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Abstract. We describe an algorithm for numerical computation of a medial surface and an associated
medial graph for three-dimensional shapes bounded by oriented triangulated surface manifolds in three-
dimensional Euclidean space (domains). We apply the construction to bicontinuous domain shapes found in
molecular self-assemblies, the cubic infinite periodic minimal surfaces of genus three: Gyroid (G), Diamond
(D) and Primitive (P) surfaces. The medial surface is the locus of centers of maximal spheres, i.e. spheres
wholly contained within the domains which graze the surface tangentially and are not contained in any
other such sphere. The construction of a medial surface is a natural generalization of Voronoi diagrams to
continuous surfaces. The medial surface provides an explicit construction of the volume element associated
with a patch of the bounding surface, leading to a robust measure of the surface to volume ratio for
complex forms. It also allows for sensible definition of a line graph (the medial graph), particularly useful
for domains consisting of connected channels, and not reliant on symmetries of the domains. In addition,
the medial surface construction produces a length associated with any point on the surface. Variations of
this length give a useful measure of global homogeneity of topologically complex morphologies. Comparison
of medial surfaces for the P, D and G surfaces reveal the Gyroid to be the most globally homogeneous of
these cubic bicontinuous forms (of genus three). This result is compared with the ubiquity of the G surface
morphology in soft mesophases, including lyotropic liquid crystals and block copolymers.

PACS. 02.40.-k Geometry, differential geometry, and topology – 02.70.-c Computational techniques –
61.30.St Lyotropic phases – 81.05.Rm Porous materials; granular materials – 81.16.Dn Self-assembly

1 Introduction

The intent of this paper is threefold. Its primary aims
are (i) to introduce an algorithm for determination of a
generalised Voronoi domain for complex 3D morphologies,
(ii) to define a 1D skeleton of the domains and (iii) to ap-
ply the analysis to simpler infinite triply-periodic minimal
surfaces (IPMS). The work is particularly focussed on non-
convex bodies with topological complexity, containing, for
example, multiply inter-connected pore spaces. The con-
cept is an extension of extant techniques in discrete com-
putational geometry, where it is commonly referred to as
the medial (or symmetric) axis (or surface) (MS) [10,53].

The MS construction is useful in many contexts. First,
the MS can be thought of as a generalized Voronoi par-
tition for a surface form of arbitrary topological and geo-
metric complexity. Voronoi analysis of morphologies con-
sisting of spherical domains is well known; more recently it
was extended to domain shapes consisting of assemblies of
convex objects in 3D [45]. Here we generalise the construc-
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tion to more general forms in 3D Euclidean space, appli-
cable to complex hyperbolic geometries. In common with
the usual meaning of a Voronoi partition, the patches of
the MS are thus maximally distant from the original sur-
face and play an important role in general packing prob-
lems involving complex shapes. For example, the MS is a
generalisation of confocal domains, relevant to lamellar or
smectic liquid crystals [41]. In a related context, the MS
geometry may afford a better model for “chaotic zones”
of liquid crystalline mesophases in lipid-water systems, in-
troduced by Luzzati [46].

Second, by analogy with the Voronoi construction, the
MS construction allows for calculation of the volumes on
either side of the original surface associated with a surface
patch. Robust definitions of the surface to volume ratio of
a surface patch, and its variations over a complete surface,
are therefore possible (and described in detail later in the
paper).

Third, the medial surface can be used as a basis for
construction of a one-dimensional medial graph that char-
acterises channel axes and channel connectivity for com-
plex porous morphologies. The concept of channel graphs
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has been widely used to describe the global geometry
and topology of IPMS, following Schoen’s description of
the “labyrinth graph” defining the channel geometry of
various IPMS [59]. In quite a different context, quantifica-
tion of channel axes in random porous media is needed for
calculations of fluid transport as a function of morphology
[8,65]. Here we introduce a rigorous numerical algorithm
for the medial graph, applicable to triangulated surfaces,
and demonstrate the fragility of this construction, that –in
contrast to the medial surface transform– generally does
not allow for unique surface reconstruction.

We apply the algorithm to three cubic triply peri-
odic minimal surfaces. The relevance of these forms to
condensed molecular self-assemblies, particularly bicon-
tinuous mesophases of lyotropic liquid crystals and block
copolymers is well documented [35,36,56,61]. We show
later that the construction of medial surfaces in these cases
may shed light on unresolved questions concerning the rel-
ative stability of bicontinuous mesophases.

The remainder of this article is organized as follows:
In Section 2 a definition of the medial surface is given and
some of its properties are outlined. Section 3 describes our
MS algorithm and illustrates it with the IPMS mentioned
above. Section 4 deals with the reduction of the medial
surface to a medial graph, and Section 5 gives an analysis
of the distance function for the P, D and G surfaces. We
conclude by mentioning some future directions.

2 Definition and properties of medial surfaces

We define a domain C as an open, connected subset of E
3

whose boundary (“skin”), S = ∂C, is an oriented piece-
wise smooth manifold, or a set of piecewise smooth man-
ifolds. For example, a domain might be one of the two
subvolumes bounded by an IPMS, the void or the solid
phase of a porous medium, a three-dimensional solid, or
the complement of a set of disjoint solid objects.

The boundary surface of a domain is always orientable,
and has a piecewise smooth normal field N defined every-
where on S. The normal field along edges and vertices is
defined by replacing edges by a cylindrical surface element
and vertices by a spherical cap, both of vanishingly small
radius. We assume the surface normals are of unit length
and oriented to point into the domain C.

In a very loose sense, the MS defines the “centre” of a
domain. That idea is quantified by the following definition:
The medial surface MS of the domain C is the locus of
centers of all maximal spheres in C, i.e. those spheres
contained in C which are not contained in any other sphere
in C [10,52]. Equivalently, the medial surface is the set of
points in C with more than one nearest neighbour on the
domain boundary S.

The medial surface of a domain generally consists
of a collection of surface patches meeting along one-
dimensional curves. In particular cases, the patches may
extend to infinity, or degenerate to one-dimensional curves
or even points. If S has a convex edge (or vertex), i.e. a
line (point) where the normal field is discontinuous and

the corner is pointing out of the domain, then there is a
MS patch extending up into the corners of the surface.

Some examples clarify the features of the medial sur-
face construction. The medial surface of an infinite slab of
thickness d (bounded by two parallel planes) is a parallel
plane at distance d/2 in between the two original planes.
The medial surface of a sphere is its center point, and
the medial surface of a cylinder with circular cross section
is its rotational symmetry axis. The medial surface of a
straight cylinder along the z-axis whose cross section is
the ellipse given by (x/a)2 + (y/b)2 = 1 with a > b is a
flat ribbon {(x, 0, z)|−∞ ≤ z ≤ ∞, |x| ≤ a− b2/a} in the
y = 0 plane.

Any point p ∈ S on the boundary S of a domain C has
exactly one corresponding point q := ms(p) on the medial
surface MS of C (The converse is not true.) The point p
is located at the shortest distance from q compared with
all other points on S. Therefore the map ms from a point
on S to the corresponding medial surface point can be
written as

ms : S → E
3, p �→ ms(p) := p + d(p)N(p) (1)

where N is the normal field of S and d : S → R+ is called
the distance (or radius) function.

The distance function d : S → R
+ is formally similar

to the radius of curvature rc : S → R
+ in that both mea-

sure distances in the normal direction from points on the
surface.
In general, at any given point p ∈ S there exist two dis-
tinct radii of curvature rc,1 and rc,2 corresponding to the
two principal directions on S. Only curvature towards N
can lead to curvature induced points of the MS in positive
normal direction. We therefore define rc as the minimum
of the positive radii of curvature and infinity, and Tc as
the corresponding principal direction.

Indeed, the maximal sphere Km centered at ms(p)
with radius d(p) and the sphere Kr centered at the cen-
ter of curvature p + rc(p)N(p) with radius rc(p) are both
tangential to S in p. By definition, Km is contained in
C (global). In contrast, Kr need not be contained in C.
Rather, restricted to the normal section Pn of S that con-
tains the principal direction Tc, the circle Kr ∩ Pn is an
osculating circle to the flat curve S ∩ Pn.

It is straightforward to see that d(p) ≤ rc(p) for all p ∈
S: Assume there exists a sphere K whose radius exceeds
rc, which grazes S at p and lies in positive normal direction
from p. The sphere K contains Kr. But Kr coincides with
S in a neighbourhood of p along at least one direction.
Therefore, a finite part of S is contained in K. Thus K
cannot be a maximal sphere.

More precisely, a unit speed space curve α coincident
with the intersection of S with the plane containing the
normal N(p) and the principal direction Tc(p) has curva-
ture 1/rc at the point p. Also the surface normal N(p)
is identical to the curve normal (see e.g. Corollary 16.8
in [27]). A finite part of this curve is contained in the larger
sphere K with r > rc, because α curves more strongly to-
wards N(p) than does K. Therefore, K cannot be a max-
imal sphere contained in C.
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The medial surface can also be described as the cut lo-
cus of the normal bundle of the surface [72], which in turn
corresponds to singularities of the parallel surface trans-
form of S. In other words, the MS corresponds to the locus
of points of self-intersection of the foliation of parallel sur-
faces generated by translating all points on the surface a
distance x along their normal, where x varies from 0 (the
original surface) to some upper translation distance, d(p)
(in fact, this construction was already described by Lord
Kelvin [44] in 1894). This interpretation allows for a useful
association of a surface element da(p) to a volume element
dV (p) which is the union of all parallel surface elements
da(p, x) of da(p) with distances x ≤ d(p).

The medial surface accurately represents the topol-
ogy of the original domain, in the sense that the MS is
a strong deformation retract (see [66] for a definition) of
the original domain C in 2d [12], and in 3d provided S is
smooth [72]. That means that, though the dimension of
C is in general different to that of the MS, they have the
same tunnels, holes and connected components.

Furthermore, the medial surface together with the dis-
tance function d allows for the reconstruction of the do-
main C as the union of the maximal spheres of radius
d′(ms(p)) = d(p) centered at the medial surface points
ms(p) [72].

It is useful to classify points q on the MS according
to their order, i.e. the number of disjoint subsets of the
set of points p′ ∈ S = ∂C with ms(p′) = q [10,52,72].
Points on branch lines of the MS are of order 3 or more,
and points on the boundary of MS patches have order 1.
Normal points contained within MS patches and not on
the boundary or at a branch line have order 2.

Provided S is C2, MS points p∗ of order 1 are centers
of curvature of S (Theorem 3 in [72]). This means that the
boundaries of the MS are also part of the focal surface of S
given by equation (1) with d(p∗) replaced by rc(p∗). It is a
standard result from differential geometry that cusp lines
of the focal surfaces correspond to rigde lines of 1/rc on S
(i.e. points p ∈ S such that for each point the directional
derivative of rc vanishes in one direction) provided S is free
of non-flat umbilic points [27]. Boundaries of the medial
surface – order 1 points – are cusp lines of the focal surface,
see [26] and references therein.

The medial surface construction implies sensitivity to
the normal field of the boundary S = ∂C of the domain C
and higher order measures dependent on that field, such
as the surface curvatures. Perturbations of the original
domain under which the medial surface changes contin-
uously must involve only small changes in the normal
field of S. In particular, the condition that the Hausdorff-
distance (see e.g. [57]) between two domains C and C′
is small, is not sufficient to guarantee small differences
in Hausdorff-distance between the medial surfaces of C
and C′ [13,14,62]. Most importantly, the medial sur-
face of a domain bounded by a smooth manifold S and
that bounded by a faceted surface approximating S differ
strongly from each other: the MS of the faceted surface
domain has MS patches extending into all facet edges and
corners. Those differences reflect real differences in the

curvatures of the smooth manifold, and that of its faceted
analogue. The sensitivity to variation of normals and cur-
vatures is inherent to the medial surface transform and
not due to the algorithmic details of its computation.

The presence of short-wavelength modulations of the
boundary surface S, inducing high surface curvatures,
complicate the branching structure and topology of the
medial surface. Extraction of global features of the MS,
that are characteristic of the relative disposition of surface
elements in space, rather than local curvatures, requires
imposition of a suitably chosen curvature cutoff prior to
analysis of the domain. That can be done, for example,
by imposing a “rolling ball” filter on S, whose radius sets
the maximum surface curvatures [68,69].

Finally, the distance function d is always continuous
[72] but not necessarily C1. This fact is of some impor-
tance for our reduction of a medial surface to a medial
graph to be described later in this paper. Two 2D ex-
amples clarify the problem: (1) The MS of an equilateral
triangle are three branches connecting the incircle center
to the three corner points. The distance function d is not
smooth at the mid-edges of the triangle which correspond
to the incircle center on MS. (2) A rhombus whose flat
corners are replaced by segments of circles has a disconti-
nuity in the derivative of d at the point where the straight
lines and circle segments meet (note that the rhombus is
smooth even there).

3 MS algorithm for triangulated domains

This section describes a Voronoi-based MS algorithm for
a domain C in 3D Euclidean space whose boundary sur-
face S = ∂C is given as a triangulated surface. The MS
we compute is the medial surface of the piece-wise smooth
surface approximated by the triangulation. The descrip-
tion of the algorithm is illustrated by MS computation for
the Gyroid, Diamond and Primitive IPMS, and followed
by some discussions on the robustness of our algorithm.

Algorithms to compute medial surfaces of voxelized
representations (discrete binary or grayscale 3D data sets)
of surface objects in E

3 based on burning techniques
[43,58] or on wave-propagation approaches [23] have been
suggested. Medial surfaces of polyhedral structures (where
corners and edges are explicit features of the object rather
than artifacts due to discretization) can be computed [16].
Voronoi-based algorithms to compute medial surfaces of
triangulated surfaces have been suggested [2,5,17,63], and
the algorithm we describe here is related to those, with
some differences. For the examples discussed in this arti-
cle, a triangulation is an ideal representation as it allows
for very accurate MS computations and is, given the high
resolution we achieve, modest in memory needs.

The surface S is represented by a set of points
V = {(x, y, z) ∈ S} and a set T of oriented triangles
whose vertices are the points in V (the coordinates x, y
and z are floating-point numbers). The sampling density
on the surface is assumed to be sufficiently high. Further-
more, we assume that normal vectors Ni := N(pi) for all
points pi ∈ V are given.



554 The European Physical Journal B

p

p’

q

Fig. 1. (left) 2D illustration of the medial surface/axis algorithm: The domain C (dark gray) is the complement of an assembly
of overlapping disks (light gray). The boundary ∂C of the domain is discretized into vertices V (black points) connected by
edges. The interface normal vectors are pointing into C. The first step is the computation of the Voronoi diagram of the set of
vertices V (dashed lines). For every point p ∈ ∂C there is a corresponding point q on the medial surface which is the intersection
of the straight line in normal direction through p with the Voronoi cell of p (the black points on the white line), unless p is at
a cusp of ∂C. If p is at a concave cusp of ∂C (as is the vertex p′), then ms(p) = p. The white line is the exact medial axis,
for which an analytic form is known in the case of disk assemblies [45,49]. (right) 3D case: A small patch P of the boundary
S = ∂C of a domain C is shown (the lower surface patch) together with its triangulation. Also shown is the Voronoi cell of
a vertex p (marked by a small white point on the surface inside the cell) of the triangulation which is an elongated, convex
polyhedron oriented along the surface normal direction (bounded by thick black lines, joined by opaque faces). The white line
is the straight line in normal direction through p, which intersects the Voronoi cell of p at ms(p) (white point). The surface
patch in the top part of the image is the MS patch corresponding to P and its triangulation is inherited from P . Note that for
the computation of the Voronoi diagram as a global property of C, a much larger fraction of S is needed than the patch shown.

For the examples of triply periodic minimal surfaces
discussed later in the paper, the points p ∈ V and
normals can be computed to high precision by integra-
tion of the Weierstrass equations (see e.g. [21]). This is
the ideal situation for our algorithm, which allows for
very accurate analysis of the MS structure itself (e.g. the
asymmetric unit patches of the surfaces analysed later
contain approximately 10000 vertices).

The first step is the computation of the Voronoi dia-
gram of the surface vertices V . In keeping with the usual
definition (see e.g. [6,55]), we define the Voronoi diagram
to be the division of space with respect to V into n convex
cells CV (p) ⊂ E

3 such that for any point p ∈ V any point
q ∈ CV (p) is closer to p than to any other point p′ ∈ V
(n is the number of vertices in V ). See Figure 1 for an
illustration.

The second step is to find (for each point p ∈ V ) the
point q on the faces of the Voronoi cell CV (p) which best
approximates the medial surface point ms(p). The key
idea is that, given appropriate sampling density on S, the
Voronoi cell CV (p) is an elongated cell oriented in surface
normal direction N(p). The medial surface point ms(p)
lies on one of the faces furthest away from p in normal
direction.

Provided that the vertices in V are points on the exact
surface S, exact coordinates of the surface normal vectors
N(p) are known and high precision computations are fea-

sible, the medial surface vertex ms(p) for a given surface
vertex p can be estimated to high precision. The vertex
position is then given by the intersection of the straight
line through p in direction of the surface normal N(p) with
the boundary of its Voronoi cell CV (p). This construction
is shown in Figure 1.

If exact normals N(p) are not known, this step is re-
placed by a more heuristic approach, that requires the
imposition of two control parameters, d1 and α.

For each surface vertex p with Voronoi cell CV (p), de-
termine the pole vertex qp, i.e. that vertex of CV (p)

⋂
C

which maximizes the distance from p among all ver-
tices q ∈ CV (p)

⋂
C. Let d(qp) denote its distance from

p. Then determine possible pole faces, i.e. those faces
Fi ∈ CV (p) for which all vertices q ∈ Fi fulfil the in-
equality (d(q)−d(qp))/d(qp) < d1 and whose face normals
differ from the pole vector vp = (qp − p) by less than α
(note that vp is a good approximation of the surface nor-
mal vector [1]). If such pole faces exist, then ms(p) is the
intersection of the straight line through the centroid of
the pole faces and through the surface vertex p itself with
CV (p). If there are none, then ms(p) is the pole vertex qp.

Previous algorithms have approximated the medial
surface of objects sampled by a point set V on their bound-
ary through subsets of the vertices of the Voronoi diagram
of the point set V [2,5,63]. Amenta et al. [2] and oth-
ers [11] have provided proof that the set of poles converges
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Fig. 2. Portion of a medial surface of the P(rimitive) IPMS, together with the IPMS. Both the IPMS and the MS are coloured
according to values of the distance function d: red indicates small d values and blue large values. All points of the medial surface
are contained in mirror planes of the P surface, and the boundary of the MS corresponds to points where the MS points are
also centers of curvature, d(p) = rc(p). Red, yellow and blue spheres indicate minima, saddle points and maxima of the distance
function, respectively. Note that there is only one type of maximum, i.e. all maxima are at equivalent position of the space group
(the same is true for the minima), but that there are two crystallographically distinct saddle points: S1 in 100 (on Schoen’s line
graph) and S2 in 110 direction from the maximum (on the MS, see also Tab. 1). The red lines on the surface are rigde lines of
d connecting saddles to maxima, and the red lines on the medial surface their images under ms. The simple cubic line graph,
that is the labyrinth graph of the P surface [59] is a subset of the ridge lines.

to the medial surface if the sampling density of points on
S goes to infinity (whereas the set of all Voronoi vertices
contained in C does not). In the limit of infinite sam-
pling density, our algorithm produces the same result. We
find that for finite sampling densities we get a better ap-
proximation of the medial surface vertices than Amenta
et al. for data without noise and with normals that are
computable to arbitrary accuracy.

In addition, the algorithm introduced here gives a bet-
ter triangulation of the MS (inherited from S) than if
ms(p) is approximated by the pole vertex since quasi-
degeneracy of pole vertices can lead to overlapping MS
triangles (consider the hexagonal Voronoi cells of a set
of parallel planes triangulated by unisize equilateral tri-
angles as an example). We note that Amenta et al. [2]
use a different technique to generate the triangulation of
the MS.

For the analysis presented in this article we used
Muecke’s Delaunay triangulation code ‘detri’ [51] which
uses a variant of the randomized incremental-flip algo-
rithm and a symbolic perturbation scheme to achieve ro-

bustness. From the Delaunay diagram we computed the
Voronoi diagram using Shewchuk’s robust 3D predicate
code [64].

Robustness of the medial surface algorithm

With regards to algorithmic stability –rather than the con-
ceptual sensitivity discussed in Section 2– two issues need
to be addressed: convergence of the algorithm for noise-
free surface data with increasing sampling density, and
sensitivity of the algorithm to noise. The former case arises
where all points p in the sampling set V are contained in
S, i.e. there is no positional out-of-surface noise. In the
limit where the sampling becomes infinitely dense, our
algorithm provides the same results as that of Amenta
et al. [2]. Consequently, their statement that the set of
poles converges to the true medial surface as the sam-
pling density goes to infinity also guarantees the conver-
gence of our algorithm. As in the Amenta algorithm, pre-
cise bounds on the quality of the MS approximation are
difficult to deduce, but the convergence is assured (see
also [11]).



556 The European Physical Journal B

0 0.2 0.4 0.6 0.8

Arc length along cross section of D surface with [1,-1,0] plane

0.5

0.6

0.7

0.8

0.9

di
st

an
ce

 f
un

ct
io

n

0.59

0.595

0.6

Max
2

S
2

Min

Max
1

Fig. 3.

Fig. 4.
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Fig. 3. Diamond IPMS: (left) A fragment of the D IPMS is shown, together with the medial surface of one of its two channel
labyrinths. (The MS is coloured according to distance function as described in Fig. 2.) The red lines (along [111] directions of
the corresponding space group, see Tab. 1) correspond to one of the two interpenetrating diamond lattices commonly accepted
as labyrinth graphs of the D surface [59]. The blue spheres indicate the main distance function maxima located at the nodes of
the line graph, and the small red spheres its minima. The MS can be approximated by an assembly of almost flat webs spanning
the six pairs of graph edges (from the node to the middle of the edge) emanating from each node, and each of these webs is
contained in one of the global mirror planes. The two sets of three webs meeting at the center of each graph edge subtend
angles of 60◦ with each other. The top right image is a close-up of the MS close to the middle of a graph edge (The graph
edges are on three-fold symmetry axes with inversion centers at their centers, the blue spheres. Each of the yellow spheres S1

lies on a two-fold axis through this inversion center.) The medial surface webs do not shrink to a single point (as one moves
along the graph edge), but rather each of the webs splits up into two webs (at ±60o). It is only in this region that the MS is
not contained within global mirror planes of the surface. The yellow and green spheres indicate saddle points of the distance
function, and the blue sphere a very weak maximum of the distance function. Critical paths connect the node max Max1 to the
saddle S2 on the edge (red line), S2 to Max2 (green line) and each of the six yellow S1 to Max2 (not shown). The graph shows
the distance function on a (110) plane intersection of S (i.e. the mirror plane relating the two blue planes. It corresponds to
distance function values on the line graph on MS). Dots are data computed with our algorithm, whereas the full curve is the
length of lines directed along surface normals between the surface vertices and the global mirror planes. This latter procedure
yields exact distance values for the region from the graph nodes to the edge center, clearly demonstrating that the blue sphere
is indeed a weak maximum and the orange sphere a saddle point.

Fig. 4. Medial surface of the G(yroid) triply periodic minimal surface coloured according to the scheme described in Figure 2.
The thin black lines are some of the two-fold rotational symmetry axes of the G surface. The conventional labyrinth graph (blue
thick lines) for the G surface connects nearest pairs of points of intersection of these two-fold axes through straight lines [59].
These are a subset of the ridge lines of the distance function, though, in contrast to the P and D surfaces, the nodes of the
channel graph are not the maxima of the distance function (the maxima, blue spheres, are in the middle of the edges). There are
three different types of saddle points of the distance function: saddle singularities of Hopf index −2 at the nodes of the graph
(large yellow spheres, S1, as well as two types S2 (small yellow spheres) and S3 (green) of saddle singularities of Hopf index −1.
The critical paths connecting S3 to the maximum and S2 to the maximum are not shown. The top right image (with arbitrary
color coding) illustrates that the medial surface is an assembly of nearly planar triangles (green) plus webs spanned between
the edges of neighbouring triangles. Pairs of adjacent triangles share common vertices and are twisted by cos−1 (1/3) ≈ 70.53◦

around the common two-fold rotational axis containing the the labyrinth graph, consistent with symmetries of the G surface.
Numerical results indicate that the triangular portions of the MS deviate from planarity by only ±0.75% of the triangle edge
length. (bottom right) One of the triangles of the MS with the saddle point in its center and three maxima located at each of
its corners beneath a surface graph whose height indicates the value of the distance function at the site immediately below, on
the projected triangle.←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Sampling noise, particularly out-of-surface noise, af-
fects the normal field of the bounding surface S. Our algo-
rithm, like earlier ones, is therefore susceptible to surface
roughness at the length scale of the typical triangle edge
length since it requires an accurate estimate of the varia-
tion of surface normals and derivatives, such as curvatures.
It is clear that our algorithm gives a good approximation
of the true MS if the surface normals computed from the
triangulation are a good approximation of the true sur-
face normals. For example, Figure 5 demonstrates that
our algorithm can cope with small levels of (positional)
noise in the case of an ellipsoid (see Sect. 5 for a definition
of the distance distribution). Evidently, a small degree of
orientational randomness does not affect the results sig-
nificantly. Further, precise knowledge of surface normals
makes only a small difference to the outcome, provided
sampling points lie exactly on the surface.

The final source of numerical instability is the com-
putation of the Voronoi diagram. The precision of the
Voronoi computation imposes a lower bound on the preci-
sion of our algorithm. Our Voronoi cells are typically long
and skinny, as the vertices in 3D Euclidean space are re-
stricted to positions on a 2D manifold S. Their width is
of the order of the typical nearest-neighbour distance r of
sample points on the surface S, whereas their length is of
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Fig. 5. Area weighted distance function distribution (see sec-
tion 5 for the definition) for an ellipsoid given by (x/3)2 +
(y/2)2 + (z/1)2 = 1: Connected small black dots are data for
a high-resolution ellipsoid (24000 vertices) for which the MS
is computed by intersecting straight lines in surface normal
direction with the z = 0 plane; large symbols indicate data
computed with our algorithm. A relatively coarse triangula-
tion (n ≈ 2200 vertices) with (open circles) and without exact
normals (open squares) and one with some noise in the sur-
face coordinates (achieved by adding random numbers between
[−0.03l, 0.03l] where l is the average triangle edge length; filled
diamonds).
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Table 1. Crystallographic coordinates of minima, maxima and saddle points of d (coordinates), together with the point group
symmetry of the site (Sym) and its Wyckoff symbol (Wyck). Crystallographic coordinates refer to the space group [29] of the
domain C (i.e. the “black-white group” of the oriented surface). Corresponding absolute values of the distance function d and the
radius rc = 1/

√−K (where K is the Gaussian curvature) are listed, for unit cells of lattice parameter a (unit cells are scaled such
that the three surfaces are isometric). The numerical values for coordinates are correct to ±2 in the last given digit, unless other-
wise indicated. The area of the asymmetric unit patch, A0, area-weighted average distance, 〈d〉, and the volume associated with
the asymmetric unit patch, V0, are also listed (V0 is the volume foliated by reduced parallel surfaces in positive normal direction
from the surface, i.e. the volume on one side of the original surface). The surface coordinates are obtained from usual Weierstrass
representation for minimal surfaces as in [20,54] plus roto-translation in E

3. The functional form of the Weierstrass function
exp(ıφ) (t8−14t4 +1)−1/2 is the same for all three surfaces, with the Bonnet angle φ distinguishing the three cases. The complex
variable w indicates the preimage in the complex plane of the respective points (w1 = (

√
3 − 1)/

√
2, w2 = (

√
2 − 1) exp(ıπ/4),

w3 = 0.3178, w4 = 0.2863, w5 = (
√

2 − 1) exp(ı3π/4), w6 = 0.3644 exp(ı 0.4177 π), w7 = (
√

2 − 1) exp(−ıπ/4)).

position on S position on MS

point ω Coordinates Sym Wyck Coordinates Sym Wyck d rc

Primitive, Pm3m, a = 2.15652, φ = π/2, A0 = 0.2272, V0 = a3/(2 × 48) = 0.104, 〈d〉 = 0.60

y1 = 0.018, y2 = 0.1751, x1 = 0.3249, x2 = 0.136

Max w1 [ 1
4
, 1

4
, 1

4
] 3m 8g [0, 0, 0] m3m 1a 0.9338 ∞

Min 0 [ 1
2
, 1

4
, 0] mm2 12h [ 1

2
, y1, 0] mm2 12h 0.500 0.5000

S1 w7 [ 1
2
, y2, y2] mm2 12j [ 1

2
, 0, 0] 4/mmm 3d 0.5340 0.5774

S2 w2 [x1, x1, 0] mm2 12i [x2, x2, 0] mm2 12i 0.577 0.5774

Diamond, Fd3m (origin at 43m), a = 3.37150, φ = 0, A0 = 0.2272, V0 = a3(2 × 192) = 0.100, 〈d〉 = 0.57

z1 = 0.1483, x2 = 0.004, x3 = 0.1846, z3 = −0.0307, x4 = 0.1129, x5 = 0.1910, y5 = −0.0247

Max1 w1 [ 1
8
, 1

8
,− 1

8
] 3m 32e [0, 0, 0] 43m 8a 0.730 ∞

Min 0 [ 1
4
, 1

4
, 0] 2mm 48f [ 1

4
, 1

4
, z1] 2mm 48f 0.5000 0.5000

S1 w2 [ 1
4
, 1

8
, 0] 2 96h [ 1

8
+ x2,

1
8
, 1

8
− x2] 2 96h 0.5774 0.5774

S2 w3 [x3, x3, z3] m 96g [x4, x4, x4] 3m 32e 0.5929 0.6547

Max2 w4 [x5, x5, y5] m 96g [ 1
8
, 1

8
, 1

8
] 3m 16c 0.5949 0.615

Gyroid, I4132, a = 2.65624, φ ≈ 38.015o A0 = 0.4544, V0 = a3(2 × 48) = 0.195, 〈d〉 = 0.56

x1 = 0.124, y1 = 0.700, z1 = 0.176, z2 = −0.064, x3 = 0.3375, x4 = 0.491, y5 = −0.1625, y6 = −0.311

Max w6 [x1, y1, z1] 1 48i [ 1
4
, 5

8
, 0] 222 12d 0.609 0.683

S1 w1 [0, 1
2
, 0] 3 16e [ 1

8
, 5

8
,− 1

8
] 32 8b 0.575 ∞

Min 0 [0, 3
4
, 1

8
] 2 24f [0, 3

4
, z2] 2 24f 0.500 0.5000

S2 w2 [− 1
4

+ x3,
5
8
, 1

2
− x3] 2 24h [− 1

4
+ x4,

5
8
, 1

2
− x4] 2 24h 0.577 0.5774

S3 w5 [ 1
8
, 1 + y5,

1
4

+ y5] 2 24g [ 1
8
, 1 + y6,

1
4

+ y6] 2 24g 0.558 0.5774

the order of the distance function value d(p) and is not
dependent on r. Particularly in the limit of small r, geo-
metric degeneracies (more than four vertices on the sur-
face of a sphere) or quasi-degeneracies occur which cause
instabilities in the Voronoi computation. Detailed discus-
sion of this issue can be found elsewhere; robustness of
Voronoi computations is a well-studied problem [55], with
a variety of established stable algorithms known for its
solution [15,24,51].

Appendix A gives an analysis of the approximation
of centers of curvature by local Voronoi cells in terms of
curvature properties of the bounding surface. There, we
also analyse the effects of a small degree of uncertainty in
the surface normal direction.

MS of P, D and G surfaces

We have analysed in detail the MS structures of domains
bounded by the three cubic genus-three IPMS, the P, D

and G surfaces. The domains C fill one of the two inter-
woven subspaces bounded by these surfaces, S. An exact
integral representation of surface coordinates p in E

3 as
a function of the surface normal vector, N(p) is possible
(see e.g. [21]), using the Weierstrass equations for minimal
surfaces. The vertex coordinates are produced by numeri-
cal integration of the Weierstrass equations. The resulting
domains and their medial surfaces are shown in Figures 2,
3 and 4.

Crystallographic coordinates and symmetries of the
critical points on the original surfaces and on the medial
surfaces are shown in Table 1. The space group chosen is
that for the orientable minimal surface, with the two me-
dial surfaces unrelated by symmetry even if geometrically
similar.

We note that these embedded IPMS divide space
into two subvolumes and a single IPMS thus defines two
domains. Two medial surfaces can therefore be traced.
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Generic hyperbolic surfaces (e.g. the I −WP triply pe-
riodic minimal surface) divide space into two morpholog-
ically distinct domains, and the pair of MS are symmetri-
cally distinct. The subvolumes of our examples are sym-
metrically related to each other by translation (P and D)
or inversion (G), in which case the MS on either side of
these IPMS are likewise related.

4 Medial graphs from medial surfaces

Complex hyperbolic multi-handled surfaces, such as the
IPMS discussed here, comprise interconnected networks
of labyrinths. The introduction of a line graph, whose
edges lie on labyrinth axes, allows a useful secondary de-
scriptor of the global morphology of complex hyperbolic
shapes. For example, “labyrinth graphs” have been dis-
cussed widely in the IPMS literature [19,33,39,59]. To
date, rigorous definition of these graphs is lacking. Schoen
described the labyrinth graph of IPMS as a pair of inter-
penetrating networks of tubes (presumably of infinitesimal
radius) that, on inflation yield the IPMS as the surface
common to both inflated labyrinths. This description, of
qualitative merit, is not quantitative.

We note that the medial surface transform (MST) af-
fords an optimal reduction of a 3D domain to a 2D skele-
ton that (together with the distance function) preserves
all geometric shape information. Further reduction of the
dimensionality to a 1D graph cannot, in contrast to the
MST, offer a unique fingerprint of a generic domain C.
C cannot be reconstructed from the medial graph except,
where the medial surface itself degenerates to a 1D graph.
In spite of that reservation, there remain compelling rea-
sons to construct a graph that captures the locations and
orientations of the labyrinths.

Attempts to compute medial graphs (also known as
medial axes or skeletons) in voxelized data sets are nu-
merous, see references [9,25,42,73] and references therein.
Here we develop a corresponding algorithm for domains
defined as above.

We propose the following reduction of the medial sur-
face to a medial graph: The guiding idea is that the line
graphs should be contained in the MS, follow paths of
maximal distance function values and retain the topology
and connectivity of the MS. We therefore define the line
graph as the the map under ms of the ridge lines of the
distance function profile on S, which can be determined
by the following algorithm:

1. Determine all maxima {pmax ∈ S} and saddle points
{psad ∈ S} of d.

2. Determine the paths P ⊂ S of steepest ascent starting
at all saddle points. They necessarily end at maxima.

3. Use the map ms to map these paths P onto the medial
surface.

Step (1) requires care with regards to the detection
of the critical points, particularly saddle points, of d. To
avoid the complications of computing derivatives of the
numerical function d defined on a triangulated surface,
we have implemented the following process. We define a

circle cr(p), centered at p ∈ S and oriented in positive
sense around the normal N(p), which is the intersection
of a ball Br(p) ∈ E3 centered at p with the surface S.
A maximum is a point p for which the distance function
d(p′)−d(p) is negative for all p′ ∈ cr(p) in the limit r → 0.
A saddle point is a point p ∈ S for which d(p′)− d(p) as a
function of p′ ∈ cr(p) has more than two zeros in the limit
r→ 0.

The medial graph one obtains from this algorithm con-
tains a number of edges of lesser relevance to the labyrinth
structure. These include edges which connect two maxima
that are distinct on S, but collapse to a single point on the
MS (via a saddle). An example is Max→ S2 →Max on the
P surface (Fig. 2). In addition, there may occur features
contained in branch lines of the MS of the following type.
The set of points p′, p′′ and p′′′ ∈ S that map to a sin-
gle location on the MS, ms(p′) = ms(p′′) = ms(p′′′), may
be of mixed character, with e.g. p′ being a critical point
whereas p′′ and p′′′ are not. An example is the site S3 on
the gyroid (Fig. 4). In principle, medial graph edges pass-
ing through such points may be eliminated without loss
of information regarding the labyrinth structure.

The features of our algorithm derive from the work of
Bader [7], concerned with rigorous definitions of bonds in
condensed molecular and atomic systems. Bader has stud-
ied the reduction of a (3D) spatial charge density field to
a bonding network by integrating gradient fields of the
charge density starting at saddle points. We can alterna-
tively define the medial graph as the critical paths of a 3D
(Euclidean) distance field D : E

3 → R
+, which assigns to

each point in space the distance to the nearest point on S.
The Euclidean distance field, D, has the peculiar property
that its gradient is either of constant length 1 (and point-
ing away from the nearest surface point), or its gradient
field is singular. Those singularities coincide exactly with
the medial surface. Therefore, all critical points of D are
located on the medial surface, and it is easy to verify that
we detect all of them with our method. (Note that addi-
tional points, such as S3 on the gyroid surface are also
detected by our method.)

We have applied our medial graph algorithm to the
simpler IPMS introduced above. The medial graphs for
the P , D and G IPMS indeed contain Schoen’s “labyrinth
graphs” as subgraphs [59]. Nodes of these medial graphs
are either maxima of the distance function d (P and D
surfaces) or, in the case of the Gyroid, saddle singularities
of Hopf index −2 [34].

5 Homogeneity and packing frustration

The concept of homogeneity of surfaces embedded in 3D
space was introduced to account for energy differences
between “bicontinuous” surfactant-water mesostructures
of various symmetries and topologies, modelled by IPMS
[38,35]. The relevance of the P, D and G IPMS to bi-
continuous mesophases is believed to be due to their al-
most uniform Gaussian curvature (compared with other
IPMS). Local energetic contributions to stability, such as
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the bending energy due to variations in the Gaussian cur-
vature of IPMS, have been shown to favour the most sym-
metric (cubic) lowest genus IPMS (genus three) in the con-
text of lipid-water self-assembly [22,30,38,60]. It is certain
however, that non-local interactions are also at work in
these systems. For example, the P(rimitive), D(iamond)
and G(yroid) surfaces have identical curvatures for suit-
able scaling of their lattice parameters. All three IPMS
are thus degenerate with respect to their bending ener-
gies. However, no more than two of these structures are
formed in simpler molecular condensates (typically the D
and G mesophases, more rarely the P) [71]. Differences
in the global embeddings of the P, D and G surfaces in
E

3 point to the additional presence of a global “packing
frustration” term stabilising these mesophases. Some at-
tempts to incorporate these factors have been made taking
into account chain stretching contributions [3,18].

In particular, Duesing et al. offered some estimate of
packing frustrations of the Diamond IPMS via estimates
of distance variations from the labyrinth graph to the sur-
face [18]. That measure is better determined via MS cal-
culations.

Here we introduce an alternative notion of global ho-
mogeneity to quantify global differences, derived from the
medial surface concept.

Homogeneity is the degree to which the volume ele-
ments dV (introduced in Sect. 2) vary in shape from one
point on the surface to another. The degree of homogene-
ity is influenced by intrinsic surface properties (e.g. Gaus-
sian curvature variations for surfaces of constant mean
curvature such as IPMS) and by extrinsic features of the
surface embedding in 3D space. We define a perfectly
homogeneous structure to consist of identical volume
elements. A hyperbolic and perfectly homogeneous form
cannot be realised in E

3, as constant (negative) Gaus-
sian curvature surfaces cannot be immersed in flat 3-
space [31,67]. A global tiling of E

3 with identical volume
elements induced by a hyperbolic surface is frustrated in
E

3. All hyperbolic morphologies in E
3 thus induce both

stretching and bending contributions in their relative en-
ergies, due to that frustration. We quantify the degree
of geometric frustration (the homogeneity) with the con-
struction of volume elements, dV .

The volume elements consist of a stack of area ele-
ments, dar(p), of the parallel surfaces of S, at distance
r(p) from S, where r(p) ranges from zero (on S) to d(p)
(on MS). The infinitesimal area element da(p) is related
to the curvatures of S at p and the area element on S:

dar(p) = da(p)(1 + H(p) r + K(p) r2/2). (2)

Clearly, the curvature properties (and thus the bending
properties) are identical for isometric surfaces. Hence, the
distinction between their volume elements dV must be due
to different lengths d(p) of the volume elements. Those
variations afford a useful measure of the (stretching) ho-
mogeneity differences between the P , D and G IPMS.

0.5 0.6 0.7
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Fig. 6. Area weighted histogram of distances of isometric
Primitive (disks), Diamond (squares) and Gyroid (triangles)
surfaces. The cubic unit cell parameters are as indicated in
Table 1. The data shown is for asymmetric unit patches with
approximately 6000 vertices for the P and D surfaces, and
13000 vertices for the G (note that the G patch is twice as
large as the P and D patch). The inset shows data for the P
surface at different resolution: The data for 150000 and 8000
vertices (thin lines) is almost indistinguishable, data for 900
vertices (black dots) still resolves the bimodal nature of the dis-
tribution, whereas a surface patch with 100 vertices (crosses)
correctly represents the overall tendency but not the bimodal
distribution.

We have calculated an approximation to the distribu-
tion of distances

P (d) = 1/A

∫
S

da(p) δ(d′ − d(p)) (3)

for those three IPMS, shown in Figure 6. Here A is the
total area of the surface patch S which in the case of
IPMS can be chosen to be an asymmetric unit patch of
the (oriented) surface. The calculation is done as follows:
Each vertex v of the representative asymmetric unit patch
contributes AV (v)/A to the frequency where A is the total
area of the asymmetric unit patch, and AV (v) the area of
that part of the asymmetric patch which is contained in
the Voronoi cell of vertex v. The data presented is for very
fine discretizations, with approximately 6000 vertices for
the P and D unit patch and 13000 vertices for the G unit
patch (note that the asymmetric unit patch of the G is
twice as large as for the P and D surface).

Additionally we show the effect of different levels of
resolution (i.e. number of vertices per asymmetric unit
patch) for the Primitve surface, with data sets of 150000,
6000, 800 and 100 vertices per unit patch. For the highest
resolution, we take advantage of the fact that for the P
surface, the medial surface can be computed by intersect-
ing straight lines through surface vertices in normal di-
rection with the global mirror planes. Each vertex v then
contributes AT (v)/A to the frequency with AT (v) being
the sum of the areas of all triangles of the asymmetric unit
patch which share the vertex v.
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Among those three surfaces (appropriately scaled to be
isometric), the area-weighted distribution of radii, d(p),
is narrowest for the G IPMS, followed by the D and
then P surfaces, see Figure 6. We conclude that the G
IPMS is the least frustrated, most homogeneous spatial
partition among these IPMS. Further, given the likely
minimisation of intrinsic (Gaussian) curvature variations
for the P/D/G family compared with other lower sym-
metry or higher genus IPMS, the G IPMS is likely to be
the most globally homogeneous hyperbolic partition of E

3

among all IPMS.

6 Conclusions and outlook

The medial surface analysis presented in this article offers
a mathematically sound approach to the characterisation
of morphology of complex non-convex bodies such as in-
tertwined channel systems which captures both local and
global features of the structure. Most importantly, any
surface element can be unambiguously associated with a
corresponding volume element and a characteristic dis-
tance, offering a novel signature of spatial morphology.

The algorithm has proven to be suitable for high-
precision computations of medial surfaces and medial
graphs of topologically complex domains parametrised
by exact mathematical formulae. It is shown to be ro-
bust with respect to small perturbations of the surface
constrained to minimise curvature perturbations. Imple-
mentation for experimental data sets comprising polyg-
onal surface data requires initial smoothing of the data
to a designated curvature cutoff, to form a C2 manifold
[69,68]. The development of robust tools to compute me-
dial surfaces of voxelized data sets to a desired resolution
is an important next step.

The medial surface can be regarded as the endpoint
of the reduced parallel surface transform: parallel surfaces
overlap on the medial surface. This observation reveals
the utility of the medial surface approach in many other
applications. Mecke and colleagues have shown that anal-
ysis of parallel surfaces of sets of convex objects in terms
of their Minkowski integrals (foliated volume, area, inte-
grated mean curvature and Euler index) is a robust and
physically relevant tool for spatial structure characteriza-
tion [48], e.g. in the description of pore space morpholo-
gies in porous media [4] or reaction-diffusion systems [47].
The medial surface construction described here allows ex-
tension of the Minkowski integral geometric approach to
non-convex objects of arbitrary complexity.

In the context of parallel surfaces, the medial surface
is related to the concept of focal conic domains commonly
invoked as a description for geometric defects in smectic
liquid crystals (see [41] for an overview). A generic focal
domain bears a close relation to the volume element, de-
fined above. It consists of the foliation of parallel surfaces
from both sides of a surface patch (S) to the focal surfaces
of S. Focal conic domains are generated from patches S
of Dupin cyclides, whose focal surfaces degenerate to a
pair of 1D curves (Dupin’s cyclide [32]). In that case, the

focal domains coincide exactly with the pair of volume el-
ements from S. The volume elements therefore afford a
natural generalization of focal conic domains to domains
associated with layers of arbitrary geometry S. The MS
patches corresponding to S define the locations of orien-
tational defects for smectic domains due to lamellae lying
in S.

A novel feature of our construction is the explicit
association of cells that are subvolumes of the domain,
D′ ⊂ D, with patches of the domain’s bounding skin,
S′ ⊂ S. Various assemblages of these cells can be used to
derive novel (generically non-convex) polyhedral tilings of
E

3. For example, if S′ consists of a single asymmetric sur-
face patch of the IPMS, the associated cell, D′ affords a
single-cell tiling of E

3, with S′ as one of the faces. Pairs of
these cells, sharing the S′ faces, are prismatic tiles of E

3,
with end-caps consisting of patches of the MS and with
other (ruled) faces comprised of the normal bundle around
the boundary of the asymmetric patch.

A similar construction to the latter example has been
sketched for an idealised (and fictitious) constant (nega-
tive) curvature IPMS in E

3, giving a cell of tetrahedral
aspect [40]. The ratio of the (minimal, bisecting) mid-
surface to these ideal tetrahedra to the tetrahedral vol-
ume is exactly 4/3R, where R denotes the magnitude of
the radii of curvature of the homogeneous minimal surface.
The analogous measures for the P, D and G domains are
1.263〈rc〉, 1.318〈rc〉 and 1.339〈rc〉, respectively, where the
average radius of curvature 〈rc〉 = 0.8611 (for the same
lattice parameters as above) can be expressed as an inte-
gral in the complex plane (see [54], p. 144). This measure
relates immediately to the dimensionless ”shape parame-
ter”, commonly invoked to quantify the molecular shape
in surfactant self-assembly [37,50].

Finally, we point out that the distance map induces a
tiling on the domain skin S through the network of critical
paths. Two such networks arise: one consisting of edges
connecting saddle points to maxima and thus enclosing
minima; the other connecting saddle points to minima,
enclosing maxima. Faces of these networks can also be
used as surface patches bounding volume elements, lead-
ing to a variety of cellular partitions of E

3, derived from
domains of arbitrary topology, either open or closed. This
might provide an extension to the Kelvin problem [44,70],
which remains ill-defined if the cells are not closed [28].

We thank Klaus Mecke for fruitful discussions and advice.
We acknowledge financial support through the Australian-
German Joint Research Co-operation scheme (Adelaide Uni-
versity, ANU, AusIndustry and DAAD). CPU time was pro-
vided by the Australian Partnership for Advanced Computing.

Appendix A: Precision of the algorithm

In this appendix some issues related to the algorithmic
stability of our MS computations are discussed. Note that
this is a different issue from the geometric convergence
problem dealt with by Amenta et al. and described in
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Fig. 7. Sketch of the 2D precision analysis. See text for de-
tails. Note that the discretization in this case is particularly
bad to approximate the center of curvature, as the curvature
properties of the edges (t0, t1) and (t−1, t0) are quite different
from each other.

Section 3 of this article. Here, we estimate for the two-
dimensional situation (1) the precision of the center of cur-
vature approximation by intersecting local Voronoi cells
with straight lines in normal direction, and (2) the in-
fluence of imprecision of the normal vector in this case.
We then argue that the MS construction is most fragile
in the situation where MS vertices correspond to centers
of curvature. Therefore, the error analysis for the center
of curvature approximation gives an upper bound on the
error of the MS construction. Finally, an argument is pre-
sented mapping the 3D case onto 2D, thus allowing an
estimate of the robustness of the MS algorithm discussed
in this article.

We first establish the precision of the approximation
of the center of curvature by intersections of local Voronoi
cells with straight lines in normal direction: consider a cell
C ⊂ E

2 whose boundary is given by a unit-speed curve α :
[−a, b] → E

2, together with its normal field N (a, b > 0).
The real valued function κ : [−a, b] → R measures the
curvature of α. Also given is a discretization

{α(ti) | − a= t−k < . . . t−1 < 0= t0 < t1 < · · · < tn−k =b}
of the boundary α, see Figure 7.

The local Voronoi cell V (0) of the three vertices α(t−1),
α(0) and α(t1) is bounded by the two perpendicular bi-
sectors

bi(s) = α(0) +
α(ti)− α(0)

2
+ s J

(
α(ti)− α(0)

2

)
(4)

where J denotes the counter-clockwise rotation in E
2,

i ∈ {−1, 1} and s is a real parameter defining the position
on the bisector.

We now determine how well the intersection of the
straight line through α(0) in normal direction N(0) with
the local Voronoi cell V (0) approximates the center of cur-
vature α(0)+1/κ(0)N(0) in the case of positive curvature

at t0 = 0. To this end we expand α in curvature terms at
t0 = 0.

Assuming sufficient smoothness and applying the
Frenet formulae, a curve α can be expanded in terms of
its curvature at t0 = 0:

α(t) = α(0)+ T (0)
(

t− κ(0))2

6
t3 +O(t4)

)

+ N(0)
(

κ(0)
2

t2 +
κ′(0)

6
t3 +O(t4)

)
. (5)

Substituting the curvature expansion, equation (5),
into the representation of the bisector, equation (4), and
determining the intersection q of the bisector with the
straight line in normal direction through α(0) one obtains

ri =
1

κ(0)

(
1− κ′(0)

3κ(0)
ti +O(t2i )

)
(6)

for the distance ri = ‖qi−α(0)‖ between α(0) and the in-
tersection q of the straight line in normal direction through
α(0) with bi.

The smaller of the two values r−1 and r1 defines the ra-
dius of curvature at t0 by the Voronoi intersection method.
No distinction between the two values can be made by
general consideration. Equation (6) represents the general
precision for the approximation of the radius of curvature
by intersecting straight lines in normal direction with the
local Voronoi cell.

We now analyse the effect of uncertainty in the nor-
mal N(0) on the position of the computed center of cur-
vature g. Assume that the normal vector N(0) is only
known within an angle tolerance ±ε, see Figure 7. The
estimate for the center of curvature deviate by a distance
E = ‖q − g‖ from the previously computed center of cur-
vature q.

Consider the situation as shown in Figure 7: δ de-
notes the turning angle, i.e. the angle between the vector
α(t1) − α(0) and the tangent T (0) at α(0). This angle is
the same as the angle formed by the straight line in normal
direction through α(0) and the bisector b1(s). The angle
δ is a simple integral of the curvature [27], and is given by

δ =
∫ t1

0

κ(t)dt = κ(0) t

(
1 +

κ′(0)
2κ(0)

t +O(t2)
)

. (7)

The distance E = ‖q − g‖ is then related to the
angles δ and ε and the computed radius of curvature
r1 = ‖q − α(0)‖ by

E

r1
=

sin ε

sin(π − δ − ε)
≈ ε

δ
≈ ε

κ(0) t
. (8)

The approximation is valid if ε/δ, ε and δ are small.
For the approximation of the center of curvature by

intersecting local Voronoi cells with straight lines in nor-
mal direction in 2D we conclude: (a) The approximation
converges, and the error is linear in the quality of the dis-
cretization, measured in terms of κ′/κ. (b) Imprecision of
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the curve normals leads to an error which is of the or-
der of the maximal error in the normal angle compared to
the turning angle per edge. If the error in normal angle
is purely due to limited numerical precision whereas the
turning angle remains small but finite, the error in the
curvature center estimate is small. Discretizing almost flat
parts of the curve with short edges leads to problems.

Medial surface points coincident with centers of cur-
vatures (analysed in this Appendix) lead to the largest
uncertainty. As is clear from Figure 7, uncertainty in nor-
mal directions is most significant in this case. The preci-
sion analysis presented here therefore represents an upper
estimate for the errors.

The results described above are almost immediately
applicable to the 3D case: For a given vertex p ∈ S, one
now has to identify all n nearest neighbours {pi ∈ S} of
p. Nearest neighbours in this context means all vertices
p ∈ V which are connected by an edge of the Delaunay
triangulation to p and are close to p as measured along a
path on S.

For each nearest-neighbour pi one intersects the
straight line in normal direction through p with the per-
pendicular bisector between p and pi (which is in this
case a plane containing the corresponding Voronoi facet).
Again, the local Voronoi cell is defined as the set of perpen-
dicular bisectors between p and all neighbouring points.

We define a planar curve α to be a unit speed curve
lying within the intersection of S with a plane containing
the surface normal N(p), the point p and the point pi. We
define Tα as the tangent to α in p. The curvature of α at
the point p is then (up to the sign) the normal curvature
Kp(Tα) of S in the direction of Tα, see Corollary 16.8
in [27]. Thus, the 2D analysis from above applies for the
approximation of Kp(Tα).

Intersecting all n nearest-neighbour Voronoi facets
yields an approximation to the smallest of the positive
radii of curvature (which is the relevant one for MS pur-
poses). The quality of this approximation is then related
to the curvature properties of curves α ⊂ S by the above
2D curvature analysis (effects of the neighbour vertices
not sampling every direction from p are neglected).
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