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Figure 1: A series of volume approximations based on progressively simplified medial meshes computed by our method. The approximation
error is measured by the one-sided Hausdorff distance from the original shape to approximate volumes.

Abstract

Volume approximation is an important problem found in many ap-
plications of computer graphics, vision, and image processing. The
problem is about computing an accurate and compact approximate
representation of 3D volumes using some simple primitives. In
this study, we propose a new volume representation, called medial
meshes, and present an efficient method for its computation. Specif-
ically, we use the union of a novel type of simple volume primitives,
which are spheres and the convex hulls of two or three spheres, to
approximate a given 3D shape. We compute such a volume ap-
proximation based on a new method for medial axis simplification
guided by Hausdorff errors. We further demonstrate the superior
efficiency and accuracy of our method over existing methods for
medial axis simplification.

Keywords: volume representation, medial axis, enveloping prim-
itives, simplification, shape approximation, shape deformation

1 Introduction

Volume representation for 3D shapes is ubiquitous in computer
graphics, as well as other fields of science and engineering, such
as CAD/CAM, vision and image processing. Three important con-
siderations in the study of volume representation are simplicity, ac-
curacy, and efficiency. Specifically, with a specified type of volume
representation, we wish to have the following properties: (1) sim-
plicity: simple primitives are used to approximate an arbitrary 3D
shape in order to facilitate subsequent processing, such as render-
ing and simulation; (2) accuracy and efficiency: it is necessary to
have an efficient method for computing an accurate approximation
of an arbitrary 3D shape using the specified representation.

We propose a new approach to volume representation in this paper.
We first present a new class of simple volume primitives and pro-
pose to use their union to approximate any given 3D shape. These
primitives include spheres, and convex hulls of two or three spheres
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(see Figure 3). These primitives are simple to analyze and process
since their boundary surfaces are defined by spherical caps, coni-
cal patches, and triangle faces, and therefore allow fast geometric
processing.

Note that these primitives are naturally related to the medial axis
transform (MAT) of 3D shapes. Briefly speaking, the exact MAT
of a 3D object is a set of infinitely many maximal spheres (also
called medial spheres) whose union is the given 3D object. In com-
putational practice, the MAT is often approximated by the union of
finitely many spheres. Our insight is that the MAT can be approx-
imated efficiently using a 2D non-manifold simplicial complex, to
be called a medial mesh, which consists of line segments and trian-
gle faces. The vertices of a medial mesh are sampled medial spheres
of the MAT, and the linear interpolation of these vertices over line
segments or triangles of the medial mesh defines the convex hulls
of two or three medial spheres. Because of this connection between
the medial mesh and MAT, in the following we shall mainly be con-
cerned with the simplification of the medial axis of a 3D object for
computing medial meshes.

To convert the above observations into an effective computation
method, we need to address the following issues: (1) How to sim-
plify a densely sampled MAT of a given 3D object to produce a
compact representation with a reduced data size? (2) How to en-
sure that the resulting approximation results in an accurate repre-
sentation of the given 3D object? In addition, we need to address
the notorious instability issue in medial axis computation in the pro-
cess.

The medial axis of a solid object in R
d, d = 2 or 3, is the set of

points having at least two closest points on the object’s boundary,
in other words, it comprises the center of the spheres (or circles in
2D) which are contained in the object and touch the object’s bound-
ary at two or more points. These spheres are called the medial
spheres or (medial circles in 2D). See Figure 2(a) for a 2D illus-
tration. The medial axis transform (MAT) consists of two parts, a
medial axis and a radius function, which encodes the radii of the
associated medial spheres. As an intrinsic shape representation, the
MAT has proven extremely useful for shape analysis and synthe-
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sis tasks, such as the approximation, description, recognition and
retrieval of shapes as well as topology representation and data re-
duction of complex models. In the following we shall study the
computation of the MAT in order to generate a simple and compact
volume representation.

(a) (b)

Figure 2: The instability of medial axes. (a) The medial axis of
a flower shape with a smooth boundary. (b) The medial axis of the
same shape with a noisy boundary.

Despite its potential utility, the application of the MAT has been
hindered by its instability and redundancy. First, the MAT is noto-
riously sensitive to noisy, small perturbations on the shape bound-
ary. As shown in Figure 2, a slightly noisy shape boundary leads to
a medial axis with numerous undesired branches. Such instability
plagues the application of the MAT on real-world data with noise.
Second, the MAT is in general a continuum comprising infinitely
many points with a simple analytical expression. As a result, in
practice a medial axis is commonly approximated with a dense set
of sample points, which amounts to using the union of a large num-
ber of medial spheres to reconstruct the original shape. This leads
to inefficiency and poor accuracy when computing with the MAT.

We shall use a triangular mesh to approximate the MAT, and call it a
medial mesh. Unlike previous methods that use a discrete set of in-
dividual spheres, the medial mesh uses linear interpolation of sam-
pled medial spheres to approximate the MAT, resulting in a more
accurate and compact approximation.

We shall present an effective algorithm for computing a stable and
compact medial mesh. Our algorithm not only cleans up the topol-
ogy of the medial axis by pruning unstable branches, but also pro-
duces a compact representation by reducing the number of sample
points on the medial axis while ensuring shape approximation ac-
curacy of the medial mesh by observing a specified error bound
during simplification. Analogous to mesh simplification, our algo-
rithm progressively simplifies an initial medial mesh of the input
shape by iteratively contracting selected edges until the approxi-
mation error reaches a predefined threshold. Because of the use
of sphere interpolation, this algorithm is capable of drastically re-
ducing the number of vertices and edges in the medial mesh while
faithfully representing the original shape. Experiments and compar-
isons indicate that our simplified medial mesh can achieve the same
shape approximation error with orders-of-magnitude fewer primi-
tives than by existing medial axis pruning techniques. This leads to
an accurate and compact volume presentation using the proposed
simple primitives.

We shall demonstrate the relevance of medial meshes in two shape
modeling tasks. In shape approximation, the mesh is able to achieve
much smaller approximation errors with the same number of prim-
itives in comparison to state-of-the-art methods based on spherical
approximation. In free-form shape deformation, the medial mesh
can serve as the compact embedded structure of an object to offer
flexibility in bending and stretching while faithfully preserving the
object thickness than state-of-the-art deformation techniques.

2 Related Work

Volume approximation Shape or volume approximation with
simple primitives is a fundamental problem in computer graphics
and computational geometry, as it enables simplified and efficient
computations in various applications. Focusing on fast collision
detection, Hubbard [1996] proposes the sphere tree as a hierarchi-
cal structure which is built based on mid-axis surface computation.
Bradshaw and O’Sullivan [2004] extend this method using adaptive
medial axis approximation and improves the bounding efficiency by
with an iterative greedy approach. Wang et al. [2006] adopt a vari-
ational approach that minimizes the outsize volume of the spheres
to obtain a set of sphere whose union bounds and approximates a
given object, which is used for fast shadow computation [Ren et al.
2006]. Based on the medial axis, Stolpner et al. [2011] present a
method for sampling internal medial spheres to obtain a tight ap-
proximation of a given shape. All these methods use the union of
spheres to approximate a given object and therefore often need a
large number of spheres to achieve satisfactory approximation. In
contrast, we propose to use simple primitives that are linear inter-
polations of spheres to define a volume approximation.

Apart from spheres, ellipsoids are also effective primitives for vol-
ume approximation. Bischoff and Kobbelt [2002] use ellipsoids to
cover a 3D object. Specifically designed for surface reconstruction
in robust geometry transmission, the method yields a decomposi-
tion that contains a large number of ellipsoids than necessary for
tight bounding. Lu et al. [2007] propose a variational approach to
computing an optimal segmentation of a 3D shape for computing a
bounding volume defined by a union of ellipsoids. With an error-
driven segmentation refinement, the method is capable of achieving
shape approximations that satisfy a user-specified volumetric error.

Medial axis simplification The medial axis transform was first
proposed by Blum [1967] as a tool for biological applications. It
has been proved that the MAT is injective, therefore a complete
shape descriptor. The medial representation captures the shape in-
trinsically by encoding the local thickness and symmetry, and finds
applications in shape matching, shape recognition, shape retrieval
[Kazhdan et al. 2003; Siddiqi et al. 2008; Siddiqi and Pizer 2008],
to name a few. However, the medial axis is inherently unstable, that
is, a small perturbation to the shape boundary may introduce a large
change of its medial axis. In graphics, models often have a bound-
ary representation, such as triangle meshes. The exact medial axis
of such models [Culver et al. 2004; Aichholzer et al. 2010] typi-
cally has many undesired branches, therefore are not suitable for
further applications. To overcome the instability of the medial axis,
several methods have been proposed to remove the unstable spikes,
a process often referred to as medial axis pruning.

Angle-based filtering. For every point on a medial axis, angle-
based methods [Attali and Montanvert 1996; Amenta et al. 2001;
Dey and Zhao 2002; Foskey et al. 2003] compute the angle spanned
by its closest points on the shape boundary. All the points on the
medial axis with a spanned angle less than a user-specified thresh-
old are removed. The points surviving this removal make up the
filtered medial axis. Although the angle criterion can preserve local
features, angle-based filtering often yields a simplified medial axis
with a different topology from the input one [Miklos et al. 2010].

The λ medial axis. Another criterion for medial axis filtering is
the circumradius of closest points of a medial point. Such a filtered
medial axis is also known as the λ medial axis [Chazal and Lieutier
2005; Chaussard et al. 2009]. All medial points with a circumradius
smaller than a given threshold λ are removed. It has been proven
that such filtration preserves the topology for small λ [Chazal and
Lieutier 2005]. However, this circumradius criterion does not work



well on shapes with features at different scales. Small values of λ
cannot remove noise near large-scale features while increasing λ
would eliminate small-scale features. As a result, there may exist
large discrepancies between the original shape boundary and the
shape boundary reconstructed from the simplified medial axis.

Scale axis transformation. Miklos et al. [2010] proposes a
method based on the scale axis transformation (SAT) [Giesen et al.
2009]. For a given medial axis, all medial spheres are first scaled
by a factor s larger than 1. A scaled medial sphere is removed if
it is contained in another scaled medial sphere. Then, the union
of all remaining medial spheres generates a new shape, whose me-
dial axis is further subject to topology-preserving angle filtering.
The final result is obtained by shrinking all medial spheres of the
simplified medial axis by the factor 1/s. This SAT based method
often generates results better than earlier techniques. However, it
does not preserve the shape topology as it may fill in narrow gaps
or small holes by the first dilating step.

Feature-based simplification. Another paradigm of medial axis
simplification is taken by Tam and Heidrich [2003] to achieve high-
level feature-based shape simplification. The medial axis is decom-
posed into manifold sheets as parts, each of which corresponds to a
feature of the input shape. The parts are then pruned based on sig-
nificant measures using triangle count and the volume of each part.
While the method can remove insignificant shape features as well
as components that are smaller than a volume threshold, it does not
reduce the number of triangles on each of the remaining manifold
sheet. In other words, the geometric complexity of these parts re-
main intact. The resulting feature filtered shape can be one with a
medial axis still having lots of triangles. Our method, on the other
hand, outputs a simplified medial axis by reducing the number of
geometries used in the medial mesh but at the same time attaining
an approximation error up to a user defined threshold. The output is
therefore an error bound medial shape representation with a medial
axis with much fewer geometries.

Interpolation of medial spheres. A common scheme shared by all
previous pruning methods is that they discretize a medial axis into
a set of points only, that is, they approximate the input shape using
a discrete set of individual spheres. Such a discretization simplifies
algorithm design but gives rise to artifacts or large shape approxi-
mation errors. In contrast, with our simplified medial mesh we use
linear interpolations of spheres to approximate the input shape to
achieve both high visual and numerical fidelity. Note that our me-
dial mesh simplification algorithm is quantitatively controlled by a
shape approximation error metric.

M-rep. It is a little surprising that there has been no previous
study in literature on how to compute a compact and stable medial
axis representation based on the interpolation of medial sphere. A
related work is M-rep by Pizer et al. [1999], which proposes the
compact spline approximation to the medial axis of 3D objects for
shape analysis in medial imaging. However, M-rep considers only
the special case that the 3D object is simple enough to allow its
medial axis to be approximated by a single patch of tensor product
B-spline surface. Furthermore, it assumes that this tensor product
B-spline surface patches is manually specified and does not con-
sider how to extract such a spline representation automatically. The
idea of medial mesh is inspired by the M-rep, but our goal to is com-
pute an accurate and compact medial axis approximation of any 3D
object based piecewise linear interpolation of medial spheres.

3 Definition of Medial Meshes

The MAT of a 3D shape is in general a 2D non-manifold surface
embedded in 4D space, since each point of the medial axis consists

(a) (b)

Figure 3: (a) The enveloping primitives of two spheres represented
by an edge of the medial mesh. (b) The enveloping primitives of
three spheres represented by a triangle face of the medial mesh.

of the coordinates of its 3D position and the radius of its associ-
ated medial sphere. As demanded by many applications in shape
analysis and synthesis, we are concerned with accurate and com-
pact representation of this medial axis surface. For this purpose we
propose to study the piecewise linear approximation to the medial
axis surface.

The medial mesh of a 3D object is a 2D simplicial complex approx-
imating the medial axis of the object. A vertex of a medial mesh is
called a medial vertex and is a 4D point v = (p, r), where p is the
3D position of the vertex and r its associated radius value. The vol-
ume primitive of a medial vertex is the medial sphere with center p
and radius r. An edge e = {v1,v2} of the medial mesh is called
an medial edge, represented by (1 − t)v1 + tv2, t ∈ [0, 1], which
is a convex interpolation of its end points v1 and v2. Geometri-
cally, the volume primitive generated by a medial edge is the con-
vex hull of the two medial spheres defined by v1 and v2, or a swept
volume generated by interpolating the two spheres (see Fig. 3(a)).
The most general type of elements of a medial mesh is a triangle
face, called the medial face. It is defined by f = {v1,v2,v3},
which is the convex combination of the three medial points, i.e.,
a1v1 + a2v2 + a3v3, where the ai are the barycentric coordinates
satisfying a1 + a2 + a3 = 1 and ai ≥ 0 (i = 1, 2, 3). Geometri-
cally, the volume primitive generated by a medial face is the convex
hull of the three medial spheres defined by the vertices v1,v2,v3

(see Fig. 3(b)).

The volume primitives associated with the vertices, edges and faces
of a medial mesh will be called enveloping primitives. The me-
dial mesh then represents a 3D object that is the union of all its
enveloping primitives. This representation is much more compact
that those previous approaches of using the union of sampled indi-
vidual medial spheres to approximate the medial axis, as illustrated
in Fig. 4.

The analogue of the medial mesh for 2D shapes is a graph (V,E)
consisting of a set V of medial vertices and a set E of medial
edges connecting medial vertices. Here the interpolation of me-
dial spheres for a medial mesh in 3D is replaced by interpolation of
medial circles.

Figure 4: An illustrative example. From left to right: A medial
mesh of a bird shape with 400 medial vertices. Reconstruction by
the union of the 400 sampled medial spheres. Reconstruction by the
union of the enveloping primitives of the medial mesh.



4 Medial Mesh Computation

We now discuss how to compute a concise and stable medial mesh
to robustly represent and approximate a given shape. Given the
boundary mesh of a 3D shape, using the mesh vertices or a set of
sampled point on the mesh as input, we first compute an initial me-
dial axis using the Voronoi-based method [Amenta and Bern 1998;
Attali and Montanvert 1997]. This initial medial axis is a noisy
and dense mesh representation of the medial axis and will serve as
the initial medial mesh. Starting from it, we iteratively contract se-
lected edges to progressively simplify the medial mesh until a user-
specified approximation error has been reached. Our simplification
strategy is driven by approximation error of the simplified medial
mesh to the input shape. So it is capable of reducing the number of
medial vertices as well as eliminating unstable spikes, which con-
tribute negligibly to the shape boundary and therefore their removal
gives rise to very limited shape approximation error.

We now give the details of our simplification method. Given a 3D
volumetric shape S, let C0 denote a medial mesh approximating
the medial axis of S. Let S0 denote the union of all the enveloping
primitives of the medial mesh C0. The boundary surface of S0,
denoted ∂S0, is the surface reconstructed from the medial mesh
C0 to approximate the boundary ∂S of the given shape S. The
approximation error ǫ of the medial mesh C0 with respect to S is
measured by the Hausdorff distance between ∂S0 and the origi-
nal boundary surface ∂S. Suppose that ∂S is sampled by a dense
set of points {qi}. Then the approximation error ǫ is given by
maxi{d(qi, ∂S0)} (Figure 5(a)), where d(qi, ∂S0) is the distance
from the point qi to the reconstructed surface ∂S0, and can be com-
puted by taking the minimum of the signed distances from qi to the
spheres, truncated cones and triangles composing the boundary sur-
faces of the individual enveloping primitives.

Given a medial mesh C0 whose envelope S0 approximates the in-
put shape S, contracting a medial edge e ∈ C0 gives rise to a new
medial mesh C1. In general, C1 has a larger approximation than
C0 and there is only a local region R on the original boundary sur-
face ∂S near the contracted edge e that contributes to this increased
error. The mesh vertices in R are those whose closest points on
∂S0 lie on an enveloping primitive of C0 that involves the edge e.

We define the post-contraction error of e as the local shape ap-
proximation error caused by the contraction of e, i.e. Econtr(e) =
max{d(p, ∂S1)|p ∈ R}, measuring the approximation error of
the region R on ∂S by the corresponding region on ∂S1 which is
the boundary surface of the update medial mesh C1, as shown in
the 2D illustration in Figure 5. In Figure 5(a), C0 consists of three
edges, and the edge whose post-contraction error needs to be eval-
uated is rendered with a thick line, denoted e. There are two ways
to contract e, namely merging the left vertex with the right one,
and vice versa. These two possible ways of contracting e and their
associated errors are shown in Figures 5(b) and (c), respectively.
Since merging the left vertex to the right vertex leads to a smaller
error associated, this error indicated in Figure 5(c) is chosen as the
post-contraction error of the edge e.

Our simplification algorithm first computes the post-contraction er-
ror for every edge in the initial medial mesh C0. It then iteratively
contracts the edge with the smallest post-contraction error. When
an edge (vi,vj) is contracted, the two medial vertices merges and
all edges incident to vi or vj , as well as their associated envelop-
ing primitives (i.e. 1-ring neighborhood) are updated in position.
All boundary sample points associated with these enveloping prim-
itives are then checked to find their new closest primitives. Since
the association within the 1-ring neighborhood is updated, the post-
contraction error in the 2-ring neighborhood is affected and up-
dated. This is a local and efficient way of maintaining the affected

regions of the updated primitives. Note that the operation may be
conservative at times for estimating the Hausdorff distance. How-
ever, this error overestimation is seldom; even when it happens, the
robustness and the error control ability of our method are not com-
promised. When the smallest post-contraction error of all edges is
larger than a given user-specified threshold, the algorithm termi-
nates and outputs the simplified medial mesh. We summarize this
simplification procedure in Algorithm 1.

Algorithm 1 Medial Axis Simplification Based on Edge Con-
traction

1: Initialization–Compute the post-contraction error for all edges
and store them in a priority queue.

2: while the smallest post-contraction error is less than a given
threshold do

3: Pop the edge with the smallest post-contraction error;
4: Contract the edge to one of its endpoints;
5: Re-evaluate the post-contraction error for edges affected by

the contraction and update the priority queue.
6: end while
7: Return the simplified medial axis.

4.1 Homotopy Preservation

It is an important requirement for medial mesh simplification that
the topology of the boundary surface ∂S of an input shape S be
preserved during simplification. Suppose that an edge merging step
simplifies a medial mesh C1 to the medial mesh C2. Let ∂S1 and
∂S2 be the boundary surfaces of the shapes represented C1 and
C2, respectively. Specifically, we require that ∂S1 and ∂S2 be
isotopic, which means that (1) ∂S1 and ∂S2 are homomorphic; and
(2) there is a continuous deformation of homomorphism from ∂S1

to ∂S2. To meet this requirement, we perform topological checking
at both local and global levels. Locally, we make sure at each edge
merging step that the topology of the local region of Si affected by
a merged edge is not changed (i.e., a disk region is simplified into
a disk region). This local checking on the homomorphism between
affected regions before and after the merge aims to preserve surface
topology around feature points, such as corners and creases.

Note that the local topological checking is necessary but not suffi-
cient, since the topology of the boundary surface may also change
due to global self-intersection caused by edge merging, as illus-
trated in Figure 6. To prevent this from happening during medial
mesh simplification, we first analyze the input boundary surface ∂S
to compute its local feature size (lfs) [Amenta and Bern 1998]. Let
∂S+

d ad ∂S−

d denote respectively the inner and outer offset surfaces
of ∂S with offset distance d = lfs/2. (An offset surface of ∂S con-
sists of points that have the constant distance d to ∂S.) Clearly, the
boundary surface ∂S lies in the volume Vd bounded by the offset
surfaces ∂S+

d ad ∂S−

d . We then impose d as an upper bound on the
approximation error tolerance used for medial mesh simplification.
By enforcing this error tolerance, the boundary surface of the final
simplified medial mesh is ensured to also lie inside Vd, hence it is
free of global self-intersection.

4.2 Special Cases

Non-manifold vertices A medial mesh is in general a non-
manifold 2D mesh surface, and so special care is needed to make its
topology as simple as possible, that is, not increasing the number
of its non-manifold vertices and edges. Specifically, to produce a
stable and simplified medial mesh, we do not allow a non-manifold
vertex to merge to a neighboring manifold vertex. However, con-
versely, a manifold vertex is allowed to merge to an adjacent non-



0

(a) (b) (c)

Figure 5: Post-contraction error of an edge. (a) The post-contraction error of an edge e in the medial mesh C0 approximating a shape S
is to be evaluated. The shape approximation error is highlighted in red. (b) Contract e by merging the right vertex with the left one, resulting
in a medial mesh C1. (c) Contract e by merging the left vertex with the right one, resulting in a medial mesh C2. The error associated with
C2 in (c) is chosen as the post-contraction error of the edge e since it is smaller than the error associated with C1 in (b).

(a) lfs = 0.008 (b) ε = 0.003 (c) ε = 0.03

Figure 6: Global self-intersection prevention. (b) Setting an error
threshold that is smaller than half of the local feature size (lfs) will
ensure no global self-intersection for the boundary surface repre-
sented by the simplified medial mesh. (c) Self-intersection occurs
for an error tolerance larger than lfs/2.

manifold vertex. Furthermore, we permit non-manifold edges to
merge. Of course, all these merging cases are subject to error toler-
ance control.

Ligature points In both 2D and 3D, the medial vertices corre-
sponding to concave regions of a shape are referred to as ligature
points in the literature [Macrini et al. 2008; Macrini 2010]. Altering
the location of ligature points easily gives rise to envelopes cover-
ing some regions outside the given shape. To resolve this issue, we
also fix the ligature points and do not merge them to their neigh-
bors. Note that we do not detect ligature points explicitly, but only
fix a medial vertex when merging it with a neighboring vertex leads
to a region outside the given shape with a Hausdorff distance larger
than the user-specified error threshold.

5 Experimental Results

In this section we present the testing of our method and its compar-
ison with several existing methods on 3D models of a wide variety
of shapes, complexities and topologies. All experiments are per-
formed on a Windows 7 workstation with an Intel i7 CPU and 12
GB main memory. While a method such the one [Amenta and Bern
1998] provides a filtered medial axis which we could use as input,
to demonstrate the simplification ability of our method, we choose
to use the Voronoi diagram of sampled points on the input boundary
surface as the initial medial axis which is typically highly unstable.
We compute the Voronoi diagram using the CGAL package Delau-
nay Triangulation 3 [Pion and Teillaud 2012] to compute the De-
launay triangulation and then taking its dual. The conversion from
a medial mesh to a triangle mesh is carried out using the CGAL
package Skin Mesh Generation [Kruithof 2012]. Our algorithm is
fast and has small memory footprint. For a typical 3D model with
4K vertices, our algorithm generates a simplified medial mesh with
approximation error 0.001 (relative the normalized diagonal of the

bounding boxes of the input shape) using around 20 seconds with
130MB memory usage.

Comparison with criterion based methods We first compare
our method to two existing medial axis pruning methods, the λ me-
dial axis [Chazal and Lieutier 2005] and the angle-based [Foskey
et al. 2003] methods, using a 2D seahorse shape shown in Figure 7.
The λ medial axis method performs filtering using the circumradius
criterion and completely removes the head and tail of the seahorse
while the noise on the trunk still remains, largely due to the different
feature scales of the input shape (Figure 7(d)-(f)). The angle-based
method, on the other hand, does not preserve the input topology
and the resulting medial axis simply becomes disconnected (Fig-
ure 7(g)-(i)). In addition, a main branch on the left has been incor-
rectly removed, therefore compromising significantly the approxi-
mation accuracy of the pruned medial axis. The medial mesh com-
puted by our method, in contrast, uses much fewer sample circles
while achieving the smallest approximation error among all. Visu-
ally, the union of envelopes of adjacent medial circles in the medial
mesh yields a more accurate shape approximation, as shown in Fig-
ure 7(l). In comparison, gaps between the union of medial circles
and the original shape boundary are clearly visible (Figure 7(i)).
We also tested a variant of the angle-based method by enforcing
topology preservation during filtering. It uses 2,978 medial points
to achieve an approximation error of 0.01, while a media mesh uses
only 79 primitives for the same error level.

We next use a 3D shape to compare our method with the SAT
method [Miklos et al. 2010], in addition to the λ medial axis method
and the angle-based method, as shown in Figure 8. This 3D sea-
horse model has 27K vertices and its initial medial axis has many
unstable spikes (Figure 8(b)). Our method significantly simpli-
fies the medial axis to reduce the number of primitives to ∼3K,
with this highly simplified medial mesh still achieving an accurate
shape reconstruction with approximation error smaller than 0.004
only (Figure 8(c,g,k)). In contrast, the shape approximation error
of the filtered medial axis from SAT is 0.03741 even with ∼30K
spheres, about an order of magnitude more primitives than our
method. Moreover, the topology of the medial axis has not be pre-
served (e.g., the holes created at the lower backbone of the seahorse
in Figure 8(d,h,l)). Clearly, medial axis filtering with both λ medial
axis and angle-based methods led to an unacceptable shape recon-
struction or topological change (Figure 8(e,i,f,j)). Meanwhile, the
number of spheres used by either method is at least an order of mag-
nitude larger than that in our method. To attain the same shape ap-
proximation errors as our result, a huge number of spheres would be
necessary with both methods, with the corresponding medial axes
being highly unstable (Figure 8(m,n)).

Admittedly, these three methods (SAT, λ medial axis and angle-
based methods) are mainly designed for removing medial axis in-
stability, rather than specifically for shape approximation. Nev-



Original: # of medial points = 5531, approximation error = 0.0

(a) (b) (c)

λ medial axis: # of medial points = 294, approximation error = 3.0e−1

(d) (e) (f )

Angle-based: # of medial points = 1429, approximation error = 3.9e−2

(g) (h) (i)

Medial mesh: # of medial points = 194, approximation error = 1.6e−3

(j) (k) (l)

Figure 7: A comparison of medial axis simplification methods.
The first column shows the original medial axis, the filtered me-
dial axis by the λ medial axis method, the angle-based method and
our method, respectively. The second column shows these medial
axes together with medial circles. The third column shows the re-
constructed shape boundary by these different methods.

# medial vertices # primitives error

Medial mesh 352 2,586 0.02219
SAT 8,131 50,161 0.02316

λ medial axis 58,221 355,672 0.02293
angle-based 48,158 300,632 0.02453

Table 1: Number of primitives used for representing the 3D sea-
horse model, with all four methods using the enveloping represen-
tation like a medial mesh.

ertheless, our simplification method based on the medial mesh
achieves both accurate shape approximation and a stable medial
axis representation simultaneously. This is due to the fact that me-
dial axis instabilities correspond to small perturbations on the shape
boundary, the removal of which would not incur a significant shape
approximation error and, therefore, they can be effectively elimi-
nated with our error-driven simplification.

We also examine the simplification power of our method irrespec-
tive to the use of an enveloping representation. To this end, we com-
pute simplified medial axes using the other three methods, and build
the same enveloping representation from their resulting medial ver-
tices just like the medial mesh. Table 1 shows that the medial mesh
still uses far fewest number of primitives to attain the same approx-
imation error among all four medial axis simplification methods.

Although SAT may often result in topologically incorrect shape
reconstruction, an issue acknowledged in [Miklos et al. 2010], it
generally produces good shape approximation, though with a large
number of vertices. In comparison, our method achieves the same
approximation precision using far fewer number of primitives than
SAT, while preserving shape topology. This is important for many
applications such as shadow computation and shape deformation
where the computational complexity depends on the number of
primitives. Table 2 shows a comparison of our method against
SAT on several 3D models in terms of the number of primitives
used against the approximation precision that can be achieved. It
can be seen that for high-precision approximation (ε = 0.001),
SAT requires at least two orders of magnitude more primitives than
a simplified medial mesh. Even for low-precision approximation
(ε = 0.032), the number of primitives needed by SAT is still more
than one order of magnitude larger than the medial mesh.

approximation error
0.032 0.016 0.008 0.004 0.002 0.001

retinal SAT 8075 27251 89378 277990 827632 1928799
Medial mesh 178 294 498 855 1625 3035

bird SAT 6785 25365 98771 383880 1392083 5086712
Medial mesh 265 478 839 1479 2296 5503

table SAT 12833 52463 202814 773646 2971080 11542309
Medial mesh 116 327 886 2378 5645 10759

girl SAT 11625 37701 127557 430056 1276757 3245069
Medial mesh 506 776 1476 2652 3913 7128

fandisk SAT 19344 71818 273847 1047419 3875252 13130365
Medial mesh 242 398 587 904 1742 3059

Table 2: Comparisons of the approximation error against the num-
ber of primitives in the simplified medial axis for the SAT and our
methods on five 3D models.

Comparison with feature-based methods We now compare
with another medial axis simplification method based feature sheets
by Tam and Heidrich [2002]. An initial axis surface is first seg-
mented by this method into a collection of sheets which are max-
imal manifold patches intended to represent the features or com-
ponents of the original shape. Then the medial axis is simplified
by deleting these sheets one by one in an increasing order of vol-
ume errors incurred by deleting the sheets. Using a small volume
threshold, the method is able to remove insignificant features while
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Figure 8: Comparisons of 3D medial axis simplification methods. The first column (a and b) shows the original seahorse model and the
initial medial axis. The first row (c-g) shows the medial axes computed by different methods. The second row (h-l) shows the reconstructed
boundary surfaces from the respective medial axes in the first row. (m) and (n) show the color-coded approximations of the reconstructed
surfaces in (h) and (i), respectively. (o) and (p) are the dense and instable medial axes generated by the λ medial axis method and the
angle-based method, respectively.

keeping relatively large sheets of medial axis representing impor-
tant parts of the original shape. If the volume error threshold in-
creases, significant pieces of the shape will begin to be trimmed
off. In any case, the remaining sheets are still a dense representation
containing a large number of triangles, as shown in our comparison
results in Figure 9. Therefore, this method is not effective at all for
the purpose of geometric simplification; rather, it is primarily for
simplifying the structure of a medial axis by removing those parts
that are insignificant for representing the boundary. Our method, on
the other hand, computes an accurate yet compact simplified repre-
sentation.

It is worth noting that the method of Tam and Heidrich needs a
relatively clean medial axis as its initial medial axis, which can
be provided by Power Crust, for example, as mentioned in [Tam
and Heidrich 2002]. Otherwise, if initialized with a highly unsta-
ble unfiltered medial axis from the Voronoi diagram, this method is
often unable to prune unstable spikes that are not separate sheets,
as shown in Figure 10. Hence, in this sense, this method is not a
complete simplification method by itself.

Noisy models As MAT is in general sensitive to shapes with
noisy boundaries, we would like to investigate how the medial mesh

N = 397

#v = 40,914

N = 50

#v = 39,665

N = 26

#v = 39,409

N = 10

#v = 38,298

Figure 9: The feature-based method Tam and Heidrich [2002]
progressively reduces the number of medial sheets (N ) to achieve
shape simplification, taking a noisy Voronoi diagram of the shape
as the initial input. The instability of the medial axis and the num-
ber of vertices are not reduced significantly as the medial sheets are
gradually removed. The non-manifold edges are marked in red.



N = 3 N = 1

N = 89 N = 10,  #v = 31,459, ε = 0.0079 

# p = 1,735,  ε = 0.0078

Figure 10: The feature-based method Tam and Heidrich [2002]
progressively reduces the number of medial sheets (N ) to achieve
shape simplification, taking a filtered medial axis as the initial in-
put. Our method achieves the same approximation accuracy at
ε = 0.0078 with much fewer number of primitives used.

simplification is affected by noisy models. We apply different level
of noise relative to the average edge length of an input model (mea-
sured by η ∈ [0, 1]) and compute the corresponding simplified me-
dial mesh. The result is shown in Figure 11. The medial mesh
simplification is capable of obtaining a stable medial representation
and at the same time removing noise effectively as much as to a
noise level of η = 0.2. The medial mesh retains very similar topol-
ogy despite the increasing noise level. Also, it faithfully reproduces
the original unnoisy input as indicated by the small distance error
of the reconstruction.

Volume simplification Figure 1 shows that our method is capa-
ble of generating a series of volume approximation at progressive
levels of simplification. Note that the basic shape of an object is
still preserved even when only a small number of medial spheres
are kept. Figure 12 shows three other examples computed by our
method. It can be seen that even at such extreme simplification lev-
els, volume features of the original shape can still be retained. This
property is highly desirable in applications such as shape analysis
and progressive shape transmission.

6 Applications

6.1 Shape Approximation

The medial mesh proposed in this paper provides an effective al-
ternative to shape approximation, compared to the conventional
spheres representations [Bradshaw and O’Sullivan 2004; Stolpner
et al. 2011]. The key difference from the previous methods is that
we use the interpolation of the medial spheres to approximate a
given shape; in other words, the given shape is approximated with
the union of the enveloping primitives defined by the medial mesh.
Specifically, given any 3D shape to be approximated and an error
tolerance provided by the user, we run our method for computing
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Figure 11: Medial meshes for a noisy model on different level of
noise. The topology of the medial meshes is resistant to noisy input.
Noises are removed effectively from the accurate reconstruction. (ε
is the Hausdorff distance between the reconstructed surface and the
noise-free input.)

sphere-tree medial spheres Medial mesh

Duck > 0.050 = 0.029 = 0.004
Venus > 0.054 = 0.033 = 0.004
Bunny > 0.091 = 0.062 = 0.007

Table 3: Volume difference with respect to the original shape. The
same 500 number of primitives are used for all 3 methods and all
3 models. Data for the sphere-tree and medial spheres methods are
taken from Table 1 of [Stolpner et al. 2011].
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Figure 12: Extreme simplification of shapes. Our method is capable of generating medial meshes with very few medial vertices (#v), yet
preserving the volume features of the original shapes well.

sphere-tree MCT

# primitives = 476

(a)

sphere-tree MCT

# primitives = 489

(b)

Figure 13: Two models, (a) Venus, and (b) Duck, used for com-
parison of shape approximation in Table 3. The same number of
primitives are used for both methods in each case.

and simplifying the medial mesh. Once the simplified medial mesh
is obtained, we collect all the enveloping primitives defined by the
triangle faces of the mesh as well as those primitives defined by
medial edges if the edges are not contained in any face. Then the
union of these primitives are used as an approximation of the given
shape, meeting the specified error tolerance.

Due to the use of simple sphere interpolation, the new approxima-
tion enabled by the simplified medial mesh we compute is much
more efficient than the previous methods based on the union of
spheres, as shown by the comparisons in Table 3 and Figure 13.
Typically, using the same number of primitives, the approximation
error of the medial mesh is one order of magnitude smaller than
those of the sphere-tree [Bradshaw and O’Sullivan 2004] and the
medial spheres [Stolpner et al. 2011] methods, as shown in Table 3.

The enveloping primitives used in medial meshes are a new type
of simple primitives capable of efficient and compact shape ap-
proximation, and have potential to benefit important applications
in graphics and geometry processing, such as fast shadow compu-
tation [Ren et al. 2006; Wang et al. 2006] and collision detection
or avoidance [Larsen et al. 1999]. While spheres are by themselves
very simple primitives, further research would be needed of fast ge-

ometric computation involving the enveloping primitives used by
the medial mesh.

6.2 Shape Deformation

Medial-based deformation has been a potential application of the
medial axis since the very beginning [Blum 1973]. Since medial
axis is equipped with a radius function, its use in a deformation
technique leads naturally to thickness-preserving shape deforma-
tions. However, existing medial-based deformation techniques of-
ten take a simplified form, such as a stick skeleton, which can be
viewed as a crude approximation to the medial axis of a shape. This
is largely due to the fact that there has not been handy method for
obtaining a general stable medial axis with not only stick skele-
ton but also sheets. The simplicity of a medial axis also benefits
greatly the efficiency of a deformation scheme whose complexity
generally depend on that of the medial axis or skeleton used. As
such, we reckon that the simplified medial mesh generated by our
method provides a practical medial structure for use in deformation
applications. Here, we demonstrate how to couple the medial mesh
with the embedded deformation technique by Sumner et al. [2007]
to achieve this goal. The technique in [Sumner et al. 2007] lets
users directly manipulate ‘handles’ on an object and a subspace de-
fined by a relatively sparse graph embedded inside the object is
deformed by nonlinear minimization, whose energy function mea-
sures how much local transformations at the graph nodes deviate
from rigid transformations. Similar to SSD, any point elsewhere on
the object is under the influence of a subset of graph nodes, and its
deformed position is a weighted average of the positions predicted
by the transformations associated with these graph nodes.

Medial-based embedded deformation Let us now describe the
use of a medial mesh as an embedded graph for deformation. Each
vertex in the medial mesh serves as a node of an embedded graph
G and is associated with a rigid transform. The nodes of influence,
Ni, for a mesh vertex vi includes the set of nodes Vi forming vi’s
associated enveloping primitive as well as the 1-ring neighbors of
those nodes in Vi. The weights for vertex-node pairs are assigned
by taking into account the distance from vi to the nodes in Vi, and
the discrete geodesic distance on the medial axis to the other nodes
not in Vi.



Each edge of the medial mesh remains an edge in G. Since the me-
dial vertices are only sparsely connected, in order to better main-
tain transformation consistency among nearby nodes, we augment
the edge set of G by including additional edges that connect 2-ring
neighboring vertices in the medial mesh, as well as edges that con-
nect nodes associated with a common mesh vertex. There may also
be dangling edges in the medial mesh representing some tubular re-
gions on the input shape. The local transform along a dangling edge
has ambiguity because the rotation around the edge is unspecified.
Therefore, we introduce an extra energy term for regularizing twist-
ing along dangling edges, requiring that the difference between the
rotations at the two ends of a dangling edge be minimal.

Thickness preservation Deformed vertex positions follows ver-
tex blending in SSD and can be computed very efficiently. Vertex
blending in general does not respect the radius function of a medial
mesh, which means that a mesh vertex originally on its envelope
may no longer lie on the envelope of the deformed medial mesh. A
simple treatment for thickness preservation of the deformed shape
is to project the deformed vertices onto the envelope of the de-
formed medial mesh, the latter of which can be done efficiently by
considering only the shortest distances to the enveloping primitives
that a vertex is initially associated with and its 1-ring neighboring
enveloping primitives. An offset distance to the envelope of the
medial mesh is kept for each vertex and is restored on the deformed
envelope after deformation.

Results We have applied the medial-based embedded deforma-
tion to various mesh models and two results are shown in Figure 14.
In addition, we have also compared our results with two other vari-
ants based on embedded graphs. In the first variant, we use a sur-
face graph originally suggested in [Sumner et al. 2007] for an input
mesh. In this surface graph, nodes are evenly distributed samples
drawn on the mesh surface. Each mesh vertex is associated with
its k-nearest nodes (k = 4) in the graph, and edges of the graph
connect every two nodes that have a common association with a
mesh vertex. In the second variant, we enhance the surface graph
with a volume graph by adapting the volumetric graph Laplacian
technique by Zhou et al. [2005]. We first generate a dense tetrahe-
dral mesh Vm that retains the vertices and edges in the input surface
mesh. A tetrahedral mesh V at a much coarser level is constructed
and used as an embedded volume graph. The local transform at the
vertices of Vm is derived from the rotations of its 4-nearest nodes
in V and is applied to the per-vertex Laplacian; the resulting rotated
Laplacians are then used for reconstructing the deformed mesh.

Figure 14(b) shows the result using the surface graph. For the dol-
phin model, since the graph nodes at the back and on the tummy
of the mesh object are not closely connected, the surface at these
two regions can be easily pulled apart to make the body of the ob-
ject much wider. In contrast, the use of medial mesh as shown in
Figure 14(d) preserves the thickness very well in these regions. For
the fertility model, by fixing the base of the model and moving the
handle on top of the model sideways, a nice bending effect shown
in Figure 14(d) can be obtained naturally with the medial-based
method. On the other hand, the surface graph results in an unde-
sirable global shear and more sophisticated handle manipulation is
needed to achieve a similar bending effect. It can be seen from both
examples that the thickness of the object has been preserved well
with the embedded volume graph (Figure 14(c)), however, there is
a lack of flexibility in bending and stretching perhaps because of
the rigidity provided by the volume graph. The medial mesh of-
fers such flexibility while maintaining the overall body thickness,
as observed in most living objects.

As a final remark, Bloomenthal [2002] considers the use of general

original shape

(a)

surface graph

(b)

volume graph

(c)

Medial mesh

(d)

Figure 14: Embedded deformation of the dolphin and fertility mod-
els using different embedded graphs. The red boxes in (a) are the
point handles for defining the user specified constraints and the cor-
responding red dots are the intended deformed positions.

medial representation for SSD and proposed a weighting scheme
for mesh vertices by defining a convolution field around the me-
dial axis. Yoshizawa et al. [2007] achieve mesh deformation by
deforming a skeleton mesh extracted from a triangle mesh, and re-
constructing a surface defined by the deformed skeleton mesh using
discrete differential coordinates. The skeleton mesh is a two-sided
approximation of the medial axis which is geometrically a volume-
collapsed closed mesh. Direct and coherent shape manipulation of
this two-sided collapsed structure is nontrivial, and an additional
stick-figure skeleton is required to first deform the skeleton mesh
which in turn drives the surface deformation.

7 Conclusion

We have proposed the medial mesh as a new discrete approximation
of the medial axis. The medial mesh defines a compact represen-
tation of a 3D shape as the union of simple enveloping primitives
generated by swept spheres. We have also presented an efficient
algorithm for computing a simplified and stable medial mesh of a
given 3D shape. Experiments show that our method is efficient and
robust. The medial meshes computed by our methods are much
simpler and offer more accurate shape approximation than the re-
sults by previous methods. We have presented applications of the
medial mesh to shape approximation and shape deformation. For
shape approximation, the medial mesh is shown to provide a much
better approximation than the existing methods using the union of
spheres. For shape deformation, due to its simplicity and intrinsic
nature the medial mesh demonstrates better performance in shape
thickness preservation.

In summary, the medial mesh is a compact and stable representation
of the medial axis, and thus has overcome the two notorious draw-
backs of the medial axis, namely, instability and redundancy. Given



the importance of the medial axis as a powerful intrinsic shape de-
scriptor, we believe that the medial mesh will find more applications
in shape modeling and analysis.

Future work and limitations The availability of the medial mesh
as a simple and stable representation of the medial axis offers many
research opportunities in shape modeling and analysis, such as
shape recognition, shape matching, shape editing, shape segmenta-
tion, and collision detection. For collision detection, while the en-
veloping primitives induced by a medial mesh offer tighter bound-
ing volumes, more research is needed to develop fast collision de-
tection procedure for such primitives, since they are indeed more
complex than bounding spheres which have been used extensively
in collision detection.

Meanwhile, further improvement of the medial mesh is possible.
The medial mesh encodes a 3D volume as the unions of its envelop-
ing primitives. The boundary surface of this reconstructed volume
is only G0 continuous. So one future problem is to use piecewise
smooth surface (such as subdivision surfaces) to approximate the
medial axis to achieve higher order and smoother shape approxi-
mation. Another potential improvement of the medial mesh is its
mesh connectivity. Our method for simplifying a medial mesh re-
sembles the paradigm of mesh simplification based on edge merg-
ing. The resulting medial mesh, while stable and simple, may be
further improved by optimizing its mesh connectivity or mesh ver-
tex distribution, similar to the effect of surface remeshing.
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