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This article considers inference about the variance of coefficients in time-varying parameter models with stationary regressors. 
The Gaussian maximum likelihood estimator (MLE) has a large point mass at 0. We thus develop asymptotically median unbiased 
estimators and asymptotically valid confidence intervals by inverting quantile functions of regression-based parameter stability test 
statistics, computed under the constant-parameter null. These estimators have good asymptotic relative efficiencies for small to 
moderate amounts of parameter variability. We apply these results to an unobserved components model of trend growth in postwar 
U.S. per capita gross domestic product. The MLE implies that there has been no change in the trend growth rate, whereas the 
upper range of the median-unbiased point estimates imply that the annual trend growth rate has fallen by 0.9% per annum since 
the 1950s. 
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1. INTRODUCTION 

Since its introduction in the early 1970s by Cooley and 
Prescott (1973a,b, 1976), Rosenberg (1972, 1973), and Sar- 
ris (1973), the time-varying parameter (TVP), or "stochastic 
coefficients," regression model has been used extensively 
in empirical work, especially in forecasting applications. 
Chow (1984), Engle and Watson (1987), Harvey (1989), 
Nichols and Pagan (1985), Pagan (1980), and Stock and 
Watson (1996) have provided references and discussion of 
this model. The appeal of the TVP model is that by permit- 
ting the coefficients to evolve stochastically over time, it can 
be applied to time series models with parameter instability. 

The TVP model considered in this article is 

yt = 3itXt + ut, (1) 

,3t /3t-l + vt, (2) 

a(L)ut = Et, (3) 

and 

vt = Tvt, where vt = B(L)qt, (4) 

where {(yt,Xt),t = 1,... ,T} are observed, Xt is an ex- 
ogenous k-dimensional regressor, /3t is a k x 1 vector of 
unobserved time-varying coefficients, T is a scalar, a(L) is 
a scalar lag polynomial, B(L) is a k x k matrix lag polyno- 
mial, and Et and qt are serially and mutually uncorrelated 
mean 0 random disturbances. (Additional technical condi- 
tions used for the asymptotic results are given in Section 
2, where we also discuss restrictions on B(L) and E(rqtqr) 
that are sufficient to identify the scale factor T.) An im- 
portant special case of this model is when Xt = 1 and 
B(L) = 1; following Harvey (1985), we refer to this case 
as the "local-level" unobserved components model. 
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We consider the problem of estimation of the scale pa- 
rameter r. If (as is common) et and nt are assumed to be 
jointly normal and independent of {Xt, t-1) . . .; T}, then 
the parameters of (1)-(4) can be estimated by maximum 
likelihood implemented by the Kalman filter. However, the 
maximum likelihood estimator (MLE) has the undesirable 
property that if r is small, then it has point mass at 0. In the 
case Xt - 1, this is related to the so-called pile-up prob- 
lem in the first-order moving average [MA( 1)] model with a 
unit root (Sargan and Bhargava 1983; Shephard and Harvey 
1990). In the general TVP model (1)-l4), the pile-up proba- 
bility depends on the properties of Xt and can be large. The 
pile-up probability is a particular problem when 7 is small 
and thus is readily mistaken for 0. Arguably, small values 
of r are appropriate for many empirical applications; in- 
deed, if 7 is large, then the distribution of the MLE can be 
approximated by conventional T1/2-asymptotic normality, 
but Monte Carlo evidence suggests that this approximation 
is poor in many cases of empirical interest. (See Davis and 
Dunsmuir 1996 and Shephard 1993 for discussions in the 
case of Xt = 1.) 

We thus focus on the estimation of r when it is small. In 
particular, we consider the nesting 

r = A/T. (5) 

Order of magnitude calculations suggest that this might be 
an appropriate nesting for certain empirical problems of 
interest, such as estimating stochastic variation in the trend 
component in the growth rate of U.S. real gross domestic 
product (GDP), as we discuss in Section 4. This is also the 
nesting used to obtain local asymptotic power functions of 
tests of 7r 0, a fact suggesting that if the researcher is in a 
region in which tests yield ambiguous conclusions about the 
null hypothesis 7r 0, then the nesting (5) is appropriate. 

The main contribution of this article is the development 
of asymptotically median unbiased estimators of A and 
asymptotically valid confidence intervals for A in the model 
(1)-(5). These are obtained by inverting asymptotic quantile 
functions of statistics that test the hypothesis A = 0. The 
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test statistics are based on generalized least squares (GLS) 
residuals, which are readily computed under the null. As 
part of the calculations, we obtain asymptotic representa- 
tions for a family of tests under the local alternative (5). 
These representations can be used to compute local asymp- 
totic power functions against nonzero values of A. Section 
2 presents these theoretical results. 

Section 3 provides numerical results for the special cases 
of the univariate local-level model. Properties of the median 
unbiased estimators are compared to two MLEs, which al- 
ternatively maximize the marginal and the profile (or con- 
centrated) likelihoods; these MLEs differ in their treatment 
of the initial value for 3t. Both MLEs are biased and have 
large pile-ups at A = 0. When A is small, the median un- 
biased estimators are more tightly concentrated around the 
true value of A than either MLE. 

Section 4 presents an application to the estimation of a 
long-run stochastic trend for the growth rate of postwar 
real per capita GDP in the United States. Point estimates 
from the median unbiased estimators suggest a slowdown in 
the average trend rate of growth; the largest point estimate 
suggests a slowdown of approximately .9% per annum from 
the 1950s to the 1990s. The MLEs suggest a much smaller 
decline, with point estimates ranging from 0 to .2%. Section 
5 concludes. 

2. THEORETICAL RESULTS 

We assume that a(L) has known finite order p and thus 
consider statistics based on feasible GLS. Specifically, (a) Yt 
is regressed on Xt by ordinary least squares (OLS), produc- 
ing residuals fit; (b) a univariate AR(p) is estimated by OLS 
regression of fit on (1,It-i,... , yielding &(L); and 
(c) t = &(L)yt is regressed on Xt &(L)Xt, yielding the 
GLS estimator ,3 - (T-1 Et=L1 XtX ) t1T-1 t=1 xy, 
residuals et and moment matrix V: 

et = It-3'Xt (6) 

and 

V = (T-1 E tk &2 (7) 

where &2 = (T - k)-1 ET= E2. If a(L) 1, then steps (a) 
and (b) are omitted and the OLS and GLS regressions of Yt 
on Xt are equivalent. 

Two test statistics are considered: Nyblom's (1989) LT 
statistic (modified to use GLS residuals) and the sequential 
GLS Chow F statistics, FT(s)(O < s < 1), which test for 
a break at date [Ts], where [.] denotes the greatest lesser 
integer. Let SSRt1,t2 denote the sum of squared residuals 
from the GLS regression of jt onto Xt over observations 
tl < t < t2, and let CT(S) = T-1/2 E[Ts] Xtet. The LT and 
FT statistics are 

T 

LT-T-1 Z (T(t/T)V-1 T(t/T) (8) 
t= 1 

and 

FT(s) = (SSRl,T- SSRl,[Ts] - SSRrTs]+1,T) 

? [k(SSRl,[Ts] + SSR[TS]+l,T)/(T - k)]. (9) 

(For other tests in versions of this model, see Franzini and 
Harvey 1983; Harvey and Streibel 1997; King; and Hillier 
1985; Nabeya and Tanaka 1988; Nyblom 1989; Reinsel and 
Tam 1996; Shively 1988.) 

The FT statistic is an empirical process, and infer- 
ence is performed using one-dimensional functionals of 
FT. We consider three such functionals: the maximum 
FT statistic (the Quandt [1960] likelihood ratio statistic), 
QLRT = supSE(S,S1) FT(s); the mean Wald statistic of An- 
drews and Ploberger (1994) and Hansen (1992), MWT = 

f Z FT(r) dr; and the Andrews-Ploberger (1994) exponen- 
tial Wald statistic, EWT = ln{f1 exp( FT(r)) dr}, where 
O < so < SI < 1. 

Three assumptions are used to obtain the asymptotic re- 
sults. For a stationary process Zt, let ci ...i.(r, ..rn-1) 
denote the nth joint cumulant of zi1t1,...)zintn, where 
rj = tj-tn,j = 1, . ..,n-1 (Brillinger 1981), and let 
C(ri,..., rn-1) = Supil,.,in Cil ... in(rl, * * rn-1). 

Assumption A. Xt is stationary with eighth order cumu- 
lants that satisfy ,.rJ I C(rI,... ,r7) < 00 

Assumption B. {Xt, t = 1,... ,T} is independent of 
{Ut, Vt, t1, ...,T}. 

Assumption C. (Ct, r)' is a (k + 1) x 1 vector of iid 
errors with mean 0 and four moments; Et and rt are inde- 
pendent; a(L) has finite-order p; and B(L) is one-summable 
with B(1) 34 0. 

Assumption A requires that Xt have bounded moments 
or, if nonstochastic, that it not exhibit a trend. The assump- 
tion of stationarity is made for convenience in the proofs 
and could be relaxed somewhat. However, the requirement 
that Xt not be integrated of order 1 (I(1)) or higher is 
essential for our results. 

Assumption B requires Xt to be strictly exogenous. This 
assumption permits estimation of (1), under the null f3t 
3o0, by GLS. 

The assumption that a(L) has finite-order p in assumption 
C is made to simplify estimation by feasible GLS. The as- 
sumption that Et and rt are independent ensures that ut and 
vt have a zero cross-spectral density matrix. This is a basic 
identifying assumption of the TVP model (Harvey 1989). 
To construct the Gaussian MLE, Et and rt are modeled as 
independent iid normal random variables. 

The assumption that Xt is independent of the errors 
can be unappealing in some applications. For example, in 
some econometric applications Xt is predetermined but not 
strictly exogenous, ut is plausibly serially uncorrelated, but 
there is feedback from Ut to future Xt. In lieu of assump- 
tions B and C, we thus introduce an alternative assumption 
to handle regressors that are predetermined but not exoge- 
nous. 
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Assumption D. (6t,4)' is a (k + 1) x 1 vector of iid 
errors with mean 0 and four moments; Et and nt are in- 
dependent; a(L) = 1; B(L) is one-summable with B(1) 74 
0; nIt is independent of {Xt, Xt?l, Xt?2,.. .}; and ut is in- 
dependent of {Xt, Xti l, Xt-2, .. 

This permits feedback from ut to future Xt, but not from 
vt to Xt, and thus rules out Xt containing lagged Yt when 
A#o. 

Our main theoretical results are given in the following 
theorem. Let ">" denote weak convergence on D[0, 1], 
let W1 and W2 be independent standard Brownian mo- 
tions on [0, ]k, and let F = E{ [a(L)Xt] [a(L)Xt]'}, l = 

B(1)E(7qntq)B(1)', and D= r1/2n1/2/ 
Theorem 1. Let Yt obey (1)-(5), and suppose either that 

assumptions A, B, and C hold or that assumptions A and D 
hold. Then 

a. V-1/2(T X hO, where h0(s) = hA(s)-shA(1), where 
hA (s) = Wi (s) + AD fs W2 (r) dr; 

b. LT X f0 h?(s)'h? (s) ds; and 
c. FT => F*, where F*(s) = h0(s)'h?(s)/(ks(1 - s)). 

The proof is given in the Appendix. 
Limiting representations of the QLR, mean Wald, and 

exponential Wald statistics are obtained from part (c) of 
Theorem I and the continuous mapping theorem. Thus 
QLRT ?I sup,,<,<,1 F*(s), MWT f> JS F*(r) dr, and 
EWT X> ln{<1 exp( 2F* (r))dr}. Note that the limiting rep- 
resentation for LT can be written as LT =X k f (r(1 - 
r))F* (r) dr. 

When A = 0, the process hO is a k-dimensional Brown- 
ian bridge, and the representations for the statistics LT and 
FT reduce to their well-known null representations as func- 
tionals of a Brownian bridge (Andrews and Ploberger 1994; 
Nabeya and Tanaka 1988; Nyblom 1989). 

When A 7& 0, the limiting distributions of LT and FT de- 
pend on two parameters, A and D. The limiting represen- 
tations in Theorem 1 are used for three purposes: to com- 
pute local asymptotic power functions, to construct median 
unbiased estimators of A, and to construct asymptotically 
valid confidence intervals for A. To do so, D must either be 
known or be consistently estimable, so that asymptotically 
A is the only unknown parameter entering these distribu- 
tions. 

The determination of D raises issues of identification and 
modeling strategy. Evidently a(L) and var(ct) are not sep- 
arately identified, but this is resolved without loss of gen- 
erality by adopting the normalization ao 0 1. Similarly, for 
standard reasons associated with moving average models, 
B(L) and Enitn' are not separately identified; we thus adopt 
the conventional assumptions that Bo = Ik and the roots of 
IB(z) are outside the unit circle. Even with these assump- 
tions, however, inspection of (1)-(5) reveals that A and Q? 
are not separately identified: The parameter combinations 
(A, Q) = (A, Q) and (A, Q) = (1, >2) are observationally 
equivalent for fixed (A, Q). 

When k = 1, this identification problem can be solved 
without loss of generality by adopting an arbitrary normal- 

ization. Henceforth, when k = 1, we thus set D = 1. When 
Xt = 1, under this normalization, A is T times the ratio 
of the long-run standard deviation of A/3t to the long run 
standard deviation of ut. 

When k > 1, Ql is identified upon making a single suit- 
able normalization; for example, that the trace of -Q is unity. 
However, the local-to-O variation in A/3t makes it impossi- 
ble to estimate the free elements of Q consistently without 
further restrictions. In this case two types of further re- 
strictions suggest themselves. First, Q may be set equal to 
a prespecified constant matrix chosen by the researcher in 
a manner appropriate for the specific empirical model un- 
der study. Second, Q may be parameterized as a function 
of r and a 2 (which are consistently estimable). As in the 
k = 1 case, a convenient parameterization sets Q - ar2Y-1, 
for this implies that D = Ik. This choice of Q implies that 
the regression coefficients evolve as mutually independent 
random walks after rotating the regressors so that they are 
mutually uncorrelated. This is the parameterization used by 
Nyblom (1989) in his development of the LMPI test for 
A 0 O. From a computational perspective, this assumption 
is attractive because it simplifies the calculation of median 
unbiased estimators of A and the construction of confidence 
intervals. From a modeling perspective, the restriction is 
arguably appealing because it makes the magnitude of the 
time variation comparable across variables when measured 
in standard deviation units (or, for general a(L) and /(L), 
long-run standard deviation units). With the additional re- 
strictions a(L) =1 and B(L) = 1, this restriction was 
used by Stock and Watson (1996) in their investigation of 
time variation in empirical macroeconomic relationships. 
Whether this assumption is desirable for general Xt is a 
matter of modeling strategy in a particular empirical appli- 
cation. 

2.1 Local Asymptotic Power 

The representations can be used to compute the distri- 
bution of the tests under the local alternative (5) and thus 
to compute the local asymptotic power of tests of the null 
T = 0. The various test statistics have limiting representa- 
tions under the local alternative that are qualitatively sim- 
ilar. This is interesting, because the FT-based statistics are 
typically motivated by considering the single break model, 
whereas Nyblom (1989) derived the LT statistic as the 
LMPI test statistic for the seemingly rather different Gaus- 
sian TVP model. 

2.2 Median Unbiased Estimation of A 

Median unbiased estimators of A can be computed from 
LT or from a scalar functional of FT. Consider, for exam- 
ple, the scalar functional g(FT), which is assumed to be 
continuous. By the continuous mapping theorem, g(FT) => 

g(F*), the distribution of which depends on A and D. Let 
mD(A) denote the median of g(F*) as a function of A for a 
given matrix of nuisance parameters D. Suppose that mn(.) 
is monotone increasing and continuous in A. Then the in- 
verse function mj-1 exists, and for D known, A can be es- 
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timated by 

=mD(g(FT)). (10) 

Asymptotically, A0 A mj -(g(F*)). By construction, Pr[% 
< A] - Pr[mj1(g(F*)) < Al = Pr[g(F*) < mD(A)] .5, 
so A9 is asymptotically median unbiased. 

In practice D is not known, so the estimator (10) is in- 
feasible. However, as discussed earlier, D generally can be 
consistently estimated for a given choice of Q. If in addition 
mjn (.) is continuous in D (which it is for the function- 
als considered in this article), then (10) can be computed 
with D replaced by a consistent estimator D, and the same 
asymptotic distribution obtains. Note, however, that this is 
computationally cumbersome, as it requires computing the 
inverse median function mn;1 (.) for every estimate D under 
consideration. (However, some simplifications are possible 
because, as pointed out by a referee, the distribution of the 
test statistics depends only on the eigenvalues of D.) When 
Q is chosen so that D= Ik, the limiting distributions of LT 
and FT depend only on A and k under the local alternative. 

It would be of interest to obtain theoretical results com- 
paring the efficiency of median-unbiased estimators based 
on the various functionals of FT. However, the limiting dis- 
tributions are nonstandard and do not appear to have any 
simple relation to each other. Thus these efficiency compar- 
isons are undertaken numerically and are reported in the 
next section. 

2.3 Confidence Intervals for A 

Suppose that D = Ik, in which case the local asymptotic 
representatiorns in Theorem 1 depend only on A and k. For 
a given scalar test statistic, its representation can then be 
used to compute a family of asymptotic 5% critical values 
of tests of A = A0 against a two-sided alternative, and in turn 
these critical values can be used to construct the set of A0 
that are not rejected. This set constitutes a 95% confidence 
set for A0. This process of inverting the test statistic can be 
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Figure 1. Asymptotic Power Functions ot 5% Tests otTr = 0 Against 
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-- -, QLR; ,P01(7J; ---, P01(17J. 

done graphically by the method of confidence belts or by 
interpolation of a lookup table. The details parallel those 
for construction of confidence intervals for autoregressive 
roots local to unity (Stock 1991) and are omitted. 

3. NUMERICAL RESULTS FOR THE UNIVARIATE 
LOCAL-LEVEL MODEL 

In the univariate of local-level model, Xt 1 and 
B(L) = 1, so that yt is the sum of an I(0) component and 
an independent random walk, which under the parameter- 
ization (5) has a small disturbance variance. In this model 
AYt follows a moving average (MA) process, with largest 
MA root (1 - A/T)-> + o(T-1). In this section we first 
compare numerically the power of the tests in Section 2 
and of some other previously proposed tests against the lo- 
cal alternative, then turn to an analysis of the properties of 
median unbiased estimators. All computations of asymp- 
totic distributions are based on simulation of the limiting 
representations, with T = 500 and 5,000 Monte Carlo repli- 
cations. 

3.1 Asymptotic Power of Tests 

A great deal of work has been on tests of A = 0 in 
the local-level model and of a unit MA root in the related 
MA(1) model (see Nyblom and Makelainen 1983; Saikko- 
nen and Luukonen 1993; Shively 1988; Stock 1994; Tanaka 
1990). In addition to the tests discussed in Section 2, local 
power functions are computed for two point-optimal invari- 
ant (POI) tests (Saikkonen and Luukkonen 1993; Shive- 
ly 1988), for A = 7 and A = 17, denoted by P01(7) and 
P0(17). As a basis of comparison, we also computed the 
asymptotic Gaussian power envelope. 

Asymptotic powers of various 5% tests are summarized 
in Figure 1. Evidently, for small values of A all tests ef- 
fectively lie on the asymptotic Gaussian power envelope. 
For more distant alternatives, the MW and L tests lose 
power and, to a lesser degree, so do the EW and QLR. The 
asymptotic power functions of the EW and QLR tests are 
essentially indistinguishable, consistent with findings else- 
where (Andrews, Lee, and Ploberger 1996; Stock and Wat- 
son 1996) that these tests perform similarly. 

3.2 Estimators of A 

Each of the tests examined in Figure 1 has a power func- 
tion that depends only on A and has a median function that is 
monotone and continuous in A. Asymptotically median un- 
biased estimators of A based on each of these tests thus can 
be constructed as described in Section 2. In addition, results 
are reported for two versions of the Gaussian MLE that dif- 
fer in their assumptions concerning the initial value of 1o. 
The first estimator, the maximum profile (or concentrated) 
likelihood estimator (MPLE), treats Q0 as an unknown nui- 
sance parameter that is concentrated out of the likelihood. 
The second estimator, the maximum marginal likelihood 
estimator (MMLE), treats \ Io as a N(, T ) random variable 
that is independent of {Ut, vt, t =1 ,... ., T}, so that f0o is in- 
tegrated out of the likelihood. When i oc, this produces 
the "diffuse prior" likelihood function (see Shephard 1993 
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Table 1. Pile-Up Probability That A = 0 for MLEs 
and Various Median-Unbiased Estimators 

A MPLE MMLE L MW EW QLR P01(7) P01(17) 

0 .96 .66 .50 .50 .50 .50 .50 .50 
1 .91 .60 .47 .47 .47 .46 .47 .47 
2 .88 .57 .42 .42 .42 .43 .44 .43 
3 .81 .47 .34 .34 .34 .35 .35 .37 
4 .72 .40 .28 .28 .29 .29 .29 .30 
5 .65 .35 .24 .24 .24 .24 .24 .26 
6 .56 .28 .19 .19 .19 .19 .18 .20 
7 .48 .24 .15 .16 .16 .16 .14 .15 
8 .42 .19 .13 .13 .13 .13 .12 .13 
9 .37 .17 .11 .12 .12 .12 .09 .10 

10 .30 .13 .09 .09 .09 .09 .07 .07 
12 .24 .09 .06 .07 .07 .06 .05 .05 
14 .15 .06 .03 .04 .04 .04 .03 .02 
16 .13 .04 .03 .03 .03 .03 .01 .01 
18 .09 .03 .02 .03 .02 .02 .01 .01 
20 .07 .02 .01 .01 .01 .01 .01 .01 
25 .03 .01 .01 .01 .01 .01 .01 .01 
30 .01 .01 .01 .01 .01 .01 .01 .01 

NOTE: Entries for MPLE and MMLE for A = 0 are from Shepard and Harvey (1990). Entries 
for other values of A are estimated using 5,000 replications with T = 500. To facilitate the 
computations, the likelihoods were computed on a discrete grid of 240 equally spaced values of 
0 < A < 60, and the MLEs were computed by a search over this grid. 

and Shephard and Harvey 1990). The MMLE is equivalent, 
after reparameterization on a restricted parameter space, to 
the MA(1) MLE analyzed by Davis and Dunsmuir (1996), 
and their local-to-unity asymptotic results apply here. 

Pile-up probabilities that A is estimated to be exactly 0 are 
reported in Table 1. The mass of the median unbiased esti- 
mators at 0 is similar for all estimators. The pile-up prob- 
ability for the MPLE remains large as A increases, both 
in absolute terms (it is above 50% for A < 6) and rela- 
tive to the median unbiased estimators. As pointed out by 
Shephard and Harvey (1990), the pile-up probability for the 
MMLE is smaller than for MPLE. 

Cumulative distribution functions of the various estima- 
tors for A 5 are plotted in Figure 2. As expected, both 
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MLEs are biased and median biased. For A = 5, 77% of 
the mass of the distribution of the MPLE is below the true 
value and the median is 0; the MMLE performs better, with 
64% of its mass below A = 5 and a median bias of approxi- 
mately -1. The cdfs of the median unbiased estimators are 
fairly similar to each other, but markedly different than the 
MLE. One apparent cost of unbiasness is their longer right 
tail relative to the MLEs. 

We compare the estimators by computing their asymp- 
totic relative efficiencies (AREs). Because the distributions 
are nonnormal and not proportional, conventional meth- 
ods of computing AREs do not apply. Instead, we mea- 
sure the ARE of the ith estimator 4rj relative to the MMLE, 
TMMLE (denoted by AREi,MMLE), as the limit of the ratio 
of observations TMMLE/Ti needed for Pr[#i c G(r); Tj] = 
Pr[4MMLE E G(T); TMMLE], where Ti and TMMLE denote 
the number of observations used to compute $j and TMMLE. 
The AREs reported here were for the sets G(r) = {x: 
.5r < x < 1.54}, so Pr[#i c GQr); Ti] = Pr[ITi - TirI < 
.5Tjr] - pi(Tir), say, and similarly for TMMLE. Using (5), 
set A TMMLET; then AREj,MMLE = limTMMLE/Ti can 
be computed by solving Pi(A/AREj,MMLE) = PMMLE(A)- 

In general, the ARE depends on A. 
Table 2 reports these AREs for the MPLE and six me- 

dian unbiased estimators for various values of A; all AREs 
are relative to the MMLE. For example, when A = 4, the 
ARE of the QLR-based median unbiased estimator, relative 
to the MMLE, is 1.02, which indicates that in large sam- 
ples the MMLE requires 1.02 times as many observations as 
the QLR-based estimator to achieve the same probability of 
falling in the set G(r). Evidently, MMLE dominates MPLE 
for all values of A shown and is considerably more efficient 
for small to moderate values of A. In contrast, the median 
unbiased estimators perform slightly better than MMLE for 
small values of A (A < 4) and comparably for moderate 

Table 2. Asymptotic Relative Efficiencies of Median-Unbiased 
Estimators Relative to the MMLE 

A MPLE L MW EW QLR P01(7) P01(17) 

1 .13 1.00 1.00 1.00 1.00 1.07 1.07 
2 .19 1.09 1.07 1.07 .96 1.07 1.02 
3 .52 1.08 1.10 1.08 1.04 1.02 .94 
4 .62 1.06 1.06 1.06 1.02 1.06 1.00 
5 .65 .93 .93 .98 .97 1.11 1.14 
6 .71 .94 .92 .99 1.00 1.03 1.08 
7 .76 .79 .79 .85 .88 .96 1.04 
8 .77 .77 .77 .85 .85 .91 .98 
9 .75 .69 .69 .75 .77 .86 .89 

10 .80 .65 .65 .71 .74 .80 .80 
12 .67 .56 .56 .65 .67 .67 .67 
14 .57 .50 .49 .57 .57 .57 .57 
16 .50 .42 .42 .49 .50 .50 .50 
18 .44 .38 .38 .44 .44 .44 .44 
20 .40 .33 .33 .40 .40 .40 .40 
25 .32 .28 .28 .32 .32 .32 .32 
30 .27 .22 .23 .27 .27 .27 .27 

NOTE: The reported AREs are the limiting ratio of the number of observations necessary for the 
MLE to achieve the same probability of being in the region T ?t .5T as the candidate estimator, 
as a function of A = TIT, as described in the text. AREs exceeding 1 indicate greater efficiency 
than the MLE. Entries are estimates based on interpolating probabilities from the values of A 
shown in column 1. These probabilities were estimated using 5,000 replications and T = 500 
for each value of A~. 
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Table 3. Lookup Table for Constructing Median-Unbiased Estimator 
of A for Various Test Statistics When Xt = 1 and D = 1 

A L MW EW QLR P017 P0117 

0 .118 .689 .426 3.198 2.693 7.757 
1 .127 .757 .476 3.416 2.740 7.825 
2 .137 .806 .516 3.594 2.957 8.218 
3 .169 1.015 .661 4.106 3.301 8.713 
4 .205 1.234 .826 4.848 3.786 9.473 
5 .266 1.632 1.111 5.689 4.426 10.354 
6 .327 2.018 1.419 6.682 4.961 11.196 
7 .387 2.390 1.762 7.626 5.951 12.650 
8 .490 3.081 2.355 9.160 6.689 13.839 
9 .593 3.699 2.910 10.660 7.699 15.335 

10 .670 4.222 3.413 11.841 8.849 16.920 
11 .768 4.776 3.868 13.098 10.487 19.201 
12 .908 5.767 4.925 15.451 11.598 20.570 
13 1.036 6.586 5.684 17.094 13.007 22.944 
14 1.214 7.703 6.670 19.423 14.554 24.962 
15 1.360 8.683 7.690 21.682 16.153 27.135 
16 1.471 9.467 8.477 23.342 18.073 30.030 
17 1.576 10.101 9.191 24.920 19.563 32.209 
18 1.799 11.639 10.693 28.174 21.662 35.426 
19 2.016 13.039 12.024 30.736 24.160 38.465 
20 2.127 13.900 13.089 33.313 25.479 40.583 
21 2.327 15.214 14.440 36.109 27.687 44.104 
22 2.569 16.806 16.191 39.673 30.260 47.239 
23 2.785 18.330 17.332 41.955 32.645 50.881 
24 2.899 19.020 18.699 45.056 35.011 54.426 
25 3.108 20.562 20.464 48.647 37.481 58.172 
26 3.278 21.837 21.667 50.983 39.907 60.842 
27 3.652 24.350 23.851 55.514 41.146 63.561 
28 3.910 26.248 25.538 59.278 43.212 66.782 
29 4.015 27.089 26.762 61.311 47.135 71.577 
30 4.120 27.758 27.874 64.016 50.134 76.343 

NOTE: Entries are the value of the test statistic, for which the value of A given in the first column 
is the median-unbiased estimator. Care must be taken to impose the normalization D = 1 when 
using these estimates of A. Estimates of T are computed as AIT. If the test statistic takes on 
a value smaller than that in the first row, then the median-unbiased estimate is 0. Estimates for 
other values of the test statistics can be obtained by interpolation. For example, suppose that 
QLR = 5.0 is obtained empirically; using linear interpolation, the median unbiased estimator of 
A is 4 + (5.0 - 4.848)/(5.689 - 4.848). A software implementation that handles general Xt for 
the case D = Ik is available from the authors by request. All entries in the table were estimated 
using 5,000 replications and T = 500. 

values of A (5 < A < 8). However, their performance dete- 
riorates for large values of A (A > 10). 

One way to calibrate the magnitude of A is to compare 
it to the asymptotic powers given in Figure 1. When A = 4, 
the tests have rejection probabilities of approximately 25%; 
when A = 7, the rejection probabilities are approximately 
50%. For A > 14, the power exceeds 80%. As an empirical 
guideline, this suggests that the median unbiased estimators 
will be roughly as efficient as the MMLE when the results 
of stability tests are ambiguous. When there is substantial 
instability, the MMLE will be more efficient than the me- 
dian unbiased estimators. 

Table 3 is a lookup table that permits computing median 
unbiased estimates, given a value of the test statistic. The 
normalization used in Table 3 is that D = 1, and users of 
this lookup table must be sure to impose this normalization 
when using the resulting estimator of A. 

4. APPLICATION TO TREND GROSS OF U.S. 
GROSS DOMESTIC PRODUCT 

The issues of whether there has been a decline in the 
long-run growth rate of output in the United States, when 
this decline took place, how large the decline has been, and 

Table 4. Postwar U.S. GDP Growth, 1947:11-1995:IV: Tests of 1r = 0, 
Median-Unbiased Estimates, and 90% Confidence Intervals 

Test Statistic (p-value) A (90% Cl) crA, (90% Cl) 

L .21 (.25) 4.1 (0, 19.4) .13 (0, .62) 
MW 1.16 (.29) 3.4 (0, 18.8) .11 (0, .60) 
EW .68 (.32) 3.1 (0, 17.0) .10 (0, .55) 
QLR 3.31 (.48) .8 (0, 13.3) .03 (0, .41) 
P01(7) 2.90 (.45) 1.7 (0, 12.9) .05 (0, .37) 
P01(17) 7.52 (.54) 0 (0, 11.3) 0 (0, .36) 

-1 

NOTE: ; is the estimate of the standard deviation of A.3t in (11); that is, ;A 8 = T A 

whether it has recently been reversed are of considerable 
practical and policy interest. Following Harvey (1985), we 
examine these issues using the local-level model in which 
the growth rate of output is allowed to have a small random- 
walk component. This introduces the possibility of a per- 
sistent decline in mean output growth, consistent with the 
productivity slowdown. 

The data used are real quarterly values of GDP per capita 
from 1947:II-1995:IV. The data from 1959:I-1995:IV are 
the GDP chain-weighted quantity index, quarterly, sea- 
sonally adjusted (Citibase series GDPFC). The data from 
1947:1-1958:IV are real GDP in 1987 dollars, seasonally 
adjusted (Citibase series GDPQ, in releases prior to 1996) 
and proportionally spliced to the GDP chain-weighted 
quantity index in 1959:1. These series were deflated by 
the civilian population (Citibase series P16). This GDP se- 
ries was transformed to (approximate) percentage growth 
at an annual rate, GYt, by setting GYt = 400A ln(real per 
capita GDP). The model is 

Table 5. Estimates of Parameters in (1 1)-(13) for Various 
Values of A and Implied Subsample Trend Growth Rates 

Parameter estimates 

Parameter MPLE MMLE Estimates with fixed A 

UA,8 0 .04 .13 .62 
0a 3.85 (.17) 3.86 (.17) 3.85 (.17) 3.78 (.20) 
P1 .33 (.06) .34 (.07) .34 (.07) .32 (.08) 
P2 .13 (.06) .13 (.07) .13 (.06) .12 (.07) 
P3 --.01 (.07) -.01 (.08) -.01 (.07) -.01 (.08) 
p4 -.09 (.06) -.08 (.06) -.09 (.06) -.09 (.07) 
00 1.80 (.46) 2.44 (.84) 2.67 (2.25) 

Estimated average trend growths 

Date GY MPLE MMLE c, A = .13 <:Ap = .62 

1947-1995 1.80 1.80 1.80 1.80 1.80 
1947-1970 2.46 1.80 1.89 2.16 2.43 
1970-1995 1.22 1.80 1.71 1.47 1.23 
1950-1960 2.75 1.80 1.91 2.25 2.27 
1960-1970 2.39 1.80 1.84 1.98 2.39 
1970-1980 1.20 1.80 1.75 1.56 1.07 
1980-1990 1.58 1.80 1.70 1.45 1.50 
1990-1995 .62 1.80 1.68 1.36 1.04 

NOTE: Estimates were computed by Gaussian maximum likelihood, with numerical standard 
errors computed from the inverse of the outer product estimate of the Hessian. Unrestricted 
MLEs (standard errors in parentheses) are reported in the first two columns. (Because of the 
nonnormal distribution of the MLE of A, the standard error for aB is not reported.) The last 
two sets of columns report estimates by restricted MLE, with A fised to the indicated values. The 
column labeled GY in the second part of the table is the sample mean of GY; the other entries 
are average values Of 'pti T over the indicated subsample for the indicated model, where t T 
are the estimates of /3, obtained from the Kalman smoother. 
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Figure 3. Growth Rate in U.S. Real per Capita GDP and Estimated Trends Based On the Four Models in Table 5. , GY , MPLE;- 
MMLE;---, u6,8 = .13; -- -, u6, = .62. 

GYt = t + Ut, 0(11) 

A =t = (A/T)rt, (12) 

and 

a(L)ut = Et, (13) 

where the order p = 4 is used for a(L). (The results are 
insensitive to choice of the AR order or to substituting 
an ARMA(2, 3) parameterization for a(L), the latter being 
consistent with Harvey's [1985] original unobserved com- 
ponents formulation.) Estimates of A are constructed using 
the normalization D = 1 (i.e., ao2 - 0Q2/a(1)2) as discussed 
in Section 2. 

It is worth digressing to discuss the implications of this 
model for orders of integration and unit roots. If there is a 
random-walk component in GYt, then the logarithm of real 
per capita GDP is I(2). This hypothesis is soundly rejected 
by unit root tests applied to these data. However, when the 
variance of A/t is small, the model implies that AGYt has 
a nearly unit MA root. Because it is well known that tests 
for a unit AR root have a high false-rejection rate under the 
null of a unit AR root when there is a nearly unit MA root 
(Pantula 1991; Schwert 1989), these rejections are consis- 
tent with the postulated model. 

Test statistics, median unbiased estimates, and equal- 
tailed confidence intervals for A and the standard deviation 
of AO are presented in Table 4. None of the tests rejects at 
the 10% level. Of course, this could mean that the tests have 
insufficient power to detect a small but nonzero value of A- 

and indeed the median-unbiased estimates are, with only 
one exception, nonzero. The median unbiased estimates of 
A are all small, ranging from 0 (POI(17)) to 4.1 (L). These 
correspond to point estimates of uA,, the standard deviation 
of A/3t, ranging from 0% to .13%. This range of estimates is 
consistent with intuition. For example, a value of u(, = .1 
corresponds to a standard deviation of /31995:IV-31947:II of 
1.4 percentage points. 

Estimates of the model parameters are presented in the 
top part of Table 5, for various values of A: the MPLE and 
the MMLE, the median-unbiased estimate based on the L 
(which is the largest of the point estimates in Table 4), and 
the upper end of the 90% confidence interval for A based on 
L (the largest such value for the 90% confidence intervals). 
Consistent with the large pile-up probability discussed in 
Section 3, AMPLE = 0. The MMLE produces a small but 
nonzero estimate of uA, equal to .04%, which corresponds 
to a point estimate of A of 1.4. Estimates of parameters 
of the ut process change little for this range of value of 
uAo, although estimates of the initial value of the trend 
growth rate increase (as do their standard errors) as uA, 
increases. These results are broadly consistent with other re- 
sults reported in the literature. For example, Harvey (1985) 
reported a MMLE point estimate of uA, = 0 for annual 
U.S. real GNP data from 1909-1970. Harvey and Jaeger 
(1993) reported a larger point estimate (&Afl = .36) con- 
structed from a frequency domain estimator and quarterly 
real GNP data from 1954-1989. 

Estimates of the trend growth rates /tIT based on 
these models over various time spans (computed using the 

n0? 

(U9 \\/- 
= 

-; 

- 

<0 

o 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 
Date 

Figure 4. Estimated trends of US. Real GDP Growth Based on the Four Models in Table 5. MPLE; - , MMLE; -- = .1 3; - -, 
u6, = .62. 
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Kalman smoother) are given in the bottom part of Table 5, 
and these series are plotted in Figures 3 and 4. Figure 3 
includes the raw data (GYt); this series is omitted from 
Figure 4, in which the scale is enlarged. No large mean 
shift is evident in the raw data, consistent with the small 
estimates of uA, found using the various methods. The es- 
timate of trend per capita GDP growth based on the MPLE 
is, of course, a horizontal line showing the mean of the raw 
data. In contrast, the other estimates reflect, to a varying 
degree, a slowdown in mean GDP growth over this period. 
The point estimate based on L implies a slowdown in the 
annual trend growth rate of approximately .9% per annum 
from the 1950s to the 1990s. Finally, none of the meth- 
ods detects any substantial increase in trend GDP growth 
over the 1990s relative to the 1980s; indeed, all of the point 
estimates suggest a modest decrease. 

5. DISCUSSION AND CONCLUSIONS 

The median unbiased estimators developed here provide 
empirical researchers with a device to circumvent the un- 
desirable pile-up problem and bias of the MLE in the TVP 
model when coefficient variation is small. The LT- and 
FT-based test statistics are easily computed using statistics 
from the GLS regression of yt on Xt. Given these statistics, 
the median unbiased estimator can be obtained by interpo- 
lating the entries in a lookup table. Such a lookup table is 
provided here for the univariate local levels model (Table 
3), and lookup tables in higher dimensions for the normal- 
ization D = Ik are available from the authors on request. 

In the special case of the univariate local-level model, we 
examined six asymptotically median unbiased estimators 
and two MLEs and found considerable differences among 
them. The MLEs were badly biased, particularly the MPLE. 
When the variance of the coefficients is small, the median 
unbiased estimators based on the QLR and P01(17) test 
statistics had good AREs. Because no asymptotic theory for 
the POI tests in the TVP model appears to be available out- 
side the case Xt = 1, and because the POI tests are some- 
what cumbersome to compute even in the local-level model, 
these results provide support for using the QLR-based me- 
dian unbiased estimators in the general TVP model when 
the coefficient instability is small. 

APPENDIX: PROOF OF THEOREM 1 

Before proving Theorem 1, we state and prove two prelim- 
inary lemmas. Let UttI - i.t_p)', A = (-ai, 
-a2,..., -ap)', and A (Ut1U1<1(U' 1fi) using the usual 
matrix notation. 

Lemma A]. Under assumptions A-C, T1/2 (A - A) = Op(1). 

Proof. The result follows by showing T1 /2 (A-A) ?P 0, where 
A = (Ut1 U_i)-1(Ut1 u), where Ut-I = (ut-i, ... . ut-PY . 
After straightforward algebra, it is seen that this follows if 

p 
-LIT P 0 and /12T -P* 0, where tIlT and tt2T are matrices with 
(i,j) elements, it,i - T-12 Zt=1 U ( - ) and 
/12t,ij =T-112 ZtI1 (f3-i-' -it_( _-3). These lim- 
its follow using the Markov and Chebyschev inequalities and ap- 
plying assumptions A-C, assuming that T112 (p3- i3) => Op (1). 

An Op (1) limiting representation for T112 ( _- 30) can be ob- 
tained using the methods in the proof of Theorem 1, but showing 
the T112 rate (which is all that is required here) can be verified 
directly using Chebyschevs' inequality. 

Lemma A2. Let Zt be a mean 0 stationary vector stochastic 
process with fourth-order cumulants that satisfy E? rl ,r2 ,r3= oo0 

IC(rl, r2, r3)1 < oo. Let wt be either a scalar nonrandom se- 
quence or a random variable that is independent of Zt for 
which supi supt>1 EIzit I4 < oo and supt>I EIwt 14 < oo. Then 
T-1 EZT71 ztwt p 0 uniformly in s. 

Proof First let Zt be a scalar. For 3 > 0, 

[Ts9] / r 4 

Pr sup T-1 ZtWt > 6 < 6-4E max T-1 ztwt 

T r 4\ 

< 6-4 E T-1 Eztwt ( 
r=l t=l 

r 4 

< -4T+-3 max E tttj 
l<r<T = J 

T 

< 6-4T-3 supEIwt {T ZE(ztr1rr) 
tI,t2 ,t3 ,t4= j 

T 

Proof~~~~~~~~~~~~t of: Thoe 1 

An implication of assumptions A, B, and C, or alternatively of~~~~~r o 

< a -4Tp-3isup EAwt 14 is tha t , t3t1 

t~~~~~~~~U 

tI ,t2,t3,t=-I 

T~~~~ 2) 

3T2 
3 
IC(tY) I 1 

_ =00 

We frsthe sproElwthe t assumptions,A, Br , andvC. 

by Zit~~~~~ 

Proof of Paertm a 

Lne imp l (atL)d assumptions, A, final and i vrn, srovith 

asuniomptionsistency D,his etensthatottb epaigz 

t=l t= 

Brownianimotion o ss. pin ,B n ratraieyo 
Wefrtpoetetermudrassumptions A,B and DC. ta 

Proof ~~~ ofPr 

wheet W,= (L and W2 =Ej= areineenet_ k-imni_onal sthandr 
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yt =/36Xt + (Z=l Vr)'Xt + ?t + ?tt Accordingly, 

CT (S) = 1T (S) + A\6T (S) + 3T (S) 

- fKT(S)1{1T(1) + /A2T(1) + 63T(1)}, (A.2) 

where 
[Ts] 

1T (S) = T-1 /2 ZitfLt, 
t=l 

[Ts] t 

42(S= T / tt Vr 

t=l r=l 

[Ts] 

3T (S) = T-1 /2 : xt(t 
t=l 

and 
- [Ts] - T _- 

fKT (S) = T-1 E Z T 
I ' ic 

Limits are obtained for these terms in turn. All limits are uniform 
in s E [0,1]. 

1. Write (1T(S) AlT(S) + A2T(s) + ( T(s), where 
AlT(s) - j= o &i >7/ T2 (a, - ai)(T1 >s? xt-j)t-i)) 

A2T(S) = T1/2 Et= 1(it - Xt and -lT(1) = T1/2 ZI11 
Xt?t. Assumptions A, B, and C imply that T-1 E>Ts] Xt_jut_i 
satisfies the conditions of Lemma A.2 with zt = Xt-jut-i 
and wt - 1; so, because p is fixed, AlT P 0. By an anal- 
ogous argument, A2T P 0. Using the limit in (A.1), we have 
(IT(S) =X U,rl /2 W (S). 

2. Write 42T(S) A3T(S) + A4T(S) + (2T (S), where 
*~~~~-/ E[Ts] 1XXi-/ 

A3T(S) T >tk (XtXt - r) Et=1 V, A4T(S) - T 

Zt= (XtXt - XtXtk) Et r, and 42T(s) = Ts 3/2 >7"1 
Er= IZJ,r To show A3T P 0 and A4T P 0, consider for nota- 
tional simplicity the case k = 1. (The argument for k > 1 is sim- 
ilar.) Note that T2 maxt1...t4 E j Zr-= vr1 r4Z = lVr4j r 

supSI...s4 EjW2(si) ... W2(s4)jfQ2 < oo. Because Xt is station- 

ary with absolutely summable eighth-order cumulants, Xt2-r 
is stationary with absolutely summable fourth-order cumulants. 
Thus A3T satisfies the conditions of Lemma A.2 with Zt 

t - r and wt = T-12 r 1 Vr, SO A3T P 0. Turning to 
A4T, A4T =~0 = E 70 (&i +ai)T / (j -aj)A4T,ij(S), where 

A4T,ij(S) [T-3/2 E[Ts] Xt_j Xt_jT-1/2 =3 I vr]. An argu- 
ment analogous to that used for A3T shows that A4T,ij P 0 and, 
because p is finite, A4T -P 0. The limit of $ijT follows from (A.1). 
Thus 42T (s) => rPl /2 f0o W2 (r) dr. 

3. Write 43T(S) = -AZEP=0 i=o j ( s3T,ilJ(S), where 

63T,i1j(s) (T-3/2 E[Ts] Xt_iX/_jVt_i) As before, consider 
the case k 1. Now, T1/2 3T,i1j(s) satisfies Lemma A.2 with 
Zt Xt0X- 3_jvt-i and wt = 1; thus 63T - 0. 

4. Let AlT(s) = T1 X71] (XtXt - XtXt/) and A,T(s) = 

T-1 >3Ts](X)tX)t - F), and let A7T Al^T ? AlT = 

T-1 >3TS7] (X0X - F). The argument that AlT P~ 0 follows the 
argument that A4T P~ 0 with T-~12 >3r=l Vr replaced by 1, and 

the argument that A6T P 0 follows the argument that A3T P 0 
with the same replacement. Thus A7T -A 0, SO K;T(S) - Slk. 

Similar calculations imply that P 2 soV P rPo. By collect- 
ing terms and using (A.2), it follows that V"2- T(S) #> hx(s) - 
shA (1), where h, (s) = Wi (s) + ((r 1/2 n1 /2/u) f' W2 (r) dr. 

Proof of Part b 
This follows from the continuous mapping theorem. 

Proof of Part c 
This follows by straightforward but tedious manipulations using 

the previous limiting results. 
Next, turn to the proof under assumptions A and D. Under as- 

sumption D, a(L) = &(L) = 1, so Xt = Xt = Xt and et = Yt - 
,3'Xt (where ,3 remains the OLS estimator). The proof under these 
conditions follows the foregoing proof but is simpler. In particu- 
lar, (A.2) now holds with (lT(S) = T-1 /2 EtT=s Xtet,)42T(S) 

T 3/2 TStj XtX't r 1 /r,3T(S) 0, and IKT(S) - 

[T-1 E[T7s] XtX'][T-1 ET1 XtX']-1. The limit of 41T fol- 

lows from (A.1). Write 42T(S) as 42T(S) = T-E '11(XtXt - 

r)(T-1/2 Zt=1 vr) + rT-3/2 Z:1T'sZ Et=l r. The first term in 
this expression P 0 as a consequence of Lemma A.2 and the 
independence of {vt,t 1,.. ., T} and {Xt,t = 1,...,T}, as 
discussed earlier for the term A3T. The limit of the second term 
follows from (A. 1) and the continuous mapping theorem. The ar- 
gument given earlier for $KT(s) P slk applies under these as- 
sumptions, and V -A o- 'r. This proves part (a) under assumptions 
A and D; the proof of parts (b) and (c) follows accordingly. 

[Received August 1996. Revised June 1997.] 
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