate allocation strategy

for a given video packet stream. This section shows that, in the

optimal rate allocation, a flow is either used at its full bandwidth,

or not used at all. Furthermore, the optimal rate allocation al-

ways chooses the lowest loss probability paths, i.e., a path shall

not be selected, unless all other paths with a lower loss proba-

bility have been picked before. We start from an ideal streaming

scenario with unlimited budget and disjoint network paths, and

eventually add budget and flow constraints, which are however

shown not to affect the initial findings.

Assume that the disjoint network paths are represented into

a tree of flows as explained in Section II-B. Without loss of gen-

erality, we further assume that flows with , are

arranged in increasing order of the loss probability, i.e.,

. We note that, from the distortion metric point of

view, any two flows and , with rates and and traversing

paths and with the same loss probability , can be

observed as a single flow affected by the same loss probability

, and having an aggregated rate . Under these generic

settings, we first claim that the optimal rate allocation either uses

a network path to its full bandwidth, or does not use it at all.

Theorem 1 (On-Off Flows): Given a flow tree with indepen-

dent flows having rates and a distortion metric as

defined in (8), the optimal solution of the MMR problem when

all the paths are disjoint, lies at the margins of the value in-

tervals for all , i.e., the optimal value of is either 0 or ,

.

Proof: Deriving the distortion given in (8), with respect

to the rate , , we obtain

Observe that the condition for an extremum,

for any , implies:

where and are constants independent on . Since

, the equation has a single finite solution

In the same time, the derivative in any point is posi-

tive, while to the right of the optimal value, it is negative (since

, and all other terms are positive). Hence, is a

point of local maximum for the distortion function , which

means that only values at the margins of the value interval for

can minimize the objective function.1

It can be further observed that, in the case of , ,

for any positive value of (since , and

, ). Hence the value always minimizes

the objective function, and is part of the optimal solution.

Corollary 1: Given a flow tree with independent flows

having rates and a distortion metric as defined in (8),

the optimal solution of the MMR problem when all paths are

disjoint, allocates , where the path is the path with

the lowest loss probability.

Theorem 1 greatly reduces the search space for an optimal so-

lution to the MMR optimization problem. Hence we can rewrite

the optimal streaming solution as a vector of boolean values

for each flow , where means that path is used

with full rate , and denotes the fact that the path

is not used by the streaming application. The previous corol-

lary further says that is part of the

optimal solution.

For bounded intervals for all rates , computations are

sufficient for finding the optimal solution vector. For practical

scenarios, with a limited number of available network paths be-

tween a server and a client, this number of computations is in

general quite low. We can however further constrain the search

space by considering that the optimal rate allocation always uses

first the network paths with the smallest loss probabilities.

Theorem 2 (Parameter Decoupling): Given a flow tree with

independent flows having rates and a distortion

metric as defined in (8), the structure of the optimal rate alloca-

tion is .

Proof: We prove the result by induction. Recall that the

network paths/flows are arranged in increasing order of their

loss probabilities . We have already seen that

is part of the optimal solution. Next we show that,

for , cannot

be part of the optimal solution.

For the sake of clarity, let us remove ’s with from

the notation, since they stay constant in our proof. By contra-

diction, assume that is part of the optimal solution. It means

that . Since the paths are ordered

with increasing values of the loss probabilities and considered

to be disjoint, we can always transfer part of the rate from

1Since r is the only finite solution, this statement is valid even if r is not
contained in [0; b ].
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to , and improve the distortion. Let , and

. We have

The first inequality comes from the definition of the distortion

metric, the second one from the assumption that is part of the

optimal solution. We can further distinguish two cases.

• . Then, , and and, according to

Theorem 1, there exists a solution

, with . cannot

be part of the optimal solution since , which con-

tradicts our assumption.

• . Then, and , and we have

. From The-

orem 1, there exists an even better solution where ,

leading to , which again contradicts our as-

sumption.

Next, we prove that

cannot be part of the optimal solution. In other words, we prove

that the optimal rate allocation can only be a series of con-

secutive 1’s, followed by a series of consecutive 0’s. Let

and , with , be the start and end of the series of

consecutive 0’s in . Following the same reasoning as before,

transferring rate from flows , with , to

can only improve the overall distortion. If , it

directly leads to a solution with that is better than . Oth-

erwise, it leads to a solution where and

for , which can further be improved by choosing ei-

ther or (from Theorem 1). Both cases exclude

and for to be simultaneously part of

the optimal solution. The proof can further be extended to the

complete series of consecutive 0’s in .

The previous theorems show that we can find the optimal so-

lution for our optimization problem by iteratively searching all

available network paths , taken in ascending order of their loss

probability . Once we find a network path that can improve the

overall distortion result, before using it, we have to make sure

that all other network paths with better loss parameters are al-

ready used to their maximum available bandwidth. Hence, the

search space is reduced to a maximum of computations.

C. Nondisjoint Network Paths

We now show that, relaxing the assumption on disjoint net-

work paths in the original network graph does not change the

general form of the optimal solution. We assume that in the orig-

inal network graph , there is at least one bottleneck link ,

shared by at least two distinct network paths. Let ,

, be the set of paths sharing the bottleneck link

. In this particular case, while using any of the paths alone

yields an available bandwidth , using all of them in the

same time results in an aggregated bandwidth .

Note that may, or may not be a bottleneck link for any of

the paths , treated independently. The paths in are

called “joint paths” The following theorem regulates the sharing

of bandwidth among paths :

Theorem 3 (Bottleneck Bandwidth Sharing): Let be a bot-

tleneck link for the set of paths in , the bottleneck

linkbandwidth shallbesharedamongpaths inagreedyway,

starting with the path affected by the lowest loss probability.

Proof: As previously, let the paths be arranged

in increasing order of their loss probabilities . Let further

denote a valid rate allocation among the

nondisjoint paths. Recall that a valid rate allocation has to satisfy

the single flow constraints (i.e., , ), and the multiple

flow constraints, . Let be the path with the lowest

loss probability in . If in , and , one

can always find a better rate allocation by transferring rate from

other flows sharing the same bottleneck link, to the flow .

Since the total rate stays constant, the rate transfer does not af-

fect the source distortion, and does not violate the multiple flow

constraints. It however reduces the channel distortion, resulting

in improved overall performance. By induction, the proof can

be extended to all the nondisjoint paths. This shows that for any

valid, but nongreedy rate allocation , there

exists a better solution that uses in priority the lowest loss prob-

ability paths.

Note that the previous theorem can easily be extended to any

number of bottleneck links in , and to paths that be-

long to different sets in the same time. Theorem 3 allows to

extend Theorem 2 to generic network graphs, with potentially

nondisjoint paths. It results in the general rule that paths should

be taken in the increasing order of their loss probability, and

that all the flows should be used to their maximum capacity,

that can be limited by joint bottleneck links, before considering

an additional flow. Interestingly, any network scenario can thus

be transformed into a disjoint flow tree, by a greedy allocation

of joint bottleneck bandwidths to flows affected by lower loss

probabilities first. After this transformation, applying Theorem

1 and Theorem 2 will yield the optimal rate allocation for the

given streaming scenario.

Finally, we can relax the assumption of independent flows in

Theorem 1, by proper adaptation of the maximal bandwidth of

all nondisjoint paths.

Corollary 2: Given a generic flow tree with flows

ordered in increasing order of their loss probability, and

a distortion metric as defined in (8), the optimal solu-

tion of the MMR problem lies at the margins of the

value intervals for all , i.e., the optimal value of ,

, is either 0 or , where

.

Finally, multipath streaming applications may also have to

respect a budget constraint , or a maximal encoding

rate in the case of pre-encoded media sequence. These con-

straints can be modeled as an additional virtual bottleneck

link going out of the server. Fig. 5 shows such a transforma-

tion, where link and node are added to the topology

in order to incorporate the previous overall constraints. Link

should not influence the loss process of the intermediate

network, hence . The bandwidth is established at

, where and are simply set to

in the case where there are no limitative factors on the total

bandwidth. Applying Theorem 1, Theorem 2 and Theorem 3 on

the new network graph , yields an optimal

rate allocation for a stored packet stream, which fully takes into

account the budget and encoding rate constraints.
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Fig. 5. Inclusion of budget or encoding rate constraints as a virtual network link in the original network graph.

IV. RATE ALLOCATION ALGORITHM

A. Linear Complexity Search Algorithm

The analysis proposed in Section III shows that a simple algo-

rithm can find the optimal rate allocation by parsing all available

network paths in ascending order of their loss probability. De-

note a solution vector with , ,

and otherwise. becomes the cu-

mulative rate of the first flows, whose individual rates have

been chosen according to Corollary 2. The overall loss prob-

ability of the first flows, , is then given by

. The Search Algorithm iteratively com-

putes , for , and the optimal rate

allocation is the policy that minimizes the distortion metric

(9)

The algorithm will be able to find the global optimal rate al-

location only after parsing all available network paths. From the

previous theorems, the optimal rate allocation solution takes

the form of a consecutive series of 1’s, followed by a consec-

utive series of 0’s, hence requiring a maximum of computa-

tions. We propose below a few conditions for early termination,

which may avoid to test all possible solutions, while still en-

suring a global optimal solution. These conditions represent an

extra complexity reduction of the optimum search.2

B. Conditions for Early Termination

The search algorithm has to iteratively compute , for

increasing values of . A full search through possible solutions

may however be avoided, if any one of the following termination

conditions is verified.

1) Distortion Limitation: If , then the op-

timal rate allocation contains , . It can

be shown from the distortion function given in (8) that

, when other rates stay unchanged,

. Hence, for a value of , adding

another flow on path will asymptotically increase the

overall distortion metric to . Therefore, for any posi-

tive value of , with , and , adding extra rate

on path will only increase the distortion measure in this

case.

2Please note that the problem in general can be solved in less than linear time
(e.g., O(log(n)) computations). However, due to the limited number of paths
chosen for transmission, as reflected by our simulation results, the linear time
algorithm that parses the available network paths in ascending order of their loss
probability, along with the conditions for early termination, achieve the optimal
solution even faster.

2) Path Bandwidth Limitation: Solving the equation

for the variable may provide,

except the trivial solution , another positive,

finite value for , noted as . This second solution

happens in the case where and

. The later value

is obtained by solving . It rep-

resents the minimum rate , after which, adding an

extra rate could lead to an increase in distortion. In

the case where , with , adding another

flow, will not decrease the overall distortion, since unused

bandwidth is not sufficient anymore to compensate for the

increase in loss probability in case an extra flow is added.

In that case, according to Theorem 2 and to the definition

of the distortion metric, , hence

, .

Any of the above criteria represents a sufficient condition for

search termination from the theoretical point of view, and can

be applied at any stage of the optimal solution computation.

C. Rate Allocation Algorithm

This section presents a simple algorithm that computes

the optimal rate allocation for the optimization problem. The

previous theorems and conditions for termination represent

the keys for a fast search through the flow tree. Assume that

the server knows, or can predict the parameters of the inter-

mediate network links, and the sequence-dependent distortion

parameters. Initially, the network graph is transformed into

a tree of flows , sorted along increasing values of the loss

probabilities , with greedy assignment of joint bottleneck link

bandwidths. In case where two network paths have the same

end-to-end loss probability, they are considered as a single path

with aggregated bandwidth. The search for an optimal solution

of the shape given by Theorem 2 is performed iteratively. At

each step, the early termination conditions are verified. Once

any of them is satisfied, or when the algorithm finishes the

search of all flows, the algorithm stops and outputs the optimal

multipath rate allocation strategy. Algorithm 1 proposes a

sketch of the rate allocation algorithm.

During the initialization process, Algorithm 1must com-

pute all available paths between the streaming server and the

client . This is a well-known problem in graph theory, and

a solution can be easily found by implementing a depth-first

search [15], for example. The algorithm then arranges

the discovered network paths as a flow tree in ascending order

of their end-to-end loss probabilities. Any sorting algorithm of

complexity can be used. After the flow tree is con-

structed, the core of the algorithm finds the optimal rate alloca-

tion with a complexity , at maximum.
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D. Discussion

In this section we discuss the practical deployment of the

mechanisms proposed above, and some of its limitations. The

problem formulation and the methodology for the optimal flow

rate allocation of a given video packet stream over multipath

networks are valid for numerous encoding scenarios, including

off-line joint source and channel coding of media streams. We

assume that the server is not able to perform complex coding

operations in real-time, mostly for computational complexity

and scalability issues. In such a scenario, adaptive streaming

strategy mostly consist in finding the best routing strategy, and

overall rate allocation, for the transmission of a given packet

stream on a given multipath network. Additional benefits are

offered when several versions of the same stream are available

at the server. Due to the low complexity of our algorithm, the

server could identify both the best transmission strategy, and

the best stream to be sent, with an additional complexity that is

only linear with the number of stored versions. Such a design

choice is also beneficial in broadcast applications, where sev-

eral clients are accessing the same stream. In such situations,

fine adaptation of the packet stream to each individual client is

impossible. Coupled with efficient packet partitioning strategy,

our flow rate allocation solution however offers interesting per-

spectives in these scenarios.

In typical network infrastructures, bandwidth and loss rate are

quite dynamic. However, they usually exhibit stable statistics on

medium range timescales (i.e., in the order of few hundreds of

milliseconds, to seconds). We assume that the server can esti-

mate the average end-to-end bandwidth and loss probability

of the available paths to the client, for such timeframes. Ad-

ditionally, we assume that each path is characterized by a total

end-to-end delay , imposed on all packets traversing that path.

Finally, the client imposes a maximum tolerable payback delay

, after which it starts playing the media file. Given the esti-

mated parameters , and , the server chooses the optimal

transmission strategy in order to maximize the received media

quality. While the fastest estimation mechanisms on end-to-end

scenarios provide accurate results on time frames of a few sec-

onds [16], our rate allocation mechanism converges to the op-

timal solution in a very small number of computations. Since

our algorithm has a low complexity, it can be run periodically,

with updated network parameter estimates. It ensures the best

transmission strategy for a stored video stream, given the accu-

racy of the periodic network parameter estimation.

We identify a few typical scenarios where optimal rate allo-

cation between multiple stream paths can bring interesting ben-

efits in terms of media quality. In each of these examples, the

application of the algorithm proposed above is straightforward.

1) Wired Overlay Network Scenarios (e.g., Content Distribu-

tion Networks). The media information from a server is

forwarded towards the client by multiple servers belonging

to the same overlay network. The client consumes the ag-

gregated media from multiple network paths, and the al-

gorithm proposed above can be applied directly to find the

optimal rate allocation.

2) Wireless Network Scenarios (e.g., WiFi Networks). A

wireless client can aggregate the media information trans-

mitted on multiple wireless channels. Interference among

transmission channels can be minimized by choosing

nonoverlapping wireless channels (e.g., there are 8

nonoverlapping channels according to the IEEE 802.11a

standard specifications), and by optimizing the transmis-

sion schedule in the wireless network [17]. The authors

of [18] test a protocol stack that allows one wireless net-

work card to be simultaneously connected to, and switch

between, multiple networks in a transparent way for the

application. In the same time, the authors of [19] present a

video system over WLANs that uses multiple antennas in

order to aggregate the rate of multiple wireless channels.

3) Hybrid Network Scenarios (e.g., UMTS/GPRS/WiFi

Networks). A mobile client can simultaneously benefit

from multiple wireless services in order to retrieve the

media information from a server connected to the Internet

backbone. Existing commercial products [20] can already

maintain connectivity to multiple wireless services (e.g.,

UMTS, EDGE/GPRS and WiFi hotspots), and transpar-

ently switch at any time to the service that offers the best

channel performance, for a fixed subscription price. It is

only a question of time before such commercial products

will be able to aggregate the resources of multiple such

services in order to enhance the user streaming experience,

and telecommunications operators are actively working

on such systems.

All these applications can be modeled according to

Section II-A, and the implementation of the proposed al-

gorithm is generic and independent of any particular bandwidth

and loss model, as long as the media flows can be considered

independent in terms of losses. This assumption is valid in

any disjoint path network scenario, since the media flows

are independent in terms of both rate and losses. In generic

network scenarios, our analysis still holds (namely the trans-

formation between the network graph and the tree of flows in

Section II-B), as long as the predominant losses affecting the
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Fig. 6. Distortion model validation with video streaming experiments using the H264 encoder. (a) Encoding rate distortion validation and (b) loss distortion
validation.

transmission process are independent among media flows (e.g.,

scenarios 2 and 3). An analysis of the rate allocation problem in

general networks characterized by a Gilbert loss model (where

the transformation in Section II-B can only be considered as an

approximation) can be found in [10].

It can be noted that the applications mentioned above present

in general a limited number of available network paths between

the streaming server and the client. It is fairly easy for a server

to continuously monitor these paths and to estimate their pa-

rameters. Based on these parameters, the execution of the pro-

posed algorithm will output the optimal choice of paths and rates

in terms of average media quality at the client. For very large

network scenarios, it can be noted that the assumption of full

knowledge about the network can be relaxed in setting up a dis-

tributed version of the proposed algorithm [21].

Finally, the network path selection and flow rate allocation

problem does not consider media packetization and network

scheduling issues. These issues are typically addressed at a

lower and finer level. The packetized media stream can be

split into packet flows corresponding to the chosen network

paths, assuming a very simple scheduling algorithm. Given the

estimated rates and delays on all the network paths, the server

adapts the streaming rate to the available network bandwidth

by simple operations on stored video packet stream. Then, it

schedules the packets on the different paths according to the

estimated arrival times at the client [22]. Network estimation

errors and jitter can further be compensated at the client with the

use of application dedicated buffers and conservative playback

delay. Interleaving may also be implemented to fight against

bursty loss processes when delays permits it.

V. SIMULATION RESULTS

A. Simulation Setup

We test our optimal rate allocation algorithm in different

network scenarios, and we compare its performance to heuristic

rate allocation algorithms. We use an H.264 encoder, and

the decoder implements a simple frame repetition error con-

cealment strategy in case of packet loss. We concatenate

the sequence to produce a 3000 frame-long

video stream, encoded at 30 frames/s. The encoded bitstream is

packetized into a sequence of network packets, each packet con-

taining information related to one video frame. The packets are

sent through the network on the chosen paths, in a FIFO order,

following a simple earliest-transmission-time-first scheduling

algorithm. We further consider a typical video-on-demand

streaming scenario, where the admissible playback

delay is large enough (i.e., larger than the time required to

transmit the biggest packet on the lowest bandwidth path).

Hence, a video packet is correctly decoded at the client, unless

it is lost during transmission due to the errors on the network

links.

Our simulations first validate the distortion metric proposed

in (8). Then, the performance of our optimal rate allocation al-

gorithm is compared to heuristic rate allocation algorithms, on a

set of random network topologies. Finally, we carefully analyze

the behavior of optimal rate allocation for a particular network

scenario, and discuss optimal solutions.

B. Distortion Model Validation

The video sequence is encoded at rates between 200 kbps

and 1 Mbps, and the mean-square-error between the

original sequence and the decoded one is computed, in error-

free scenarios. Simulation results are compared in Fig. 6(a) to

the distortion model values, whose parameters have been set to

, , and , respectively.

We observe that the model distortion curve closely follows the

experimental data, which validates the source distortion model.

In order to validate the loss distortion component ,

random errors are introduced during the network transmission

process, where each packet is lost with an independent loss

probability . Simulations are performed with different

values of loss probabilities, and different encoding rates. We

observe in Fig. 6(b) that the theoretical model closely approx-

imates the experimental data, where each experimental point
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Fig. 7. Three network scenarios. (a) Wired network; (b) wireless network;
and (c) hybrid network.

TABLE I
PARAMETERS FOR RANDOM GRAPH GENERATION

is averaged over ten simulation runs. Even if it stays quite

simple, the distortion model used in our work closely fits the

average behavior of lossy video streaming scenarios. Note

that the sequence-dependent parameters may obviously have

different values for other encoders or other video sequences.

The evolution of the distortion function however stays the

same, independently of the exact values of these parameters.

C. Rate Allocation Performance

We now present the performance of the proposed optimal rate

allocation algorithm, in various random network scenarios. We

simulate three different categories of network topologies.

1) Wired network graphs, in which the edges between nodes

are characterized by high bandwidth and low error proba-

bility.

2) Wireless network graphs, with low bandwidth and high

error probability for the intermediate links.

3) Hybrid network scenarios, where the server is connected

to the wired infrastructure, and the client can access the

Internet via multiple wireless links.

The network scenarios are presented in Fig. 7. In each of the

three cases, we generate 500 random graphs, where any two

nodes are directly connected with a probability . The param-

eters for each edge are randomly chosen according to a normal

distribution, in the interval , for the bandwidth,

and, respectively, for the loss probability. The pa-

rameters for the wired and wireless scenarios are presented in

Table I. The hybrid scenario uses the parameters of both sce-

narios.

For each of the three types of scenarios, we compute the av-

erage end-to-end distortion when rates are optimally allocated,

and we compare it to the results obtained by other simple rate

allocation algorithms, namely, i) a single path transmission sce-

nario, which selects the best path in terms of loss probability

, ii) a single path transmission scenario , which

TABLE II
AVERAGE DISTORTION RESULTS (MSE)

uses the best path in terms of effective bandwidth or “goodput”

computed as , iii) a multipath transmission scenario

that picks the best two paths in terms of goodput, and iv)

a multipath transmission scenario that uses the maximum avail-

able number of flows, denoted as . The results, averaged

over 500 random graphs are presented in Table II.

As expected, our algorithm provides the best average perfor-

mance in the three considered scenarios. It has to be noted that,

in each individual run of simulation, our algorithm never per-

forms worse than any of the heuristic schemes. Also, we ob-

serve that, in the wireless scenario, the rate allocation that is the

closest to the optimal strategy is the one offered by the use of

the best single path in terms of loss rate. This can be explained

by the high loss probabilities of the intermediate links, which

cannot be compensated by extra rate added by subsequent flows.

On the other hand, in the wired scenario, characterized by very

small loss probabilities, the scheme that is the closest to the op-

timal solution is given by the greedy use of all available flows.

In this case, the improvement brought by adding extra transmis-

sion rate outruns the losses suffered throughout the transmission

process. The results for the hybrid scenario are situated, as ex-

pected, between the two extreme cases. The total streaming rates

in the three scenarios are in average, for the wired

scenario, for the wireless scenario, and respec-

tively for the hybrid one.

Next, we study the benefit offered by optimal rate allocation,

as compared to the simple heuristic schemes. The relevance of

the optimal solution is measured by counting the number of

simulation runs in which the optimal rate allocation brings an

improvement of [0–5%], [5–10%], [10–20%], and above 20%,

in terms of end-to-end video distortion, compared to the other

streaming strategies. The results are presented in Figs. 8–10.

We observe that, in more than half of the cases, network

flooding represents a good approximation of the optimal solu-

tion in the wired scenario where losses are rare. However, we

argue that it is still worth applying the proposed rate allocation

algorithm, because it is of very low complexity, and can still

save network resources. In the wireless scenario, the best ap-

proximation is presented in most of the cases by the lowest loss

probability path streaming. Still, in almost 40% of the simula-

tion runs, the optimal rate allocation improves the distortion re-

sult by more than 10%. Finally, in the hybrid scenario, the rate

allocation algorithm provides significant quality improvements

compared to all other heuristic approaches. It is also interesting

to observe that the rate allocations based on the best goodput

path, and best two goodput paths algorithms always provide the

worst results.

We also compute the optimal average number of flows used

in each simulation scenario, compared to the average number
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Fig. 8. Quality improvement versus heuristic rate allocation algo-
rithms—wired scenario.

Fig. 9. Quality improvement versus heuristic rate allocation algorithms—wire-
less scenario.

of available paths. The results are presented in Table III. We

observe that the wireless scenario uses the smallest number of

flows, while the wired one has an average of no more than three

flows, for a number of available paths that is far larger. From the

multipath streaming point of view, it interestingly shows that,

using a very large number of streaming paths does not con-

tribute to an improvement of the video quality at the receiver.

This is certainly interesting for the design of practical multipath

streaming systems, where the number of paths that have to be

synchronized, stays limited. The distribution of the number of

flows used per simulation run, is presented in more details in

Fig. 11.

In summary, we observe that a small number of transmission

flows is sufficient for an optimal video quality at the receiver,

in all simulation scenarios. Paths with lower error probability

should be preferred to higher bandwidth paths in wireless sce-

narios, while in all-wired scenarios with low error probability,

adding high-rate flows can improve the overall video quality. In

Fig. 10. Quality improvement versus heuristic rate allocation algorithms—hy-
brid scenario.

TABLE III
AVERAGE NUMBER OF PATHS

Fig. 11. Distribution of optimal number of paths for the 3 network scenarios.

hybrid scenarios, a compromise between the two tendencies is

expected to provide the best end-to-end distortion.

D. A Case Study

This section proposes to analyze the performance of the op-

timal rate allocation algorithm in a given network scenario, il-

lustrated in Fig. 12. The network parameters are presented in

Table IV. For each of the five rate allocation algorithms, we

compute the distortion measure according to the theoretical dis-

tortion metric, and we validate it against experimental values,
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Fig. 12. One network topology example—optimal flow allocation and other
heuristic algorithms. (a) Available network graph; (b)best PLR path; (c) best
PLR path; (d) optimal flow allocation; (e) best goodput two paths; and (f) max-
imum flow graph.

TABLE IV
PARAMETER VALUES FOR THE LINKS IN G(V;E)

obtained from simulations with video sequences. Each experi-

mental point is averaged over 10 simulation runs. Each video

packet is scheduled on the network paths chosen by the given

rate allocation algorithm, according to a simple first-available

path first. In the same time, each video packet is affected by the

individual loss process of each traversed network segment.

The and parameters, along with the model and exper-

imental distortion values are presented in Fig. 13, for each of

the algorithms. It can be observed that the optimal rate alloca-

tion algorithm outperforms all other heuristic-based strategies.

The optimal rate allocation reaches a balance between total used

bandwidth, number of network paths, and error probability that

affects the streaming process. The example clearly shows that it

is not optimal to use only the best paths in terms of rate. In the

same time, the greedy use of all available network resources,

does not provide better results. This clearly motivates the im-

plementation of the proposed rate allocation algorithm, which

optimizes the received video quality, without wasting network

resources. Finally, it can be noted again that the theoretical dis-

tortion model represents a very good approximation of the ex-

perimental setup.

VI. RELATED WORK

The research community has recently started to investigate

the idea of multipath routing and streaming in order to improve

the QoS of media applications. The authors of [23] present a

distance-vector algorithm for finding multiple paths, while the

authors of [24] present a multipath extension of Direct Source

Fig. 13. Network scenarios computation: theoretical distortion model versus
experimentally computed distortion.

Routing for wireless ad-hoc environments. The purpose of the

algorithms is to achieve load balancing over multiple paths, and

to simultaneously minimize delays.

While all these works give a detailed analysis of the multi-

path routing problem form the networking point of view, we

address the same problem from a media application perspec-

tive. The process of choosing the paths for transmission and

their respective rate allocation is subordinated to achieving a

better streaming experience, measured in terms of video distor-

tion. The work presented in [25] addresses a similar problem of

choosing the best path from a media perspective. However, the

authors only address the question of path switching efficiency

from the media application point of view, and do not investigate

the benefits of multipath streaming. The advantage of user-level

channel diversity is studied in [26] in terms of performance, fair-

ness, robustness and cost. On a different client-server scenario,

we achieve the optimization of the received media quality, when

the available network resources for the application represent the

share of the total resources split among concurrent applications.

More generally, routing with multiple metrics is the target of

many works in QoS routing. But QoS routing with multiple con-

straints is, in general, an NP hard problem. An initial proof, for

the case of at least two additive metrics is given in [27]. The au-

thors propose heuristic algorithms for both source routing, and

hop-by-hop routing, which find one path satisfying the QoS re-

quirements of multimedia applications. Recent works in multi-

constrained routing optimize a linear [28], respectively a non-

linear [29] relation between constraints, using low complexity

algorithms. A similar function built on multiple path metrics is

used in [30] to find multiple network paths for streaming.

In contrary to common QoS routing problems, we propose

a media-specific distortion metric, which comprises multiple

network link parameters together with media aware parame-

ters. The metric describes the quality of the received video,

as a function of the specific network scenario and streaming

process. The optimization of the end-to-end distortion translates

into choosing the best set of paths, and the respective optimal
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rate allocation. Classical optimization methods however fail to

obtain a simple solution due to the nonconvexity of the opti-

mization function. An in-depth analysis of the behavior of this

metric in our specific setting however, allows to derive a simple

algorithm that achieves the optimal solution in linear time, as it

has been shown in this paper.

Flow assignment problems have been addressed in [31] and

[32]. The authors of the first paper are concerned with optimally

splitting the data on multiple disjoint paths in order to avoid

packet re-sequencing at the client. The second paper presents an

algorithm that minimizes the end-to-end delay of data transmis-

sion while complying with an aggregated bandwidth constraint.

The algorithm is optimal only in the case of unit capacity links

and disjoint paths. Our flow problem formulation is general and

deals with both joint and disjoint paths. We show that, from the

media application point of view, an optimal flow allocation is

achievable in any network scenario, by joint optimization of the

number of paths used, and the aggregated rate of the flows.

Finally, the multipath problem is specifically addressed in the

case of media streaming in [33]. The authors present a FEC

scheme combined with server diversity and a packet scheduling

mechanism, which intends to minimize the cumulative distor-

tion of individual erroneous video packets. Our work focuses

on a nonmulticast communication scenario, with an interme-

diate network comprising multiple available transmission paths.

Multistream coding, combined with multipath transmission, has

been presented in [34] as a solution to fight against network er-

rors in an ad-hoc network environment. In the same time, the

authors of [35] analyze a multiple path streaming scenario for

the transmission of a video sequences encoded in multiple de-

scriptions. They minimize an additive distortion metric, com-

puted as the sum of the individual distortions of each of the in-

dependent descriptions. For complexity reasons, their analysis

is reduced to a scenario comprising two encoded descriptions

and two transmission paths. In our work we rather address the

questions of how many transmission paths to use, and how to

chose them, in order to maximize the efficiency of the streaming

application. Our streaming framework is more general, and ap-

plicable to any streaming scenario that obeys an additive rule for

the aggregated transmitted rate and loss process. The proposed

algorithm finds the optimal transmission strategy and encoding

rate, based only on the available network resources, and video

sequence dependent parameters.

VII. CONCLUSIONS

In this paper, we propose to use a flow model to analyze

the opportunity of multipath media streaming over the Internet.

Based on an equivalent transformation between the available

network graph and a tree of flows, we jointly determine the net-

work paths, and the optimal rate allocation for generic streaming

scenarios. A media specific performance metric is used, which

takes into account the end-to-end network path parameters along

with media aware parameters.

An in-depth analysis of the end-to-end distortion behavior, in

the given network scenario, drives the design of a linear time

algorithm for optimal rate allocation. The form of the optimal

rate allocation solution follows a simple greedy rule that always

uses the paths with the lowest loss probability first. In partic-

ular, we show that extra network paths are either used at their

maximum available bandwidth, if their value is large enough,

or simply ignored. The overall rate allocation solution offers a

careful trade-off between extra transmission rate and increase in

the end-to-end error process. Even for large network scenarios,

only a small number of paths should optimally be used for trans-

mission, and they should be chosen among the lowest loss prob-

ability channels.

The optimal rate allocation algorithm has been tested in var-

ious random network scenarios, and it significantly outperforms

simpler schemes based on heuristic rate allocation strategies. In

many cases, our algorithm even provides an end-to-end distor-

tion improvement of more than 20%. Due to its low complexity,

and important benefits in most streaming scenarios, the optimal

rate allocation algorithm provides a very interesting solution to

efficient media streaming over resource-constrained networks.
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