
Mediating the Tension between Plot and Interaction

Brian Magerko and John E. Laird

University of Michigan
1101 Beal Ave.

Ann Arbor, MI 48109-2110
magerko, laird@umich.edu

Abstract
When building a story-intensive game, there is always the
question of how much freedom to give the player. Give the
player too little, and he may feel constrained and
disconnected from the character he is controlling. Give him
too much freedom, and the progression of the story may lag
or stop altogether. This paper focuses on our attempt to find
a balance between offering the player a high degree of
interaction and providing a story-based experience where
the player is a key character. Our approach is embedded in
our Interactive Drama Architecture (IDA), which includes
an omniscient story director agent who manages the player’s
narrative experience. The director agent uses a declarative
description of the plot to track the player’s progress, detect
deviations from the plot, and make directions to supporting
characters in the game. Our director is used within a game
we have developed, called Haunt 2, which is an extension to
the Unreal Tournament engine.

Introduction

The key problem with presenting a story-intensive game
experience is that it is necessary to address the tension
between telling a story and supporting a high degree of
interaction for the player. The player is a variable character
in the story; the actions he executes may help move the
story forward, cause it to stall momentarily, or keep the
story from progressing at all. A typical approach in games
is to constrain the possible actions that the player has to
choose from so that only actions consistent with the plot
are available. The fewer constraints placed on the player’s
actions, the greater possible interactions the player can
have with a rich environment. It follows that this increase
in interaction leads us back to behaviors that can harm the
progression of the plot.

Our approach to mediating this tension between plot and
player behavior is the IDA (Interactive Drama
Architecture) system, which is centered on the use of an
omniscient story director agent that is responsible for
maintaining the plot’s progression (Magerko et al. 2004).
Much like a human “dungeon master” does in some table
top role-playing games, the director agent works with a pre-
written story structure and attempts to guide the player
through that story. The director follows along with the plot
as it moves along, giving direction to characters when

necessary to perform particular plot elements. The director
agent also hypothesizes about the player’s future behavior,
trying to subtly steer the player away from those actions
that may endanger the progression of the plot. Our game
environment, called Haunt 2, consists of a fully structured
story, synthetic characters that take part in the story, a 3-D
world constructed with the Unreal Tournament engine
(Magerko et al. 2004), and the story director agent, which
will be the focus of this paper.

IDA uses player prediction to determine if the player’s
actions will endanger the plot. It is this capability that
distinguishes it most from other interactive drama systems,
such as the MIMESIS architecture and the Crosstalk
framework (Young et al. 2004; Klesen et al. 2003).
MIMESIS uses a fully structured plot, represented as a
partial-order plan, and either incorporates unplanned player
actions into the story or avoids them altogether if
incorporating them is infeasible. The CrossTalk framework
incorporates plan-based automatic dialogue generation with
an author-defined narrative graph. Other approaches to
interactive drama have taken a more modular approach to
plot construction (Mateas and Stern, 2002; Weyhrauch
1997; Sgorous 1999). They rely on heuristically choosing
plot elements as the player moves through the space of
possible stories. Some systems have also included a player
history as a model of user experience to help heuristically
choose what plot elements should occur next (Szilas et al.
2003; Weyhrauch 1997). What these systems do not
address is the preemptive alteration of the story state in
subtle ways to avoid problematic player actions in the
future (Beal et al. 2002). While some of the approaches
above possibly provide a greater number of possible story
orderings, IDA focuses on providing different possible plot
content within the same specified plot structure from one
gaming experience to the other. How we accomplish this is
addressed in our discussion of the director agent, which is
the focus of this paper.

Knowledge Maintenance

In order to make informed decisions about the state of the
story, the director must maintain a comprehensive model of
the world state. Figure 1 illustrates how this world model
fits into the overall execution of the director. The director,

Figure 1. The execution cycle of the director agent.

using an omniscient view of the world, records any
observable facts about the world’s objects and entities (i.e.
the synthetic characters plus the player). Along with
gathering facts about the physical properties of the world,
the director forms a hypothesis on each entity’s knowledge
base, trying to capture what knowledge each entity gathers
as the story progresses. The model assumes that the player
can learn new information from observing the world, being
aware of his own character’s state, or by learning
information from spoken dialogue. Lines of dialogue are
tagged with the information that they are intended to
communicate. For instance, if the player moves into a room
he has not been in before, the director will record that the
player knows a) that the room exists, b) what objects are in
the room, c) what entities are in the room at that time, d)

Figure 2. Taxonomy of knowledge used in Haunt 2.

any observable attributes about those objects and entities
and e) any knowledge that is tagged to audible lines of
dialogue. This knowledge helps the director decide what
particular plot elements should be occurring at what time.

The knowledge used in the plot representation, actor
behaviors, and director’s model of player behavior can be
represented in an overall taxonomy, shown in Figure 2. The
purpose of building such taxonomy is not to construct an
exhaustive description of the kinds of information that
could be represented in all interactive dramas, but rather to
organize the knowledge that is used by our particular
architecture for reasoning about and describing the world.
By understanding and explicitly organizing the kinds of
knowledge that is used in our system, we can have a better
understanding of where our system’s strengths and
weaknesses are in expressivity.

The top level of the taxonomy organizes information by the
different dimensions that can be used to describe game
constructs (e.g. entities, items, how they relate together,
and the directors’ internal models of entities). The AI
actors can be defined by their emotional, mental and
physical states, while the items in the world can be describe
by their physical state only. The director can include any
and all of the knowledge in this taxonomy while
maintaining a model of the world and the characters in it
(e.g. keeping track of the relationships between two
characters, the hypothesized knowledge that the player has
of that relationship or the location of items). The mental
constructs in the taxonomy are split into knowledge, which
is the combination of an agent’s or user model’s long-term
and short-term knowledge, and the goals that an agent or
player model may pursue. The goals may come from the
story representation, from the character’s desires, or in the

predicted behavior
threatens an active
plot point

all preconditions
for an active plot
point are true

new plot-
revelant fact

timing constraint
violated

precondition for
active plot point
only involves
agents

observable
game features

knowledge

execute
direction

knowledge
maintenance

plot
monitoring

set appropriate
descriptors as

true / false

keep track of
world state

hypothesize
entity

knowledge

model
player

Haunt 2
environment

mark plot
points as

active / done

new plot point has
been set as active

relationships*

mental

physical

emotional*

attraction

repulsion

goals

knowledge

physiology

inventory

short-term

long-term

rules

world
knowledge

temperature

fatigue

thirst

?

self-awareness

observation

dialogue

story goals

actor goals

model goals

state w.r.t.
environment

case of the player model, from the hypothesized goals of
the player. The parts of the taxonomy labeled with an “*”
have not yet been implemented in Haunt 2. We’re currently
working on including a simple model of relationships
between the characters, as well as incorporating an
emotional into our agent architecture (Marinier and Laird
2004).

Plot Monitoring

In an interactive drama, it is important that some part of the
game architecture, either explicitly or implicitly, keeps
track of where the player is in the progression of the story.
As illustrated in Figure 1, the director agent follows the
plot description and executes story direction when needed.
The story in Haunt 2 takes place in a bed and breakfast inn.
The player’s character is murdered at the beginning of the
game and re-awakens as a ghost. The rest of the game
involves the player gathering information from the
synthetic characters, trying to figure out who killed him,
and manipulating the characters so that one of them
(hopefully an innocent one) discovers the dead body and
realizes a murder has taken place. It is the director’s job to
follow the player’s journey through the plot and elicit the
various dramatic events that take place as specified in the
plot description.

Figure 3. The first plot point in Haunt 2.

Scenes are defined by partially ordered atomic story events
called plot points, as shown in Figure 3. Each plot point is
comprised of a set of postconditions, which describes what
happens in the world at this point in the story, and a set of
preconditions, which describes what needs to be true in the
world in order for these actions to be performed. In one of
the earlier scenes of this very short story, the player is
introduced to the characters “the Innkeeper” and “Sally” by
overhearing a conversation of theirs in the main lobby. As
shown in Figure 3, when the player is within earshot of the
two characters, the Innkeeper and Sally should begin their
conversation.

Both preconditions and postconditions have logical
descriptors that describe something about the world. In our
Figure 3, the statement Location(Innkeeper, Lobby)
describes a relationship between an area in the world and a
character. In order to allow more abstractly defined plot
points, the language allows the author to use variables in

descriptors. For instance, if it is not important exactly
where the Innkeeper and Sally are, only that they are
together with the player nearby, we can use a general set of
preconditions, such as Location(Sally, x) and
Location(Innkeeper, x). When a descriptor that includes a
variable is marked as true, the variable binding is also
recorded (e.g. Sally and the Innkeeper are both in the
lounge, with the player nearby, so x will be bound to
Lounge in this plot point and any other point where it
occurs). This simple change in the story representation
language opens up the plot space; plot content is no longer
fully specified by the author, but is instead partially
determined by the actions of the characters and the player.
Plot variables can be shared at a global level across plot
points, allowing a variable that is instantiated early in the
story to be referenced later. This is a representational detail
that provides a very clear connection between player
behavior and plot content; the choices that the player
makes can have a very direct impact on the content of the
plot he is taking part in.

It is the director’s responsibility to compare its knowledge
about the world and mark preconditions as true or false
accordingly. As shown in Figure 1, a plot point cannot be
considered for performance (i.e. the plot point is “active”)
until all of the point’s predecessors in the plot structure
have been performed. Once all of the preconditions for an
active plot point are true, that point’s postconditions are
executed by the director (e.g. the director sends direction to
the Innkeeper to begin the “small talk” conversation), the
plot point is set to be inactive, and its children are set to be
active. This is one of the cases where the director executes
story direction.

Recognizing Errant Player Behavior

The director is responsible for both following the plot as it
progresses and attempting to keep it moving if it stalls. The
plot may not be able to continue if the player executes an
action that threatens one or more preconditions from a plot
point that has not yet been performed. The director is
designed to not consider any action as a threat until the plot
point’s timing constraint has been violated. While a more
complex approach would be to consider threats to any
future precondition, to start with we are taking the simpler
approach in our current design. When a plot point is set as
active, it typically has a timing constraint associated with it.
A timing constraint is a special precondition that signifies
some pacing information for a particular plot point. Our
architecture gives the author of an interactive drama the
means to specify how quickly things should happen in the
world. A timing constraint is initially stored as a relative
value or range of values that represent “in what time range
this plot point should be performed after the performance
of its parent.” In Figure 3, we can see that this plot point
should fire by 10 time units after the beginning of the
game. This allows the director to encode such timing
concepts as urgency or pacing into the plot.

The director can also execute direction because of
hypothetical future player behavior. Our architecture is
designed to try to avoid conflicting player behavior before
it happens. The system models short-term player behavior
and treats the results of that model as a hypothesis of future
player behavior. In order to model the player’s behavior,
whenever a plot point is finished, the director creates an
internal copy of the world state. The director also has a
simple internal, rule-based model of the player’s behavior.
The director runs that model on the simulated world,
executing rules to simulate how the world would respond to
the player’s actions, and observing what plot elements are
affected by the model’s actions. The model may return a
“success,” meaning that an active plot point’s preconditions
are fulfilled by player behavior, or a “failure,” indicating
that no active plot points are fulfilled. For example, after
the game has begun, the director may observe some of the
player’s actions, which consist of staying in the room where
he was created. The director then creates a copy of the
world, runs the player model on that copy, and returns the
result that the player will remain in that room (probably
examining objects) until the next plot point’s timing
constraint is violated in the simulation. Therefore, the
modeling result is a “failure” and the director should
execute some director action to get the player closer to
Sally and the Innkeeper’s forthcoming conversation.

Reconciling Errant Behavior with the Plot

When there is a problem, real or hypothesized, with the
flow of the story, the director dynamically alters the world
to get the story back on (or to stay on) track. In principle,
the director should be able to change any accessible
parameter in the game state to guide the player’s
experience. What we describe here are the current
implemented capabilities of the director in Haunt 2.

The director can affect the state of three major components
of the world: the synthetic characters, the objects in the
world, and the environment. The synthetic characters in
Haunt are rule-based, goal-oriented agents implemented in
Soar (Laird et al. 1987), with long-term knowledge stored
as productions and all other knowledge stored as working
memory elements. Their behavior is determined by their
long-term knowledge, the information present in working
memory, and an internal physiological model, which
includes physical attributes such as thirst and temperature
(Magerko et al. 2004). An agent may decide to go order a
drink at the bar if its thirst level is too high and there are no
important story related actions to carry out at the moment.
The director can give the characters new goals (e.g. “get a
drink”), information about the state of the world (e.g. “the
player is in the lobby now”), or specific atomic actions for
them to perform (e.g. “perform dialogue line #2 now,
speaking to Sally). These directions change the working
memory of the agents, and therefore alter their behavior. It
is also possible for the director to change a character’s
physiology to indirectly affect behavior (e.g. making a

character thirsty or cold). The director has a library of
directions to choose from, each labeled to help match it to
the appropriate situation.

The director can create or remove objects from the world,
as well as change several physical parameters associated
with that object (e.g. location). This may be especially
useful if the user is predicted to alter, or actually has
altered, an important object in an irreversible manner. For
example, the player may have unwittingly destroyed an old
book that contained a piece of information key to the story.
As opposed to the story coming to a halt, the director can
create a new book with the same information in a part of
the house the user has not been to yet, or place it on the
person of one of the characters. There is an important
interplay here between the hypothesized knowledge base of
the player and what the director can do. Having such a
knowledge base as an input into the decision-making
process of “what can I do to move the story along?” adds a
check on the believability of the action. Creating a book
out of thin air in a room that the player has just left is not as
subtle or as believable as creating another copy in the
hands of a character that is elsewhere in the building or
creating it in a room that the director knows the player has
not visited.

In terms of environmental story direction, we have given
the director control over lighting and sound triggers in the
world. If the director wishes to attract the player to a
particular nearby room, there are sound triggers that are
accessible to the director that may be triggered in that room
(e.g. the clock chiming in the lounge). Such actions are
useful as subtle attractors to different areas, objects, or
even characters in the world. If the player is in the lobby,
but we need him to be in the lounge, then chime the clock’s
bells loudly as a new event in the world that may draw the
player towards the sound. The director can also attempt to
attract or repel the player from a particular room by
manipulating light levels in the building. If the player is
hanging out in the lobby, but really should be moving on to
the lounge, the director can raise the light level in the
lounge, giving some dialogue to the Innkeeper like “Ah,
that’s better! Now I can see who I’m talking to,” or even
turn out the lights in the lobby, directing the Innkeeper to
say loudly “Sounds like we’ve blown a fuse downstairs. I’ll
look into it after we’re done with this chat of ours.”

Discussion

The current language used by the director for giving
directions is comprised of goals (and lists of goals) that the
director can send to an agent to fulfill a particular plot
element. In our taxonomy shown in Figure 2, this
knowledge is the intersection of story goals and actor goals
(i.e. the goals shared between the story and the agents). It
is up to the designer to be sure that the directions can
actually be achieved by the actors; if an actor gets a
command that it does not recognize, it will be ignored.

We have considered two different approaches for
determining which direction is appropriate for any
particular descriptor. Our first approach to this was similar
to that in Weyhrauch’s MOE (Weyhrauch 1997) director.
Descriptors were annotated with specific directions to help
fulfill them. When a particular story element needed to be
encouraged, it was annotated with the exact direction
needed. We have since opted for a more modular approach
to representing directions in the agent. Descriptors are
annotated with a classification, such as proximity or
knowledge. This classification denotes what strategies are
most appropriate for a particular descriptor. When a
descriptor is marked as needing direction, the director
examines the entire set of directions, matches on those that
are of the same classification, and then chooses between
whichever are applicable for this particular situation. For
example, there may be two direction rules written in the
agent for the proximity class, one that involves only
synthetic characters and one that involves a synthetic
character and the player. If Proximity(Player, Sally, 1)
requires direction, then the director would match that
descriptor to the Proximity action that deals with the player
and another synthetic character. This approach allows for
the reuse of director actions across multiple descriptors, the
authoring of actions that can apply to many descriptors or
just a single one, and encourages future work in
researching the different kinds of strategies humans use in
story mediation (e.g. the strategies used by dungeon
masters in table-top games or online games like
Neverwinter Nights).

At the current stage of our work, our player model is a
barebones representation of player behavior. Our focus is
on incorporating a player model and showing that it is
effective in preemptive story guidance. There are still open
questions with how to more accurately and efficiently
include the synthetic characters’ behaviors into the
modeling process. Future work will involve enriching the
model, verifying its effectiveness, and examining the
incorporation of more complex methods of modeling, such
as learning the likelihoods of the different possible goals in
the model. The verification of the effectiveness of using a
predictive model of player behavior in an interactive drama
would be a significant contribution to the field and is the
goal of our future work.

While we are attempting to show the usefulness of player
prediction in an interactive drama, we would like to explore
additional approaches in the future, such as the
incorporation of a depth-limited search into the director’s
decision-making process. When querying a predictive
model, we are in effect asking the question “Is the player
likely to reach a future plot point?” If the answer is “no,” to
this question, it seems relevant to also ask “Is it even
possible for the player to get to the next point?” If the
player is unlikely to get further in the plot, but it is indeed
possible to, the appropriate actions for the director to take
may be different then if the world has been changing so it is

actually impossible to move forward, as in our earlier
example of destroying an important plot device. Therefore,
our future work will focus on incorporating a search
procedure into the director’s decision-making process if the
predictive model returns a “false” result.

References

Beal, C. R., Beck, J., Westbrook, D., Atkin, M., Cohen, P.
2002. Intelligent Modeling of the User in an Interactive
Environment. AAAI 2002 Spring Symposium Series:
Artificial Intelligence and Interactive Entertainment.

Klesen, M., Kipp, M., Gebhard, P., Rist, T. 2003. Staging
exhibitions: methods and tools for modeling narrative
structure to produce interactive performances with virtual
actors. Virtual Reality 7(1): 17-29.

Laird, J. E., A. Newell, Rosenbloom, P.S. 1987. Soar: An
architecture for general intelligence. Artificial Intelligence
33(3): 1-64.

Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., Stokes,
D. 2004. AI Characters and Directors for Interactive
Computer Games. 16th Innovative Applications of
Artificial Intelligence Conference. Forthcoming.

Marinier, R. & Laird, J. (2004). Toward a Comprehensive
Computational Model of Emotions and Feelings.
International Conference on Cognitive Modeling 2004.
Forthcoming.

Mateas, M. and A. Stern. 2002. A Behavior Language for
Story-Based Believable Agents. AAAI 2002 Spring
Symposium Series: Artificial Intelligence and Interactive
Entertainment.

Sgorous, N. M. 1999. Dynamic Generation, Management,
and Resolution of Interactive Plots. Artificial Intelligence
107: 29-62.

Szilas, N., Marty, O., Réty, J. 2003. Authoring Highly
Generative Interactive Drama. 2nd International
Conference on Virtual Storytelling.

Weyhrauch, P. 1997. Guiding Interactive Drama. PhD
Thesis, Carnegie Mellon.

Young, R. M., Riedl, M. O., Branly, M. Jhala, A., Martin,
R.J., Saretto, C.J. 2004. An Architecture for Integrating
Plan-based Behavior Generation with Interactive Game
Environments. Journal of Game Development 1(1): 51-70.

