
Mediated interaction between polarons in a one-dimensional Bose gas
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We study a weakly-interacting one-dimensional Bose gas with two impurities coupled locally to the boson
density. We derive analytical results for the induced interaction between the impurities at arbitrary coupling and
separation r. At r . ξ, where ξ denotes the healing length of the Bose gas, the interaction is well described
by the mean-field contribution. Its form changes as the coupling is increased, approaching a linear function
of r at short distances in the regime of strong coupling. The mean-field contribution decays exponentially at
arbitrary coupling for r � ξ. At such long distances, however, the effect of quantum fluctuations becomes
important, giving rise to a long-ranged quantum contribution to the induced interaction. At longest distances it
behaves as 1/r3, while at strong coupling we find an intermediate distance regime with a slower decay, 1/r.
The quantum contribution in the crossover regime is also calculated. The induced interaction between impurities
(i.e., polarons) is attractive and leads to the formation of their bound state, known as bipolaron. We discuss its
binding energy.

The concept of mediated interaction plays a pivotal role
in physics. Within the standard model, the fundamental in-
teractions between matter particles are mediated by bosonic
fields [1]. In quantum electrodynamics, the Casimir ef-
fect denotes the interaction between metallic plates medi-
ated by the virtual excitations in the vacuum [2]. In con-
densed matter, the formation of Cooper pairs in conven-
tional Bardeen-Cooper-Schrieffer superconductors occurs due
to the attraction between electrons mediated by the quanta
of lattice vibrations [3]. Another example is the Rud-
erman–Kittel–Kasuya–Yosida exchange interaction between
nuclear magnetic moments or localized electrons mediated
by the conduction electrons in metals [4]. Recently, related
phenomena have been experimentally studied with ultra-cold
gases, which give rise to an attractive interaction between for-
eign particles – impurities [5–7].

A mobile impurity interacting with a bath of quantum par-
ticles transforms into a polaronic quasiparticle with distinct
features from the original particle [8]. First obtained for elec-
trons in ionic crystals [9], the latter scenario also applies for
impurities in ultra-cold Bose gases. Many theoretical [10–22]
and experimental [23–28] papers considered the latter system.

Studies of impurities in one-dimensional Bose gases are of
particular interest since reduced dimensionality enhances the
role of quantum fluctuations, leading to phenomena where the
mean-field description is insufficient [29]. In Bose gas en-
vironments various properties of a single polaron have been
studied [30–40]. In cases when two (or more) impurities are
present in the system, the induced interaction between them
due to the interaction with particles of the medium is one of
the most basic problems [41–45]. For identical impurities that
are locally and weakly coupled to the Bose gas, an exponen-
tially small attractive interaction proportional to e−2r/ξ was
found in Ref. [41]. Here r denotes the impurity separation,
while ξ is the healing length of the Bose gas. However, the
effect of quantum fluctuations gives rise to another contribu-
tion to the induced interaction of a long-range nature [42]. It
behaves as ξ3/r3 at r � ξ and therefore becomes dominant
at long distances [42, 43].
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FIG. 1. Schematic diagram of different regimes of the induced
interaction between two polarons in a weakly-interacting one-
dimensional Bose gas. At short separations r, the mean-field interac-
tionU(r) is dominant, while for r longer than a few ξ, the long-range
interactionUQ(r) that originates from quantum fluctuations prevails.
The two qualitatively different contributions to the induced interac-
tion are separated by the dotted line, which depends weakly on G̃
and γ. At γ = 0.1, its position is near 5.4r/ξ at G̃� 1 and 3.6r/ξ

at G̃� 1.

In this paper we take advantage of weak repulsion between
bosons to calculate analytically the induced interaction be-
tween impurities at arbitrary coupling. This is possible due
to the existence of an analytical solution of the correspond-
ing Gross-Pitaevskii equation, enabling us to find exactly the
mean-field contribution to the induced interaction, which is
dominant at r . ξ. In the complementary regime r � ξ,
we apply the scattering approach to find explicit results for
the quantum contribution to the induced interaction. It is
long-ranged and shows two characteristic regimes, see Fig. 1.
Our theory has direct implication for the many-body physics
with polarons, which will exhibit clusterization into multi-
polaronic bound states due to the induced attractive interac-
tion.

We study a one-dimensional system of weakly-interacting
bosons with repulsive short-range interaction of the strength
g. Consider two impurities at separation r, locally coupled
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to the Bose gas density, which is modeled by the potential
V (x) = G [δ(x+ r/2) + δ(x− r/2)]. At the mean-field
level, the system can be described by the Gross-Pitaevskii
equation [29]

i~
∂ψ0(x, t)

∂t
=

[
− ~2

2m

∂2

∂x2
+ g|ψ0(x, t)|2 + V (x)

]
ψ0(x, t).

(1)

Here m denotes the mass of bosons. For convenience, we
study the system with periodic boundary conditions.

Let us first consider heavy, static impurities and at a later
stage account for their kinetic energy using perturbation the-
ory. In this case we can assume the solution of Eq. (1) in the
form ψ0(x, t) = ψ0(x)e−iµt/~, where µ denotes the chemical
potential. Equation (1) then reduces to the nonlinear eigen-
value problem for ψ0(x), which has many solutions. Among
them, we seek for the one with the smallest energy. The cor-
responding eigenfunction ψ0(x) is nodeless at finite coupling
G. However, in the limit G → +∞, the boson density must
be completely depleted at the impurity positions, leading to
two nodes in ψ0(x). The ground-state energy of the system in
the mean-field approximation is given by

E0(r) = µnL− g

2

∫ L/2

−L/2
dx|ψ0(x)|4. (2)

The chemical potential µ entering E0(r) in Eq. (2) should be
eventually expressed in terms of the boson density n from the
normalization condition

n =
1

L

∫ L/2

−L/2
dx|ψ0(x)|2. (3)

By L is denoted the system size. The mean-field contribution
to the induced interaction between the impurities mediated by
the Bose gas is defined by U(r) = E0(r) − E0(r → ∞). It
vanishes at r →∞.

At G = 0, corresponding to the absence of impurities, we
find ψ0(x) =

√
µ/g. The condition (3) then leads to the

chemical potential of the weakly-interacting Bose gas, µ0 =
gn. At G > 0, the local density near the impurity positions
deviates from the constant value in spatial regions on the order
of the healing length of the Bose gas, ξ = ~/√mµ0. Up to
the phase factor, for the family of solutions of Eq. (1) we find
[43, 46]

ψ0(x) =

√
µ

g
×


√

2a
1+a cd

(√
2

1+a
x
ξ ; a
)
, |x| < r

2 ,

tanh
(
|x|
ξ −

r
2ξ + b

)
, |x| > r

2 .
(4)

Here cd(x; a) is the Jacobi elliptic function. We consider the
case of identical impurities and therefore the solution (4) is an
even function, ψ0(x) = ψ0(−x). The parameters 0 ≤ a ≤ 1
and b should be obtained from the continuity of ψ0(x) at the
impurity position x = r/2 and the jump in the derivative,

ψ′0(r/2 + 0)−ψ′0(r/2− 0) = 2mGψ0(r/2)/~2. This yields

tanh(b) =

√
2a

1 + a
cd (r̃; a) , (5a)

G̃ =
1− a√

8a(1 + a)

1

cd (r̃; a)

[
1 +
√
a sn(r̃; a)

dn(r̃; a)

]2
, (5b)

where r̃ = r/
√

2(1 + a)ξ and G̃ = G/ξµ0 is the dimension-
less impurity strength. By sn(x; a) and dn(x; a) are denoted
the Jacobi elliptic functions. The induced mean-field contri-
bution to the interaction for the wavefunction (4) then takes
the form

U(r) = 2ε
√
γ

{
4

3
− 5− 3a2 − 2a

3
√

2(1 + a)3/2
r̃ +

4
√

2 E (r̃; a)

3
√

1 + a

−
√

2a cd(r̃; a)

3(1 + a)3/2

[
1 +
√
a sn(r̃; a)

dn(r̃; a)

]2
[3 + 5a

− 4
√
a(1 + a) sn(r̃; a)]

}
− 2EB(G̃), (6)

where we employed Eqs. (5). In Eq. (6) we have introduced
ε = ~2n2/2m and γ = mg/~2n � 1 is the dimensionless
parameter describing the interaction strength between the par-
ticles of the Bose gas. By E(x; a) is denoted the Jacobi elliptic
function. The parameter a depends on the impurity strength
G̃ and separation r through the condition (5b). In Eq. (6),
EB(G̃) denotes the difference of the ground-state energy of
the system with and without an impurity, which is given by

EB(G̃) = ε
√
γ

(
8

3
− 2η − 2η3

3

)
, η =

2

G̃+
√

4 + G̃2
.

(7)

This result also has another interpretation. A single impu-
rity very strongly coupled to the Bose gas leads to a complete
depletion of the boson density at its position. The resulting
energy increase of the system, which is given by Eq. (7) taken
at G̃→ +∞, coincides with the boundary energy of the Bose
gas [47, 48]. We emphasize that Eqs. (6) and (7) are exact
with respect to the impurity strength G̃, but they are calcu-
lated at the lowest order in γ. In Fig. 2 is shown the induced
mean-field interaction (6).

Explicit analytical result for U(r) can be obtained once the
parameter a is eliminated from Eq. (6) using the condition
(5b). In the regime r � ξ, calculating a to the linear order in
r/ξ, we obtain

U(r) = EB(2G̃)− 2EB(G̃) +
4ε
√
γ G̃2(

G̃+
√

1 + G̃2
)2 rξ , (8)

where EB is defined by Eq. (7). The interaction (8) is exact
with respect to the impurity strength G̃. Neglected higher-
order terms in Eq. (8) are small for r � ξ at any G̃. However,
they are small even for r = ξ at G̃ � 1, tending to zero at
least as 1/G̃2. In the latter regime we can obtain U(r) dif-
ferently. Performing the expansion of Eq. (5b) at a � 1,
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FIG. 2. Plot of the mean-field interaction U(r) given by Eq. (6) as
a function of the dimensionless distance between impurities r/ξ and
the dimensionless coupling G̃ = G

√
γ/g. The interaction (6) is

bounded, −8ε√γ/3 ≤ U(r) ≤ 0; colors on the plot correspond to
its value.

we obtain G̃ ' 1/
√

8a cos(r/
√

2ξ). Requiring this expres-
sion to be positive, we obtain the condition on the distances,
r < πξ/

√
2, while the corresponding interaction at G̃→ +∞

is given by the exact expression U(r) = −ε√γ (8/3− r/ξ).
This follows by setting a = 0 in Eq. (6) or, equivalently, from
the result (8) at G̃ → +∞. Therefore, the interaction (6) is
accurately described by the linear function (8) at impurity sep-
arations that can be even longer than ξ in the regime of strong
coupling, G̃� 1.

Linear form of the interaction (8) at G̃ � 1 can be under-
stood using a simplified approach where we approximate the
wavefunction (4) as ψ0(x) =

√
µ/g at |x| > r/2 and ψ0 = 0

otherwise. This can be justified by noting that |ψ0(x)|2 is
a convex, even function for |x| < r/2 and thus it satisfies
|ψ0(x)|2 ≤ |ψ0(0)2| ∼ na ∼ n/G̃2 � n at r < πξ/

√
2.

From Eqs. (2) and (3) we then easily recover the term ε
√
γ r/ξ

in the interaction, but not the constant term. This must be the
case as the latter effect cannot be described by the simplified
form for ψ0(x), since the density depletion of the characteris-
tic size ξ at |x| > r/2, near the impurities, is neglected.

At r � ξ, the interaction (6) can be explicitly evaluated
by substituting r/ξ =

√
2(1 + a)[K(a) − c ] in Eqs. (5b)

and (6). This parametrization is motivated by the identity
cd(K(a); a) = 0, where K(a) denotes the complete ellip-
tic integral of the first kind. After performing the expansion
around a = 1, we find G̃ = 2/ sinh(2c), and

U(r) = −
32ε
√
γ G̃2(

2 +
√

4 + G̃2
)2 e− 2r

ξ . (9)

The interaction (9) is valid at arbitrary G̃. In the special
case of weak coupling, G̃� 1, it reduces to the known result
[41, 43, 49], U(r) = −2ε

√
γ G̃2e−

2r
ξ . Unlike Eq. (9), the

latter result applies at any r. In Fig. 1 are illustrated different

regimes of the induced interaction. We notice that the result
(9) can be understood classically. Each of the impurities pro-
duces the disturbance in the boson density of the characteristic
size ξ. At separations of several ξ, the two disturbances prac-
tically do not overlap, resulting in an exponentially decaying
mean-field interaction.

One should be aware, however, that at distances longer than
a few ξ the quantum contribution UQ(r) to the induced inter-
action becomes important. It is given by [44, 50, 51]

UQ(r) =
~v
2π

Im

∫ ∞
0

dk ln
[
1− r(k)2e2ikr

]
, (10)

where v = ~n√γ/m denotes the sound velocity. The cen-
tral quantity in Eq. (10) is r(k), which is the reflection am-
plitude of the Bogoliubov quasiparticle with wavevector k on
the potential of the single impurity placed at the origin in the
Bose gas. The corresponding scattering problem is obtained
by studying the quantum correction, ψ̂1(x, t), to the mean-
field single-particle bosonic operator, ψ0(x, t). The former
can be understood as a superposition of Bogoliubov quasipar-
ticles. It satisfies the linear equation [29]

i~
∂ψ̂1(x, t)

∂t
=

[
− ~2

2m

∂2

∂x2
+ 2g|ψ0(x)|2 + V (x)

]
ψ̂1(x, t)

+ gψ0(x)2ψ̂†1(x, t). (11)

Here V (x) = Gδ(x) is the impurity potential, and ψ0(x) =√
n tanh (|x|/ξ + arctanh(η)), which is obtained from the

more general solution (4) replacing G→ G/2 and r → 0.
The reflection amplitude for the scattering problem (11) can

be calculated using the standard methods [52]. At small mo-
menta and arbitrary G̃ we obtained

r(k) = − i
2

(
2 + G̃2√
4 + G̃2

+ G̃− 1

)
ξk. (12)

The neglected subleading terms in Eq. (12) are small at ξk �
1 in the regime of weak coupling, G̃ � 1. However, they
can be omitted under the more stringent condition ξk � 1/G̃

in the regime of strong coupling, G̃ � 1. This signals the
existence of another regime at intermediate momenta, 1/G̃�
ξk � 1, in the latter case. Therefore, we should study the case
ξk ∼ 1/G̃� 1, where we found

r(k) =
ξk

ξk + i/G̃
. (13)

Equation (13) describes the crossover between the regimes
1/G̃ � ξk with r(k) = 1, and ξk � 1/G̃ with r(k) =

−iG̃ξk, which is a special case of the more general result (12).
We are now prepared to evaluate the quantum contribution

to the induced interaction between impurities. Substitution of
the reflection amplitude (12) in Eq. (10) leads to

UQ(r) = − 1

16π
εγ

(
2 + G̃2√
4 + G̃2

+ G̃− 1

)2
ξ3

r3
. (14)
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The long-range interaction (14) applies at distances r �
ξmax(1, G̃). In the regime of weak coupling, G̃ � 1, it is in
agreement with the corresponding result of Refs. [42, 43, 49].
Our result (14), however, applies at arbitrary coupling G̃. It
gives explicit dependence of the induced interaction on G̃.

The interaction (14) becomes inaccurate as the distance de-
creases toward the crossover regime, r ∼ ξG̃ � ξ. There we
should use the reflection amplitude (13), yielding

UQ(r) =
εγ

2π

ξ

r

∫ ∞
0

dz ln

(
1− z2e−z

(z + 2r/ξG̃ )2

)
. (15)

Equation (15) applies at G̃ � 1 for arbitrary r. In the regime
of intermediate distances, ξ � r � ξG̃, from Eq. (15) we
find the induced long-range interaction,

UQ(r) = − π

12
εγ
ξ

r
. (16)

The interaction (16) shows much slower decay than the re-
sult (14), valid in the regime of longest distances. At r � ξG̃,
Eq. (15) reduces to Eq. (14) evaluated at G̃ � 1. We notice
that the interaction (16) coincides with a general result for the
Casimir interaction of a massless scalar one-dimensional field
with two strong δ-function scatterers [53]. In Fig. 1 are shown
our results for the induced interaction at arbitrary distances
and coupling between the impurities and the Bose gas.

The induced mean-field interaction (6) was evaluated for
heavy, static impurities. This is not a fundamental limita-
tion of our study since the dynamics of impurities can be ac-
counted for by studying their kinetic energy in perturbation
theory. The latter is controlled by small parameter m/M ,
where M denotes the impurity mass. The correction to the
ground-state energy (2) can be straightforwardly expressed in
terms of ψ0 of Eq. (4) as

∆E0(r) =
~2

M

∫ L/2

−L/2
dxψ0

(
−1

4

∂2ψ0

∂x2
− ∂2ψ0

∂r2

)
. (17)

Here we assumed that the center of mass of the system is mo-
tionless. This is possible since the total momentum commutes
with the Hamiltonian and thus it is a conserved quantity, taken
to be zero. Equation (17) gives a small positive correction to
the interaction (6), proportional to (m/M)ε

√
γ.

The induced attraction between impurities mediated by the
surrounding Bose gas will favor the formation of their bound
state, called bipolaron [49, 54–58]. Two heavy impurities at
the same position increase the system energy by EB(2G̃),
while the increase is 2EB(G̃) when they are far apart. Here
EB is defined by Eq. (7). The difference 2EB(G̃)− EB(2G̃)
is positive and defines the bipolaron binding energy. A finite
impurity mass M gives rise to two effects. Firstly, there is a
correction to the induced interaction, as discussed in the previ-
ous paragraph. It increases the binding energy on the order of
(m/M)ε

√
γ. Secondly, at finite M the bound state should be

described quantum-mechanically. It acquires a finite spread
around r = 0, leading to a positive zero-point motion that

decreases the binding energy. At G̃ � 1, the corresponding
energy change is proportional to (m

√
γ/M)1/3ε

√
γ. This fol-

lows from the study of the Schrödinger equation in the linear
potential determined by Eq. (8). Here we must note that in or-
der to find the lowest energy state for two massive polarons, it
is sufficient to consider the interaction potential at small sep-
arations, which is linear. The wavefunction is localized in the
region where the potential is linear, rapidly vanishing in the
forbidden region. The opposite signs and different parameters
in the two corrections to the binding energy leave the possi-
bility to fine tune it varying γ, which describes the interaction
strength of the Bose gas. The detailed study of properties of
bipolarons is postponed for a future work.

In conclusion, we have analytically calculated the induced
interaction between polarons in a weakly-interacting Bose
gas. We have studied the general case of arbitrary coupling
of impurities to the Bose gas G̃ and separation r, and ob-
tained the results (8), (9), (14), and (16) that apply in four
characteristic regions, see Fig. 1. The induced interaction is
attractive and will lead to the formation of a bound state of
polarons. An interesting extension of this paper would be a
study of a macroscopic number of polarons in the Bose gas
and their clusterization into multi-polaron states. We notice
that N heavy Bose polarons in the Bose gas will form a N -
polaron bound state since EB(NG̃) < NEB(G̃). However,
a more realistic case should account for the polaron mass and
mutual repulsion between them, which will favor the creation
of smaller clusters.

We acknowledge B. Reichert for the participation in the ini-
tial stage of this project.

Note added. During the preparation of this paper, a related
preprint that contains a study of the mean-field contribution
to the induced interaction appeared [59]. It reports an expres-
sion for the interaction that differs from our Eq. (6) by the
r-independent term 2EB(G̃).
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