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The medial temporal lobe (MTL) is connected to the rest of the brain through two main networks: the anterior-temporal (AT) and the
posterior-medial (PM) systems. Given the crucial role of the MTL and networks in the physiopathology of Alzheimer’s disease (AD), the
present study aimed at (1) investigating whether MTL atrophy propagates specifically within the AT and PM networks, and (2) evaluat-
ing the vulnerability of these networks to AD proteinopathies. To do that, we used neuroimaging data acquired in human male and
female in three distinct cohorts: (1) resting-state functional MRI (rs-fMRI) from the aging brain cohort (ABC) to define the AT and PM
networks (n=68); (2) longitudinal structural MRI from Alzheimer’s disease neuroimaging initiative (ADNI)GO/2 to highlight structural
covariance patterns (n=349); and (3) positron emission tomography (PET) data from ADNI3 to evaluate the networks’ vulnerability to
amyloid and tau (n=186). Our results suggest that the atrophy of distinct MTL subregions propagates within the AT and PM networks
in a dissociable manner. Brodmann area (BA)35 structurally covaried within the AT network while the parahippocampal cortex (PHC)
covaried within the PM network. In addition, these networks are differentially associated with relative tau and amyloid burden, with
higher tau levels in AT than in PM and higher amyloid levels in PM than in AT. Our results also suggest differences in the relative bur-
den of tau species. The current results provide further support for the notion that two distinct MTL networks display differential altera-
tions in the context of AD. These findings have important implications for disease spread and the cognitive manifestations of AD.
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Significance Statement

The current study provides further support for the notion that two distinct medial temporal lobe (MTL) networks, i.e., ante-
rior-temporal (AT) and the posterior-medial (PM), display differential alterations in the context of Alzheimer’s disease (AD).
Importantly, neurodegeneration appears to occur within these networks in a dissociable manner marked by their covariance
patterns. In addition, the AT and PM networks are also differentially associated with relative tau and amyloid burden, and
perhaps differences in the relative burden of tau species [e.g., neurofibriliary tangles (NFTs) vs tau in neuritic plaques]. These
findings, in the context of a growing literature consistent with the present results, have important implications for disease
spread and the cognitive manifestations of AD in light of the differential cognitive processes ascribed to them.

Introduction
The medial temporal lobe (MTL) is the earliest region to display
atrophy over the course of Alzheimer’s disease (AD), consistent
with early neurofibriliary tangle (NFT) involvement. This is fol-
lowed by spread of NFTs and concomitant atrophy, in a stereo-
typical manner, reaching limbic regions and ultimately the
neocortex (Braak and Braak, 1991; Pini et al., 2016). This topo-
graphical overlap suggests a direct relationship between tau pa-
thology and atrophy, which has been confirmed in studies
associating structural MRI with pathology (Whitwell et al., 2008;
de Flores et al., 2020), CSF (de Souza et al., 2012; Tardif et al.,
2018), or positron emission tomography (PET; Das et al., 2018;

Received May 3, 2021; revised Nov. 30, 2021; accepted Dec. 4, 2021.
Author contributions: R.d.F. and D.A.W. designed research; R.d.F., S.R.D., L.X., L.E.M.W., X.L., P.S., and P.A.Y.

analyzed data; R.d.F., S.R.D., L.X., L.E.M.W., X.L., P.S., P.A.Y., and D.A.W. performed research; R.d.F. wrote the first draft
of the paper; R.d.F., S.R.D., L.X., L.E.M.W., P.S., P.A.Y., and D.A.W. edited the paper; R.d.F. and D.A.W. wrote the paper.
This work was supported by National Institutes of Health Grants AG10124, AG056014, and EB017255; the

Alzheimer’s Association Grant AARF-19-615258; MultiPark - A Strategic Research Area at Lund University and the
Fondation Philippe Chatrier. Data used in preparation of this article were obtained from the ADNI database (http://adni.
loni.usc.edu/). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can
be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
D.A.W. receives grant support from Avid Radiopharmaceuticals/Eli Lilly, Biogen, Functional Neuromodulation, and Merck.

L.X. received personal consulting fees from Galileo CDS, Inc. All other authors declare no competing financial interests.
Correspondence should be addressed to Robin de Flores at deflores@cyceron.fr.
https://doi.org/10.1523/JNEUROSCI.0949-21.2021

Copyright © 2022 the authors

The Journal of Neuroscience, March 9, 2022 • 42(10):2131–2141 • 2131

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:deflores@cyceron.fr


Xie et al., 2018; La Joie et al., 2020) measures of tau pathology.
Importantly, tau pathology and subsequent atrophy spread
across anatomically interconnected regions, which has led to the
theory of a “prion-like” propagation, where pathology spreads
within specific networks (Peng et al., 2020). Recent imaging
investigations support this idea, showing a close relationship
between functional connectivity and tau/neurodegeneration to-
pography and propagation (Seeley et al., 2009; Ossenkoppele et
al., 2019; Franzmeier et al., 2020a,b).

TheMTL is composed of several subregions including the hippo-
campus as well as entorhinal cortex (ERC), perirhinal cortex [PRC;
including Brodmann areas (BA)35 and BA36], and parahippocam-
pal cortex (PHC). These different regions do not function in isola-
tion but are connected to the rest of the brain through two specific
networks that converge in the hippocampus. The anterior-temporal
(AT) network, composed of the PRC, anterior hippocampus (aH),
lateral ERC, amygdala, and temporopolar and lateral orbitofrontal
cortices, is thought to support object and semantic memory, object
perception and affective/emotion processing. The posterior-medial
(PM) network, composed of PHC, posterior hippocampus (pH),
medial ERC, retrosplenial cortex, precuneus, angular gyrus, and
medial prefrontal cortex, is preferentially involved in episodic mem-
ory, scene perception and social cognition (Ranganath and Ritchey,
2012). Importantly, available data from the literature have dem-
onstrated a functional vulnerability of these specific systems
in the context of normal aging and early AD. However, find-
ings are partly inconsistent, showing reduced connectivity
within the PM network and either reduced or increased AT
network connectivity (Das et al., 2015; Liu et al., 2016; Salami
et al., 2016; Berron et al., 2020). In addition, recent publica-
tions suggest a specific sensitivity of the AT and PM systems
to AD pathology, where tau preferentially deposits in the AT
network while amyloid pathology was preferentially found in
PM regions (Adams et al., 2019; Maass et al., 2019).

Given the crucial role of the MTL and brain networks in the
physiopathology of AD, the present study aimed at investigating the
structural and molecular vulnerabilities of the AT and PM systems
over the course of the disease. To do that, we used a combination of
resting-state functional MRI (rs-fMRI), longitudinal structural MRI
as well as tau and amyloid PET data acquired in three distinct
cohorts covering the full AD spectrum. In particular, we wanted to
determine whether longitudinal atrophy occurred conjointly within
or across these networks. If the former, this would support the notion
of neurodegeneration occurring along networks, potentially because
of transsynaptic spread of pathology. To address this, we evaluated
whether longitudinal atrophy in BA35 and PHC, two MTL nodes of
the AT versus PM systems, respectively, structurally covaried with
distinct brain regions reflecting the AT versus PM networks, which
were defined with resting state functional connectivity data from an
independent older adult cohort. In addition, we aimed to further our
understanding regarding the relative vulnerability of these two sys-
tems to amyloid and tau pathologies. Based on prior observations,
we hypothesized that tau-PET uptake was relatively higher in the AT
network while amyloid uptake was higher in the PM network. To go
further, we investigated whether the relationship between both path-
ologies is different within the AT and PMnetworks.

Materials and Methods
Participants
Alzheimer’s disease neuroimaging initiative (ADNI)
Part of the data used in the preparation of this article was obtained from
the ADNI database (https://adni.loni.usc.edu/). The ADNI was launched

in 2003 as a public–private partnership, led by Principal Investigator
Michael W. Weiner. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progression of MCI
and early AD. For up-to-date information, see www.adni-info.org.

Participants in ADNI GO and ADNI 2 studies who had longitudinal
T1-weighted (T1w) MRI scans and b -amyloid PET scans available were
considered for this study. All available scans within 1.2- to 2.5-year fol-
low-up were analyzed for each participant. A summary standardized
uptake value ratio (SUVR) derived from Florbetapir PET (available pub-
licly in the processed data on the ADNI website) was used to determine
the Ab status of each participant by applying a threshold of SUVR �
1.11 (Landau et al., 2013). In total, 349 participants were selected and
grouped into Ab negative (Ab –) cognitively normal (CN) controls, Ab
positive (Ab1) CN, Ab1 mild cognitive impairment (MCI), and
Ab1 AD patients.

Participants in ADNI 3 with available b -amyloid and tau PET scans
were also included in this study. As described previously, a threshold of
SUVR � 1.11 was used to determine the Ab status. In total, 186 partici-
pants were selected and grouped into Ab 1 CN, Ab1MCI, and Ab1
AD patients.

Aging brain cohort (ABC)
CN older adults enrolled in the ABC who had T1w and resting-state
fMRI scans available were considered for this study. These participants
were recruited from the Clinical Core of the Alzheimer’s Disease Core
Center (ADCC) at the University of Pennsylvania. These individuals are
evaluated on an annual basis, including standard psychometric testing as
prescribed by the Uniform Data Set 3.0 (UDS 3.0; Weintraub et al.,
2018) and given an annual consensus diagnostic designation. This study
was approved by the Institutional Review Board of the University of
Pennsylvania and informed consent was provided by all subjects. In
total, 68 CN participants were selected.

The demographic characteristics of the samples are summarized in Table
1. See Figure 1 for flow-charts showing the process of arriving at these
cohorts.

Neuroimaging data acquisition
ADNI imaging protocol
The MRI imaging protocols of the ADNI study that were used to acquire
the T1w MRI scans were previously described in Jack et al. (2008) and
Leow et al. (2006). Amyloid PET imaging consisted of a continuous
200min brain scan (four frames of 5-min duration) 50min following
;10mCi of 18F-florbetapir injection. Tau PET imaging consisted of a
continuous 30-min brain scan (six frames of 5-min duration) 75min fol-
lowing ;10mCi of 18F-flortaucipir injection. Amyloid and tau PET
images were downloaded from the ADNI data archive in the most fully
postprocessed format with the image description “Coreg, Avg, Std Img
and Vox Siz, Uniform Resolution.” Up-to-date information about ADNI
imaging protocols can be found at adni.loni.usc.edu/methods/mri-tool/
mri-analysis and http://adni.loni.usc.edu/methods/pet-analysis-method/
pet-analysis.

ABC imaging protocol
Each subject of the ABC underwent a MR scan at the University of
Pennsylvania using a 3T Siemens MAGNETOM Prisma MRI scanner.
First, T1w structural images were acquired [repetition time (TR) =
2400ms; echo time (TE) = 2.24ms; inversion time (TI) = 1060ms; flip
angle = 8°; 208 axial slices; slice thickness = 0.8 mm; field of view= 240 -
� 256 mm2; matrix= 300� 320; in-plane resolution= 0.8� 0.8 mm2; ac-
quisition time= 6.38min]. Second, resting-state functional acquisitions
were obtained using a gradient-echo echoplanar (EPI) sequence
(TR=720ms; TE=37ms; flip angle = 52°; 72 axial slices; slice
thickness = 2 mm; field of view= 208� 208 mm2; matrix = 104� 104;
in-plane resolution = 2� 2 mm2; multiband acceleration factor= 8; 420
volumes; acquisition time= 5.12min). Finally, B0 maps were acquired
(TR=580ms; TE1= 4.12ms; TE2= 6.58ms; flip angle = 45°; 60 axial sli-
ces; slice thickness = 3 mm; field of view=240� 240 mm2; matrix= 80 -
� 80; in-plane resolution= 3� 3 mm2; acquisition time= 1.34min).
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Image processing
Longitudinal structural measures of MTL subregions (ADNI GO/2)
The longitudinal MRI scans from ADNI were processed using a tai-
lored pipeline that accounts for common confounds of conventional
approaches. A multiatlas automatic segmentation algorithm “ASHS-
T1” (Xie et al., 2019, 2020; de Flores et al., 2020) was used to label the
anterior and pH, ERC, PRC (subdivided in BA35 and BA36), and PHC
in each baseline MRI scan. The relative annualized volume atrophy
rate (in %) was computed for each region using a deformation-based
morphometry pipeline and a comprehensive quality control was per-
formed as described in a previous publication (Xie et al., 2020). More
precisely, the quality control included three levels: the MRI scans, the
ASHS-T1 automatic segmentation, and the longitudinal estimation. In
the first step, all the baseline MRI scans were checked visually and
those with severe motion artifact or blurring were excluded. Then,
baseline ASHS-T1 segmentations were visually checked for all subjects.
All subjects included in the present study had good quality segmenta-
tions for BA35 and PHC, as these regions are of specific interest in our
analyses. Lastly, the quality of longitudinal estimation was assessed. Scans
of follow-up timepoints that were poorly registered to the baseline were
excluded from the atrophy rate estimation. However, because of the very
large number of registration pairs, it was not feasible to visually check all
of them. Instead, we checked a subset of registrations selected using the
following method: (1) we computed the normalized cross-correlation
(NCC) of the registered scans, which is a good indicator of registration
quality, and then selected pairs of registrations that yielded NCC that are
1.5 SD below the mean. (2) We also randomly selected 5% of the remain-
ing pairs to confirm that they had high registration quality. Bilateral meas-
urements of each subregion were averaged.

Whole-brain longitudinal mapping of cortical thickness (ADNI GO/2)
The ANTs longitudinal cortical thickness pipeline was used to generate
whole brain atrophy maps (Tustison et al., 2019). First, a group template
and corresponding prior probability images were created using an inde-
pendent group of 52 CN ADNI-1 subjects, as previously described
(Tustison et al., 2019). Then, an unbiased single-subject template (SST)
was created for each subject of the present study. The ANTs cross-sec-
tional cortical thickness pipeline (Tustison et al., 2014) was applied to
the SST (with the group template and priors as input). SST prior proba-
bility maps were created and the ANTs cross-sectional cortical thickness
pipeline, with the SST as the reference template, was applied to each

individual time point image. Least squares regression models were applied
to estimate annualized change based on each time point cortical thickness
maps for each subject. Each resulting whole brain atrophy maps, warped to
the template space, was visually checked and no failure was detected.

rs-fMRI (ABC)
First, data were checked for the lack of artifact or of abnormal variance
distribution through the application of the TSDiffana routine (https://
imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics). B0 maps were
then used to perform susceptibility distortion correction. Next, six-pa-
rameter rigid body motion correction was implemented to account for
head motion-related artifacts (Friston et al., 1995). All included subjects
experienced minimal head motion (,2-mm translation and ,2° rotation
in any direction) at all times during acquisition. Following motion correc-
tion, the fMRI data were co-registered to the T1 structural scan. A 4-mm
full-width at half-maximal (FWHM) smoothing was applied to the rs-fMRI
scan together with a bandpass filter (0.008–0.08Hz) to the time series to
reduce low-frequency drift and high-frequency noise. Physiologic noise was
eliminated via linear regression to factor out the global signal and mean sig-
nals from white matter and CSF regions. The Atropos method was used for
three-tissue segmentation (Avants et al., 2011). We also regressed out the
six parameters of head motion (obtained frommotion correction) and their
six temporal derivatives to minimize motion-induced signal variation.

Anatomical regions from ASHS-T1 segmentations were used as
regions of interest (ROIs). More precisely, the union of the aH and BA35
was used as the seed region for the AT system, and the union of the pH
and PHC was used as the seed for the PM system, in accordance to
Ranganath and Ritchey (2012). Segmentations were carefully visually
checked manually edited when needed. Note that the ERC was not used
as a seed since this region is thought be involved in both the AT and PM
systems (Maass et al., 2015). Since time series were extracted after a 4
mm smoothing, several slices perpendicular to the long axis of the hip-
pocampus were removed from the aH and pH ROIs to avoid signal con-
tamination from one ROI to the other (see Fig. 2). In order to remove
these voxels, an intermediate step was necessary. High-resolution T2
images (0.4� 0.4� 1.2 mm3) acquired perpendicular to the long axis of
the hippocampus were available for each subject. aH and pH were first
transformed to T2 space. Then, the two most posterior slices of the aH
ROI and the three most anterior slices of the pH ROI were isolated to
generate a 6-mm exclusion mask. This mask was transformed to T1
space and each voxel were removed from the original aH and pH ROIs.

Table 1. Demographics of the samples

Structural covariance analyses: ADNI GO and ADNI 2
CN Ab – (n = 117) CN Ab1 (n= 65) MCI Ab1 (n= 148) AD Ab1 (n= 19)

Age (SD), year 71.9 (6.1) 75.3 (5.8) 72.9 (6.6) 75.6 (8.7)
Sex (F, M) 57,60 43,22 65,83 11,8
Education (SD), year 17.1 (2.3) 16.0 (2.8) 16.3 (2.7) 15.9 (2.7)
MMSE 29.1 (1.3) 29.1 (0.9) 27.7 (1.8) 22.7 (9.7)
Number of scans (SD) 2.4 (0.5) 2.4 (0.5) 2.5 (0.5) 2.3 (0.5)
Follow-up time (SD), d 655.6 (174.5) 669.8 (164.3) 602.0 (186.3) 540.2 (167.6)

PET analyses: ADNI 3
CN Ab1 (n= 67) MCI Ab1 (n= 71) AD Ab1 (n= 48)

Age (SD), year 76.9 (5.8) 76.2 (6.8) 78.0 (9.3)
Sex (F, M) 23,44 40,31 25,23
Education (SD), year 16.5 (2.3) 15.8 (2.6) 15.3 (2.4)
MMSE (SD) 28.7 (1.6) 26.9 (2.2) 22.1 (4.4)

Functional connectivity analyses: ABC
CN (n= 68)

Age (SD), year 71.6 (6.5)
Sex (F, M) 44,24
Education (SD), year 15.8 (2.6)
MMSE (SD) 29.2 (0.9)

CN, cognitively normal; MCI, mild cognitive impairment; Ab , amyloid-b ; MMSE, Mini-Mental State Examination.
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Thus, the ROIs were not adjacent and signal from one ROI was unlikely
to contaminate the other. Linear Pearson correlations between the aver-
age residual time-series signals for each seed were used to generate func-
tional connectivity maps for each subject (two maps per subject). The
resulting connectivity maps were Fisher r-z transformed for variance sta-
bilization, warped to template space and a 6-mm FWHM smoothing
was applied. Unsmoothed warped connectivity maps were also averaged
across all subjects, resulting in an average connectivity map for each of
the two seeds.

Amyloid and Tau PET (ADNI 3)
The postprocessed 18F-florbetapir and 18F-flortaucipir PET images were
generated by averaging coregistered individual frames, re-oriented in a
standardized image space such that the anterior-posterior axis of the
subject is parallel to the AC-PC line, followed by scanner-specific filter-
ing to generate an image with a uniform isotropic resolution of 8 mm
full width half maximum. More details about the preprocessing used is
described at http://adni.loni.usc.edu/methods/pet-analysis-method/pet-
analysis/. Postprocessed PET images were then registered to subject’s
T1w structural MRI using ANTs. The MRI scan was parcellated into cer-
ebellar, cortical, and subcortical ROIs using a multiatlas segmentation
method (Wang et al., 2011). The atlas set and the resulting segments are

described in the study by Landman and Warfield (2012). Mean PET
tracer uptake in the cerebellar gray matter and gray1white matter was
used as reference regions for 18F-Flortaucipir and 18F-Florbetapir,
respectively, and a SUVR map was generated for each participant for
each PET modality. Each SUVR map was then moved to template space
using ANTs and masked to only include gray matter voxels. Since amy-
loid and tau co-localize into neuritic plaques, a subset of amyloid plaques
defined by the presence of hyperphosphorylated tau protein (Jellinger,
2020), we generated tau to amyloid ratio (tau/amyloid) maps to better
highlight tau pathology that may be relatively more or less independent
of amyloid pathology. To do that, the warped SUVR tau map was di-
vided by the warped SUVR amyloid map (at the voxel level) for each
subject. Tau, amyloid and tau/amyloid scans were averaged across the
186 subjects for uptake patterns visualization.

Experimental design and statistical analyses
Defining AT and PM networks
Functional connectivity maps generated in the CN group, with combina-
tions of aH/BA35 versus pH/PHC as seeds, were used to define the AT
and PM networks, respectively. In order to highlight brain regions that
specifically belong to the AT versus PM systems and to avoid networks
overlap, the two sets of 68 connectivity maps were compared using a
“paired t test” model in the SPM12. A threshold of Pvoxel(uncorr) , 0.01
with a cluster extent determined by an iterative procedure for estimating
cluster-level false-positive rates (Monte Carlo simulation) with 10,000
iterations was used to achieve a cluster corrected statistical significance
of Pcluster(corr) , 0.05 (AFNI_19.2.26, 3dClustSim program). Note that
two separate one sample t tests were also performed to evaluate the
extent that the networks overlap.

Structural covariance analyses
Correlations between summary atrophy rates in BA35 and PHC and
voxel-wise atrophy maps in the whole brain were performed in SPM12
to evaluate structural covariance patterns. In order to highlight brain
regions that specifically structurally covary with BA35 versus PHC, both
BA35 and PHC atrophy rates were entered in a single multiple regres-
sion model. A threshold of Pvoxel(uncorr) , 0.01 with a cluster extent
determined by an iterative procedure for estimating cluster-level false-
positive rates (Monte Carlo simulation) with 10,000 iterations was used
to achieve a corrected statistical significance of Pcluster(corr) , 0.05
(AFNI_19.2.26, 3dClustSim program).

Relationship between structural covariance and functional connectivity
Three complementary analyses were performed to evaluate the relation-
ship between MTL structural covariance and functional connectivity.
First, the spatial overlap between structural covariance patterns (thresh-
olded maps) and the AT and PM networks (thresholded maps) was visu-
ally inspected. Then, goodness of fit (GOF) indices between structural

Figure 2. Example of ASHS-T1 hippocampal ROIs used as seeds for functional connectivity
analyses. A 6-mm gap was generated between the two ROIs to avoid signal contamination
from one ROI to the other. Red, aH; blue, pH.

Figure 1. Flow-charts showing cohorts selection.
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covariance maps (nonthresholded T-maps) and AT and PM networks
were calculated. GOF is expressed as the difference between the mean T-
score of all voxels that fall within the network of interest (Tinside) and the
mean T-score of gray matter voxels outside the network of interest
(Toutside), thus Tinside – Toutside (Ossenkoppele et al., 2019). Thus, four
indices were calculated (two structural covariance maps � two net-
works). Note that regions corresponding to BA35 and PHC were
removed from the network masks to avoid autocorrelation effects.
Lastly, correlation analyses were performed between averaged
functional connectivity maps (z values) and structural covariance
maps (T-values), for each gray matter voxel (n = 375,222). A total

of four correlation analyses were performed (two
structural covariance maps � two averaged func-
tional connectivity maps).

Vulnerability to AD proteinopathies of the AT and
PM networks
In order to assess the relative vulnerability of the
AT versus PM systems to pathologies, masks
derived from functional connectivity analyses
were used to extract mean SUVR values from
amyloid and tau scans, as well as from the tau to
amyloid ratio maps. Note that hippocampal
ROIs were removed from the AT and PM masks
to avoid off target binding contamination from
the choroid plexus. For each modality (amyloid,
tau, tau to amyloid ratio), a paired t test model
was employed to compare signal extracted
within both networks. In addition, we investi-
gated whether the relationship between amyloid
and tau is different within the AT versus the PM
networks. This analysis was performed at the
voxel level, for each gray matter voxel included
in the AT and PM networks. An ANOVA was
used with tau SUVR (from the averaged SUVR
tau map) as the dependent variable and amyloid
SUVR (from the averaged SUVR amyloid map)
and network (AT or PM) as the independent var-
iables. The amyloid � network interaction was
tested.

Results
Defining the AT and PM networks
MTL networks highlighted in the CN popula-
tion from the ABC dataset are shown in Figure
3A (continuous maps are illustrated in Fig. 4).
These functional connectivity analyses revealed
two distinct networks, corresponding to the
AT and PM systems. The AT network, defined
by regions more functionally connected to aH/
BA35 than pH/PHC, encompasses the amyg-
dala and the temporopolar cortex extending
posteriorly to inferior and middle temporal
gyri. In contrast, the PM network, defined
by regions more functionally connected to
pH/PHC than aH/BA35, encompasses the pos-
terior cingulate cortex, the precuneus, the
cuneus, the angular and occipital gyri and the
right insula. Results from one sample t tests
are illustrated in Figure 5. The two networks
largely overlap, where nonoverlapping regions
include the temporal pole for AT and cingulate,
occipital and occipitotemporal regions for PM.
In addition, analyses were repeated using more
stringent thresholds (Pvoxel(uncorr) , 0.005,
Pcluster(corr) , 0.05 and Pvoxel(uncorr) , 0.001,
Pcluster(corr) , 0.05). As illustrated in Figure 6,

results were overall unchanged.

Structural covariance analyses
Longitudinal structural covariance patterns for BA35 and PHC,
highlighted in the ADNI GO/2 population (spanning from Ab –
CN to Ab1 AD patients), are shown in Figure 3B (continuous
maps are illustrated in Fig. 4). Overall, BA35 atrophy covaried
with atrophy of the amygdala and the left temporal cortex (just
inferior temporal on the right), while PHC atrophy structurally

Figure 3. Functional connectivity and structural covariance of MTL subregions. A, AT and PM functional networks
defined using seed-based correlations (seed: aH and BA35 for AT; pH and PHC for PM) in the CN population from the
ABC. Connectivity maps were compared using a paired t test (Pcluster(corr), 0.05, Pvoxel(uncorr), 0.01) to highlight spe-
cific networks. B, Whole-brain longitudinal structural covariance of BA35 and the PHC cortices (Pcluster(corr) , 0.05,
Pvoxel(uncorr) , 0.01) generated in the ADNI GO/2 population (spanning from Ab – CN to Ab1 AD patients). C,
Overlap between networks and BA35 covariance. D, Overlap between networks and PHC covariance.

Figure 4. Functional connectivity and structural covariance of MTL subregions, continuous T-value maps. A, AT and
PM functional networks defined using seed-based correlations (seed: aH and BA35 for AT; pH and PHC for PM) in the
CN population from the ABC. Connectivity maps were compared using a paired t test. B, Whole-brain longitudinal
structural covariance of BA35 and the PHC cortices generated in the ADNI GO/2 population (spanning from Ab – CN
to Ab1 AD patients).
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covaried with longitudinal atrophy of the posterior cingulate
cortex, the precuneus, the cuneus and the angular and occipital
gyri. Analyses were repeated using more stringent thresholds
(Pvoxel(uncorr) , 0.005, Pcluster(corr) , 0.05 and Pvoxel(uncorr) ,
0.001, Pcluster(corr) , 0.05). As illustrated in Figure 6, structural
covariance pattern of PHC was overall unchanged. For the struc-
tural covariance of BA35, results partially hold using more strin-
gent thresholds, with patterns including the MTL and the
posterior portion of the lateral temporal cortex at Pvoxel(uncorr) ,
0.005, Pcluster(corr) , 0.05 while BA35 structurally covaried within
the MTL at Pvoxel(uncorr), 0.001, Pcluster(corr) , 0.05.

Relationship between structural covariance and functional
connectivity
The relationship between MTL structural covariance and func-
tional connectivity was assessed using three different and com-
plementary approaches. First, the spatial overlap between
structural covariance patterns and the AT and PM networks is
illustrated in Figure 3C,D. Overall, BA35 structural covariance
overlapped with the AT network while PHC structural covari-
ance overlapped with the PM network with little structural co-
variance outside of the respective networks. Note that the same
conclusion applies when networks derived from one sample t

tests are considered. Second, we generated GOF indices between
structural covariance maps and AT and PM networks. BA35 co-
variance showed better GOF with the AT system (1.10 vs �0.50
for PM). In contrast, PHC covariance showed better GOF with
the PM system (0.92 vs �0.33 for AT). Third, each voxel of the
averaged connectivity maps generated in the CN population
from the ABC were correlated with each voxel of structural co-
variance maps generated in the ADNI GO/2 population. As illus-
trated in Figure 7, BA35 structural covariance demonstrated
better correlation with AT functional connectivity (r= 0.24,
p, 0.001 vs r=0.04, p, 0.001 for PM functional connectivity),
while PHC structural covariance displayed better correlation
with PM functional connectivity (r=0.18, p, 0.001 vs r=
�0.03, p, 0.001 for AT functional connectivity). To confirm
these observations, correlation coefficients were statistically com-
pared using the R package “cocor” (Diedenhofen and Musch,
2015). As reported in Table 2, the results of all tests lead to the
convergent conclusion that BA35 structural covariance is signifi-
cantly more associated with AT functional connectivity than PM
functional connectivity, while PHC structural covariance is sig-
nificantly more associated with PM functional connectivity than
AT functional connectivity.

Vulnerability to AD proteinopathies of the AT and PM
networks
Average uptake patterns for tau, amyloid and tau/amyloid PET
are illustrated in Figure 8. Overall, tau PET uptake was particu-
larly high in temporal (medial and lateral), parietal (medial and
inferior) and orbitofrontal regions, while amyloid uptake was
more diffuse and involved almost all brain regions (except the
MTL). Tau/amyloid signal was high in temporal regions, particu-
larly in the MTL, as well as in the lateral parietal cortex. Note
that the signal was relatively low in midline parietal structures.
When comparing signal within the AT versus PM systems (Fig.
8), tau uptake was significantly higher in the AT network than in
the PM network (t(185) = 3.52, p=5.40e�04), while amyloid
uptake was higher in the PM network than in the AT network
(t(185) = �30.25, p, 2.2e�16). Tau/amyloid signal was signifi-
cantly higher in the AT network than in the PM network (t(185) =
18.08, p, 2.2e�16). These analyses were repeated by including
additional 195 Ab – CN individuals. Results were unchanged,
although more significant, with higher tau uptake and tau/amy-
loid ratio in AT than in PM (t(380) = 4.91, p= 1.36e�06; t(380) =
32.37, p, 2.2e�16, respectively) and higher amyloid uptake in
PM than in AT (t(380) = �45.47, p, 2.2e�16). Lastly, the analysis
performed at the voxel level showed a significant interaction of
the effects of amyloid and network on tau (F(1,116663) = 6224.3,
p, 2.2e�16). As illustrated in Figure 9, the slope of the associa-
tion between tau and amyloid SUVRs was steeper within the AT
network than in the PM network.

Discussion
The aim of the present study was to evaluate the structural and
molecular vulnerabilities of two specific MTL networks, namely,
the AT and PM networks, over the course of AD. In particular,
we aimed to determine whether these networks displayed evi-
dence of dissociable neurodegenerative change and the degree to
which they differed in underlying molecular pathology, which
would have implications for the pathophysiologic cascade of AD
and the relative vulnerability of these networks. To that end, we
used a combination of rs-fMRI, longitudinal structural MRI, as

Figure 5. AT and PM functional networks defined using two separate one sample t tests.
The networks were defined using seed-based correlations (seed: aH and BA35 for AT; pH and
PHC for PM) in the CN population from the ABC. Two separate one sample t tests with a
threshold of Pvoxel(uncorr), 0.001; Pcluster(corr), 0.05 were used.
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Figure 6. Functional connectivity and structural covariance of MTL subregions using different thresholds. A, AT and PM functional networks defined using seed-based correlations (seed: aH
and BA35 for AT; pH and PHC for PM) in the CN population from the ABC. Connectivity maps were compared using a paired t test (Pcluster(corr) , 0.05, Pvoxel(uncorr) , 0.01/Pcluster(corr) , 0.05,
Pvoxel(uncorr) , 0.005/Pcluster(corr) , 0.05, Pvoxel(uncorr) , 0.001) to highlight specific networks. B, Whole-brain longitudinal structural covariance of BA35 and the PHC cortices (Pcluster(corr) ,
0.05, Pvoxel(uncorr) , 0.01/Pcluster(corr) , 0.05, Pvoxel(uncorr) , 0.005/Pcluster(corr) , 0.05, Pvoxel(uncorr) , 0.001) generated in the ADNI GO/2 population (spanning from Ab – CN to Ab1 AD
patients).

Figure 7. Correlations between functional connectivity and structural covariance. Each voxel of the averaged connectivity maps (z values) generated in the CN population from the ABC were
correlated with each voxel of structural covariance maps (T-values) generated in the ADNI GO/2 population.
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well as tau and amyloid PET data acquired in three distinct
cohorts covering the full AD spectrum.

Consistent with prior literature, our functional connectivity
analyses performed in a group of 68 CN individuals revealed two
specific MTL networks. Overall, the amygdala and the temporo-
polar cortex (extending posteriorly to inferior and middle tem-
poral gyri) were more functionally connected to a seed
composed of the aH and BA35 than the pH and PHC. In con-
trast, the posterior cingulate cortex, the precuneus, the cuneus,
the angular and occipital gyri and the right insula were more
functionally connected to pH/PHC than aH/BA35. As expected,
these specific networks are overall in line with the two systems
proposed by Ranganath and Ritchey (2012) in their review based
on anatomic and functional studies performed in humans, mon-
keys and rats. Recently, the AT and PM networks have been
investigated in vivo in humans using neuroimaging techniques.
Studies have consistently reported two distinct MTL systems,
although subtle differences can be noticed, likely because differ-
ent approaches were employed. For example, the AT and PM
networks were highlighted using seeds made of PRC versus PHC
(Kahn et al., 2008; Libby et al., 2012; Zhuo et al., 2016), aH versus
pH (La Joie et al., 2014; Das et al., 2015; Vogel et al., 2020), or an-
terolateral ERC versus posteromedial ERC (Adams et al., 2019).

To our knowledge, the present study is the first to use combina-
tions of hippocampal and extrahippocampal regions (aH/BA35
vs pH/PHC) as seeds. Note that it might appear more appropri-
ate to use BA35 alone as a seed to parallel the structural covari-
ance analyses. However, as illustrated in Figure 10, a subpart of
the AT network was obtained, since BA35 is only a portion of
PRC. Further, BA35 is a very small region located in a part of the
brain which is prone to distortion in fMRI scans, and might not
be ideal to be used as a seed by itself. Thus, combining MTL
nodes belonging to the same network appeared as a reasonable
approach and allowed to highlight specific networks correspond-
ing to the AT and PM systems.

Using longitudinal structural MRI data in a large population
from ADNI GO/2 covering the AD spectrum from CN to mild
AD-related dementia, our analyses revealed distinct MTL struc-
tural covariance patterns. BA35 atrophy covaried with atrophy of
the amygdala and the left temporal cortex, while PHC atrophy
structurally covaried with longitudinal atrophy of the posterior
cingulate cortex, the precuneus, the cuneus and the angular and
occipital gyri. Over the past few years, several studies have been
performed to evaluate MTL structural covariance with the rest of
the brain in the context of normal and pathologic aging (Bohbot
et al., 2007; Olman et al., 2009; Persson et al., 2014;

Table 2. Correlation coefficients comparisons

BA35 structural covariance ; AT functional connectivity
vs
BA35 structural covariance ; PM functional connectivity

PHC structural covariance ; AT functional connectivity
vs
PHC structural covariance ; PM functional connectivity

Pearson and Filon’s z (1898) z = 144.0206, p-value = 0.0000 z = �150.4716, p-value = 0.0000
Hotelling’s t (1940) t= 146.3813, df = 375219, p-value = 0.0000 t = �152.9268, df = 375219, p-value = 0.0000
Williams’ t (1959) t= 146.3212, df = 375219, p-value = 0.0000 t = �152.9084, df = 375219, p-value = 0.0000
Olkin’s z (1967) z = 144.0206, p-value = 0.0000 z = �150.4716, p-value = 0.0000
Dunn and Clark’s z (1969) z = 143.3883, p-value = 0.0000 z = �149.5178, p-value = 0.0000
Stanley and Hills’ (1970) t= 146.3813, df = 375219, p-value = 0.0000 t = �152.9268, df = 375219, p-value = 0.0000
Steiger’s (1980) z = 142.8124, p-value = 0.0000 z = �148.8888, p-value = 0.0000
Meng, Rosenthal, and Rubin’s z (1992) z = 142.2512, p-value = 0.0000 z = �148.2490, p-value = 0.0000
Hittner, May, and Silver’s (2003) z = 142.7896, p-value = 0.0000 z = �148.8813, p-value = 0.0000
Zou’s (2007) confidence interval 0.1914 0.1967 �0.2066 �0.2013

Statistical comparisons were performed using the R package “cocor” (Diedenhofen and Musch, 2015).

Figure 8. Tau and amyloid accumulation within the AT and PM networks. A, Tau, amyloid, and tau/amyloid ratio scans were averaged across 186 subjects for uptake patterns visualization.
B, Mean SUVR values in the AT and PM networks were estimated from amyloid, tau, and tau/amyloid ratio maps. For each modality, a paired t test model was used to compare signal extracted
within both networks.
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Montembeault et al., 2016; Stening et al., 2017; Chang et al.,
2018; Li et al., 2018, 2019; Nordin et al., 2018; Wang et al., 2018;
Plachti et al., 2020; Vogel et al., 2020). Previous investigations
demonstrated that structural covariance differs across the

longitudinal axis of the hippocampus, with
aH overall covarying with temporal areas
while pH covaried with parietal and occipi-
tal regions (Persson et al., 2014; Stening et
al., 2017; Nordin et al., 2018; Li et al., 2019;
Vogel et al., 2020). These results are con-
sistent with our observations. However, it
is important to note that these previous
works were performed using cross-sec-
tional data only, while our analyses were
based on a longitudinal design, which is a
more suitable approach to evaluate more
pure effects of active neurodegeneration
and disease progression topography, given
that cross-sectional analyses may be influ-
enced by developmental covariance. In
addition, the present study is the first, to
our knowledge, to contrast the structural
covariance of two extrahippocampal re-
gions (BA35 and PHC) across the AD
spectrum. Importantly, BA35 and PHC
structural covariance patterns overlapped
with the AT and PM networks, respec-
tively, supporting the notion that not only
are these regions important nodes of func-
tionally dissociable networks, but that
neurodegeneration occurs in a dissociable
fashion between them in the context of
AD. Our analyses also revealed specific
correlations between structural covariance
and functional connectivity. These obser-
vations are in line with several neuroimag-
ing works showing a relationship between
functional connectivity and tau/neurode-
generation topography and propagation
(Seeley et al., 2009; Zhou et al., 2012;
Mutlu et al., 2017; Bischof et al., 2019;
Ossenkoppele et al., 2019; Franzmeier et
al., 2020a,b). Altogether, these observa-
tions performed in vivo in humans support
the “prion-like” propagation theory which
proposed that AD pathology, more particu-
larly tau pathology and subsequent atrophy,
spreads across anatomically interconnected
brain regions (Brettschneider et al., 2015;
Peng et al., 2020). In addition, the MTL
structural covariance patterns highlighted
here overall recapitulate the global AD atro-
phy pattern, classically described in the liter-
ature, where temporal and parietal regions
are among the most affected brain areas
(Dickerson et al., 2009; La Joie et al., 2012;
Pini et al., 2016). This strengthens the view
that the MTL is an epicenter of AD neuro-
degeneration but also suggests that pathol-
ogy propagates to the neocortex through
two distinct networks.

Lastly, we used PET data from ADNI 3,
acquired in Ab1 CN, MCI and AD
patients, to evaluate the relative vulnerabil-

ity of the AT and PM networks to amyloid and tau pathologies.
Our analyses showed that tau uptake was relatively higher in the
AT network than in the PM network, while amyloid uptake was

Figure 9. Association between tau and amyloid within the AT versus PM networks. Each gray matter voxels from the
averaged SUVR tau and amyloid maps and included in the AT and PM masks (n= 116,667) were used to investigated
whether the relationship between amyloid and tau is different within the AT versus the PM networks.

Figure 10. Functional connectivity of MTL subregions, alternative seeds. AT and PM functional networks defined using
seed-based correlations (seed: BA35 for AT; PHC for PM) in the CN population from the ABC. Connectivity maps were com-
pared using a paired t test (Pcluster(corr) , 0.05, Pvoxel(uncorr) , 0.01/Pcluster(corr) , 0.05, Pvoxel(uncorr), 0.005/Pcluster(corr) ,
0.05, Pvoxel(uncorr) , 0.001) to highlight specific networks.
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relatively higher in the PM network than in the AT network.
Similar to tau uptake, tau to amyloid ratio signal was more
prominent in the AT network than in the PM network. Note that
this ratio signal was particularly high in the MTL, suggesting that
tau pathology in this region is relatively independent of amyloid.
In addition, we found a significant amyloid � network interac-
tion, where the slope of the association between tau and amyloid
SUVRs was steeper within the AT network than in the PM net-
work. This indicates that for a given level of amyloid, tau level is
higher in AT than in PM. These results may suggest that more of
the tau in the PM system is associated with neuritic tau given the
higher amyloid plaque burden while we might expect more tan-
gles in the absence of neuritic plaques in AT. However, this hy-
pothesis is purely speculative. While tau levels are lower in the
PM network, there is still significant tau pathology present in
these regions, at least in the majority of patients studied here.
Lastly, local relationships between amyloid and tau were
explored in the present study, but nonlocal interactions between
the two pathologies may also exist.

Overall, our observations are consistent with recent reports
investigating AD pathology within MTL networks (Adams et al.,
2019; Maass et al., 2019). More precisely, Adams et al. (2019)
showed that in CN older adults, tau pathology is preferentially
deposited in regions that are functionally connected to the an-
terolateral ERC (i.e., the AT system), with stronger connectivity
being associated with increased tau deposition. Maass et al.
(2019) also described early tau deposition in the AT system,
which was associated with deficits in mnemonic object discrimi-
nation, while the presence of amyloid deposits was preferentially
found in PM regions. Thus, early AD pathology seems to target
both systems and might explain the functional disruptions
observed in patients in previous investigations (Das et al., 2015;
Chen et al., 2016; Liu et al., 2016; Berron et al., 2020), but does so
with differential pathologic underpinnings. Altogether, these
data suggest a predominant role of the AT and PM networks in
the pathophysiology of AD.

Our study has some limitations. We used data from three dif-
ferent datasets: resting-state functional connectivity data were
acquired at University of Pennsylvania, longitudinal structural
MRI data came from ADNI GO/2, and amyloid and tau PET
data came from ADNI 3. Thereby, we could not assess the direct
relationships between functional connectivity, the presence of
pathologies and structural covariance. Having all such data
acquired in the same participants would have allowed us to
explore pathologic mechanisms more deeply. However, this can
also be seen as a strength, since this indicates that our results are
potentially generalizable. Further studies performed on a unique
sample (with longitudinal imaging in all modalities) and includ-
ing more advanced patients are thus needed to fully understand
the involvement of the AT and PM networks in the pathophysi-
ology of AD across the disease spectrum.
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