
Mediation Analysis Allowing for Exposure–Mediator Interactions and
Causal Interpretation: Theoretical Assumptions and Implementation With

SAS and SPSS Macros

Linda Valeri and Tyler J. VanderWeele
Harvard University

Mediation analysis is a useful and widely employed approach to studies in the field of psychology and
in the social and biomedical sciences. The contributions of this article are several-fold. First we seek to
bring the developments in mediation analysis for nonlinear models within the counterfactual framework
to the psychology audience in an accessible format and compare the sorts of inferences about mediation
that are possible in the presence of exposure–mediator interaction when using a counterfactual versus the
standard statistical approach. Second, the work by VanderWeele and Vansteelandt (2009, 2010) is
extended here to allow for dichotomous mediators and count outcomes. Third, we provide SAS and SPSS
macros to implement all of these mediation analysis techniques automatically, and we compare the types
of inferences about mediation that are allowed by a variety of software macros.
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Mediation analysis investigates the mechanisms that underlie an
observed relationship between an exposure variable and an out-
come variable and examines how they relate to a third intermediate
variable, the mediator. Rather than hypothesizing only a direct
causal relationship between the independent variable and the de-
pendent variable, a mediational model hypothesizes that the expo-
sure variable causes the mediator variable, which in turn causes the
outcome variable. The mediator variable then serves to clarify the
nature of the relationship between the exposure and outcome
variable (MacKinnon, 2008). For example, it might be of interest
to understand whether a rehabilitation program for drug-addicted
individuals, with methadone as treatment, leads to increased work
activity and whether drug use may mediate some of this effect. In
this example, drug use may be a potential mediator of the rela-
tionship between the methadone treatment and the work activity
outcome since the level of methadone may affect drug use, which
may in turn affect work activity.

The use of mediation analysis in psychology and in the social
sciences is widespread and has been strongly influenced by the
article of Baron and Kenny (1986). More recently, new advances
in mediation analysis have been made by using the counterfactual
framework (Imai, Keele, & Tingley, 2010; Imai, Keele, Tingley, &

Yamamoto, 2010; Pearl, 2001; Robins & Greenland, 1992;
VanderWeele & Vansteelandt, 2009, 2010). Using the counterfac-
tual framework has allowed for definitions of direct and indirect
effects and for decomposition of a total effect into direct and
indirect effects, even in models with interactions and nonlineari-
ties. In many contexts investigators are interested in assessing
whether most of the effect is mediated through a particular inter-
mediate or the extent to which it is through other pathways.
Decomposition of a total effect into direct and indirect effects
accomplishes this goal.

It is then possible to use this counterfactual framework to extend
formulae from Baron and Kenny (1986) to allow for mediation
analysis even in the presence of exposure mediator interactions.
Special cases for mediated effects in the presence of interaction
have appeared previously in the literature (e.g., Preacher, Rucker,
& Hayes, 2007) but do not give definitions of direct effects such
that the total effect decomposes into a direct and indirect effect.
However, VanderWeele and Vansteelandt (2009, 2010) derived
results for direct and indirect effects for linear and logistic regres-
sions when exposure–mediator interaction is present. In many
studies it is unrealistic to assume that the exposure and mediator do
not interact in their effects on the outcome. Carrying out mediation
analysis incorrectly assuming no interaction may result in invalid
inferences. The present article makes a number of important con-
tributions to mediation analysis from both methodological and
implementation perspectives. First, we extend work on causal
mediation analysis for parametric models with interactions
(VanderWeele & Vansteelandt, 2009, 2010) to allow for dichoto-
mous mediators, and not simply continuous mediators as were
previously considered. This is done using Pearl’s mediation for-
mula (Pearl, 2001), also described outside the context of counter-
factuals elsewhere (Huang, Sivaganesan, Succop, & Goodman,
2004). Second, we extend the results to count data. Third, we
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provide SAS and SPSS macros, which give estimates and confi-
dence intervals for direct and indirect effects when interactions
between the mediator of interest and the exposure are present, and
we compare the types of inference about mediation that are avail-
able in a variety of software packages. Finally, we compare and
contrast the inferences that are possible about direct and indirect
effects in the presence of exposure–mediator interaction, when
using the counterfactual framework versus the traditional statisti-
cal approach. We consider both continuous and dichotomous vari-
ables as outcomes and mediators and allow for general treatment
variables. The approach here enriches the contributions of Baron
and Kenny and expands the previous software developed by
Preacher and Hayes (2004) and Preacher et al. (2007) to allow for
effect decomposition of a total effect into direct and indirect
effects in the presence of exposure–mediator interaction and other
nonlinearities.

The article is organized as follows. The first section discusses
the approach to mediation analysis sometimes referred to as the
“product method” and made popular by Baron and Kenny (1986).
The second section introduces the reader to the counterfactual
approach which gives rise to broader definitions of direct and
indirect effects and allows one to carry out mediation analysis and
effect decomposition when interaction between exposure and me-
diator is present. In the following section, conditions are given for
the identifiability of direct and indirect effects in mediation anal-
ysis; these are the conditions needed for the results of statistical
procedures to have a causal interpretation. The next section clar-
ifies the relationship between the results on mediation analysis that
arise within the counterfactual framework with other popular ap-
proaches to mediation analysis. The article continues with instruc-
tions for using the software developed (SAS and SPSS) and a
description of the output is provided. We conclude by providing an
example of mediation analysis performed using the mediation
macros.

Classic Regression Approach to Mediation Analysis

The practice of mediation analysis in the field of psychology has
been highly influenced by the work of Baron and Kenny (1986).
The causal diagram in Figure 1 captures how they conceptualized
the role of a mediator variable.

According to Baron and Kenny (1986), the following criteria
need to be satisfied for a variable to be considered a mediator: (a)
a change in levels of the exposure variable significantly affects the
changes in the mediator (i.e., Path from A to M); (b) there is a
significant relationship between the mediator and the outcome
(i.e., Path from M to Y); (c) a change in levels of the exposure
variable significantly affects the changes in the outcome (i.e., total

effect of A on Y is significant); and (d) when the previously defined
paths are controlled, a previously significant relation between the
exposure and outcome is no longer significant, with the strongest
demonstration of mediation occurring when the path from the
independent variable to the outcome variable is zero.

While requirements (a) and (b) have been accepted as correct
criteria to identify a potential mediator, requirement (c) has been
critiqued by many scholars (MacKinnon, 2008). Consensus has
now been reached that the relationship between A and Y need not
be statistically significant for M to be a mediator. The reason is that
the effect of A on Y may not be significant when direct and
mediated effects have opposite sign. This phenomenon is com-
monly known as inconsistent mediation. Requirement (d) is also
not necessary because mediation can be partial or complete. When
mediation is complete, after controlling for M, the direct path from
A to Y would be zero. When mediation is partial, the path from A
to Y can still be significant, but the effect should be reduced if
mediation is indeed present. In the present work we allow for both
partial and complete mediation.

In 1986, Baron and Kenny also proposed a parametric approach
to estimate and test for mediation. The approach is often simply
referred to as the “Baron and Kenny approach”; however, others
had proposed it previously (Alwin & Hausen, 1975; Hyman, 1955;
Judd & Kenny, 1981; Sobel, 1982), and it is also more generally
referred to as the “product method.” Let A be the treatment, Y the
outcome, M the mediator and C additional covariates. For the case
of continuous mediator and outcome, consider the following re-
gression models:

E[M�a, c] � �0 � �1a � ��2c (1)

E[Y�a, m, c] � �0 � �1a � �2m � ��4c (2)

The original Baron and Kenny approach did not have covariates,
but the same general approach applies with covariates (i.e., ��2c
and ��4c were not included in the original models by the authors;
here c is considered a vector and may contain multiple confound-
ers). In particular, Baron and Kenny proposed that the direct effect
be assessed by estimating �1 and that the indirect effect be assessed
by estimating �2�1. The direct effect can be conceived of as the
treatment effect on the outcome at a fixed level of the mediator
variable, which is different from the total effect, which represents
simply the overall effect of exposure or treatment on the outcome.
The indirect effect can be conceived of as the effect on the
outcome of changes of the exposure that operate through mediator
levels.

Counterfactual Approach to Mediation Analysis

While the concept of mediation, as defined within psychology
and the social sciences, is theoretically appealing, the methods
traditionally used to study mediation empirically have important
limitations concerning their applicability in models with interac-
tions or nonlinearities (Pearl, 2001; Robins & Greenland, 1992).

Recent contributions in mediation analysis have emphasized the
importance of articulating identifiability conditions for a causal
interpretation and have extended definitions and results on effect
decomposition for direct and indirect effect to settings in which
nonlinearities and interactions are present (Pearl, 2001; Robins &
Greenland, 1992). This is relevant especially when mediation
analysis is implemented in social science contexts where, forFigure 1. Mediation model in Baron and Kenny (1986) article.
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example, the exposure of interest might interact in its effect on the
outcome with the mediator.

The approach advocated by Baron and Kenny (1986) is widely
applied for mediation analysis and software is available to imple-
ment it (Preacher & Hayes, 2004, 2008). However, this method
does not fully accommodate settings in which the exposure and the
mediator interact in their effects on the outcome. Although special
cases for mediated effects in the presence of interaction are avail-
able (e.g., Preacher et al., 2007), these do not give definitions of
direct effects such that the total effect decomposes into a direct and
indirect effect. VanderWeele and Vansteelandt (2009, 2010)
showed how the notions of direct and indirect causal effects from
causal inference in the counterfactual framework (Robins &
Greenland, 1992; Pearl, 2001) can extend the Baron and Kenny
formulae for direct and indirect effects to settings in which there is
an interaction term between exposure and mediator in the outcome
regression.

Suppose we have a continuous outcome and mediator and the
mediator regression remains as in Model 1 while the outcome
regression is reformulated as

E[Y�a, m, c] � �0 � �1a � �2m � �3am � ��4c. (3)

The use of the causal inference approach to mediation analysis
gives rise to counterfactual definitions of direct and indirect ef-
fects, which were formulated by Pearl (2001) and Greenland and
Robins (1992). These effects can be estimated from the regression
parameters in Models 1 and 3, provided certain identifiability
assumptions (no confounding), described below, hold and models
are correctly specified (VanderWeele & Vansteelandt, 2009,
2010). In particular, from Models 1 and 3 what can be defined as
the controlled direct effect (CDE), natural direct effect (NDE) and
natural indirect effect (NIE) for change in exposure from level a*

to level a, are given by

CDE � (�1 � �3m)(a � a*)

NDE � ��1 � �3(�0 � �1a
* � ��2c)�(a � a*)

NIE � (�2�1 � �3�1a)(a � a*).

These expressions generalize those of Baron and Kenny (1986)
to allow for interactions between the exposure and the mediator.
We describe these effects below. Note that if interaction is not
present, so that �3 � 0, the controlled direct effect and the natural
direct effect are equal to the direct effect obtained using Baron and
Kenny approach �1 times �a � a*� and the natural indirect effect is
equal to the indirect effect of the Baron and Kenny approach �2�1

times �a � a*�.
For a binary exposure, the two exposure levels being compared

would be a� � 0 and a � 1. The controlled direct effect (CDE)
expresses how much the outcome would change on average if the
mediator were controlled at level m uniformly in the population,
but the treatment were changed from level a* � 0 to level a �
1. The natural direct effect (NDE) expresses how much the out-
come would change if the exposure were set at level a � 1 versus
level a* � 0 but for each individual the mediator were kept at the
level it would have taken in the absence of the exposure. The
natural indirect effect (NIE) expresses how much the outcome
would change on average if the exposure were controlled at level
a � 1, but the mediator were changed from the level it would take
if a* � 0 to the level it would take if a � 1. The total effect (TE)

can be defined as how much the outcome would change overall for
a change in the exposure from level a* � 0 to level a � 1. More
formal definitions of these effects explicitly in terms of counter-
factuals are given in the Appendix. An important property of the
natural indirect effect and the natural direct effect is that the total
effect decomposes into the sum of these two effects; this holds
even in models with interactions or nonlinearities (Pearl, 2001).
The expressions given above involving the coefficients of Models
1 and 3 will be equal to the effects we have just discussed under
certain identifiability assumptions given in the next section. These
identifiability assumptions allow for a causal interpretation of the
direct and indirect effects. These effects are conditional on the
level of the covariates C. For continuous outcomes, if C were set
at its average level we would obtain marginal effects on the entire
population.

While controlled direct effects are often of greater interest in
policy evaluation (Pearl, 2001; Robins, 2003), natural direct and
indirect effects may be of greater interest in evaluating the action
of various mechanisms (Joffe, Small, & Hsu, 2007; Robins, 2003).

Identification

The conditions for a causal interpretation of the direct and
indirect effects defined in the previous section can be usefully
characterized via causal diagrams. Consider the relation between
the variables in Figure 2, which might encompass a wide range of
scenarios in mediation analysis. A careful study of this graph is
useful in clearly formulating the identifiability assumptions for the
direct and indirect causal effects of interest. The variables in the
graph are as follows: exposure (A), mediator (M), outcome (Y),
covariates (C � [C1, C2]), which include exposure-outcome con-
founders (C1) and mediator–outcome confounders (C2). All the
following comments will still hold if C1 affects C2 or if C2 affects
C1.

Consider the example in which working activity of a drug
addicted individual is the outcome of interest (Y). Let the treatment
be methadone (A), and the potential mediator be the level of drug
use (M). Under this scenario, the investigator may be interested in
studying how the effect of the treatment A on the outcome Y is
mediated by the level of drug use of an individual (M). In address-
ing this question of interest, the investigator must think carefully
about and try to control for variables that may be exposure-
outcome confounders (C1) or mediator–outcome confounders
(C2). For example, there might be social and biological factors,
such as income and hypertension status (C1), that affect the deci-

Figure 2. Causal diagram for mediation and confounding. A � exposure;
M � mediator; Y � outcome; C1 and C2 � covariates.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

139MEDIATION ANALYSIS WITH EXPOSURE–MEDIATOR INTERACTION



sion of the level of treatment (A) and the working activity outcome
(Y), or other factors, such as neighborhood of residence or alcohol
consumption (C2), which affect both the level of drug use (M) and
the working activity outcome (Y).

In order for the effects to have a causal interpretation, control
must be made for the confounding variables. In order to ensure
identifiability of controlled direct effect, two assumptions are
needed: namely, those of (a) no unmeasured confounding of the
treatment–outcome relationship and (b) no unmeasured confound-
ing of mediator–outcome relationship. The first of these assump-
tions would be automatically satisfied if treatment were random-
ized, but even with randomized treatment the second assumption
might not be satisfied. If we refer to the example above, to control
for (a) confounding of the treatment–outcome relationship the
investigator must adjust for common causes of the treatment and
the outcome (e.g., information on income and hypertension status
and any other treatment–outcome confounding variable [C1] in the
analysis). To control for (b) mediator–outcome confounding the
investigator must adjust for common causes of the mediator and
the outcome (e.g., alcohol consumption and neighborhood of res-
idence or any other mediator–outcome confounding variable
[C2]). In practice, both sets of covariates would simply be included
in the overall set C for which adjustment is made; the investigator
does not need to distinguish in this regression approach the
treatment–outcome and the mediator–outcome confounding vari-
ables, but the collection of covariates must include both sets for
estimates to have a causal interpretation.

The assumptions we have described are for controlled direct
effects; the identification of natural direct and indirect effects uses
these two assumptions above along with two additional assump-
tions. In particular, for natural direct and indirect effects there must
also be (c) no unmeasured confounding of the treatment-mediator
relationship. Control must be made for variables that cause both
the level of treatment and the level of the mediator. In the context
of our example, hypertension may be a factor which influences the
use of treatment as well as the level of drug addiction, and it would
need to be controlled for in the analysis. This third assumption,
like the first, would also be satisfied automatically if the treatment
were randomized. Finally, for the natural direct effect and indirect
effects to be identified it also needs to be the case that (d) there is
no mediator–outcome confounder that is affected by the treatment
(i.e., no arrow from A to C2 in Figure 2).

It should be noted that assumptions (a), (b), and (c) also require
an assumption of temporal ordering. This assumption of temporal
ordering is implicitly or explicitly present in various approaches to
mediation analysis (Cole & Maxwell, 2003). In particular, the
assumption of no unmeasured confounding of the treatment–
outcome relationship implicitly assumes that the treatment tempo-
rally precedes the outcome. The assumption of no unmeasured
confounding of the mediator–outcome relationship implicitly as-
sumes that the mediator precedes temporally the outcome. Finally,
the assumption of no unmeasured treatment-mediator confounding
implicitly assumes that the exposure must precede the mediator.
Formally the no unmeasured confounding assumptions require that
associations reflect causal effects; if the temporal ordering as-
sumptions were not satisfied then neither, in general, would the no
unmeasured confounding assumptions be satisfied, since associa-
tions would not represent causal effects.

In summary, controlled direct effects require (a) no unmea-
sured treatment–outcome confounding and (b) no unmeasured
mediator–outcome confounding. Natural direct and indirect ef-
fects require these assumptions and also (c) no unmeasured
treatment-mediator confounding and (d) no mediator–outcome
confounder affected by treatment. It is important to note that
randomizing the treatment is not enough to rule out confounding
issues in mediation analysis. This is because randomization of the
treatment rules out the problem of treatment–outcome and
treatment-mediator confounding but does not guarantee that the
assumption of no confounding of mediator–outcome relationship
holds. This is because even if the treatment is randomized, the
mediator generally will not be. This was pointed out by Judd and
Kenny (1981), James and Brett (1984), and MacKinnon (2008) but
unfortunately was not mentioned in the popular article by Baron
and Kenny (1986). If there are confounders of the mediator–
outcome relationship for which control has not been made, then
direct and indirect effect estimates will not have a causal interpre-
tation; they will be biased. This is true for the controlled direct
effect and natural direct and indirect effects described above and
also for the effects described by Baron and Kenny. Investigators
should think more carefully about and collect data on and control
for such mediator–outcome confounding variables when media-
tion analysis is of interest. If the investigator is aware that unmea-
sured confounding may be an issue in his or her study, sensitivity
analyses (Imai, Keele, & Tingley, 2010; VanderWeele, 2010)
should be implemented to assess the extent to which violations in
the assumptions may alter the results.

Binary Outcomes and Binary Mediators

We have thus far considered only the case in which both
outcome and mediator are continuous. The results can be extended
to cases in which one or both of the mediator and outcome
variables are binary.

For example, when the outcome is binary and mediator is
continuous the model for the mediator is represented by Model 1,
and the outcome can be modeled via a logistic regression:

logit�P(Y � 1�a, m, c, )� � �0 � �1a � �2m � �3am � ��4c. (4)

For this case, provided the outcome is relatively rare and as-
sumptions (a)–(d) hold, we can derive controlled direct effects, and
natural direct and indirect effects on the odds ratio scale (Vander-
Weele & Vansteelandt, 2010) as

log�ORCDE� � (�1 � �3m)(a � a*)

log�ORNDE� � ��1 � �3(�0 � �1a
* � �2

’ c � �2�
2)�(a � a*) � 0.5�3

2�2(a2 � a*2),

log�ORNIE� � (�2�1 � �3�1a)(a � a*),

where �2 is the variance of the error term in the regression for the
mediator, M, and where the approximations hold to the extent that
the outcome Y is rare. With these odds ratios, the total effect is
equal to the product of the natural direct and indirect effects (rather
than the sum).

When the outcome is not rare, the odds ratio does not approx-
imate the risk ratio anymore. Therefore, the causal effects previ-
ously defined will be biased if logistic regression is used to model
the outcome. In this case the investigator can estimate the causal
effect by running a generalized linear model regression with a
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binomial distribution and a log link and the causal effects will have
a risk ratio interpretation and the formulas hold exactly.

When the outcome is rare then the direct and indirect effects can
be estimated even in case-control designs. The formulas for the
effects remain the same; however, the mediator regression is run
only for controls, to take into account the case-control design
(VanderWeele & Vansteelandt, 2010). This approach works be-
cause with a rare outcome Y, the distribution of M among the
controls will approximate the distribution in the population.

We also extend the previous results to the cases in which the
mediator is a dichotomous variable. The identifiability assump-
tions do not change but now we would use a logistic model for the
mediator:

logit�P(M � 1�a, c)� � �0 � �1a � ��2c. (5)

Formulas for controlled direct effects and natural direct and
indirect effects when the mediator is dichotomous are given in the
Appendix. Finally, in the online supplemental materials we show
that these formulas for causal effects for binary outcome extend to
count variables when modeled with a log link.

The total effect is equal to the sum of the natural direct effect
and the natural indirect effect when the outcome is continuous and
to the product of the natural direct and indirect effect odds ratios
when the outcome is binary. Another measure that has been
popular in mediation analysis is the proportion mediated. The
proportion mediated can be defined as the ratio of the natural
indirect effect to the total effect when the outcome is continuous;
the proportion mediated on risk difference scale can also be
calculated when the outcome is binary using a transformation of
the odds ratios (VanderWeele & Vansteelandt, 2010). Several
authors have, however, issued cautions on its use. MacKinnon,
Warsi, and Dwyer (1995) warned about the instability of such
measure, especially when the association between the exposure
and the outcome is weak. Consequently, we have not implemented
this measure in the macro; however, investigators can certainly
calculate these measures from the output that is provided.

Estimates of the direct and indirect effects of interest are ob-
tained by plugging in the estimated coefficient values into the
formulas above, while the standard errors can be obtained using
the delta method or by bootstrapping techniques. The reader can
refer to the online supplement for derivations of the direct and
indirect effects and delta method standard errors. The macro we
provide calculates these automatically.

Mediation Analysis for Models With Nonlinearities:
A Comparison of Approaches

The counterfactual approach to mediation analysis displays all
its power and flexibility when the causal relationships under study
are complex and the investigator needs to depart from simple
linear models and allow for nonlinearities and interactions. In this
section we describe some of the advantages of employing the
counterfactual framework to causal mediation that we presented in
the previous sections by comparing it to other popular methods to
address mediation questions. In this comparison we focus on the
so-called product method, the difference method, and the MacAr-
thur approach and address also some developments with regard to
“moderated mediation.” We first describe traditional statistical
approaches, and we then discuss what the counterfactual approach

contributes over and above them and comment on the relation
between the two.

Traditional Approaches to Mediation Analysis

Modern approaches to mediation have been inspired by the
pioneering work of the geneticist Sewall Wright (1920), who
developed the path analysis method. Path analysis is now viewed
as a special case of structural equation modeling (SEM). Structural
equations methods allow for the estimation of direct and indirect
effects by modeling covariance and correlation matrices. Most
mediation analyses in psychological studies have been conducted
using the SEM approach (Baron & Kenny, 1986; Judd & Kenny,
1981; MacKinnon, 2008). Methods to improve estimation and
inferential procedures for SEM-based mediation analyses have
continued to develop (e.g., MacKinnon, 2008; Sobel, 1982). Struc-
tural equation models are often criticized for not adequately ad-
dressing issues of confounding/endogeneity in inferring causal
relationships. However, if such issues of confounding are ade-
quately addressed by including all relevant confounders (as de-
scribed in detail above) in the structural equation model then the
SEM approach can be a useful tool. The counterfactual approach
has placed strong emphasis on identifiability assumptions and
conceptual definitions of causal effects, and recently, a number of
authors have been using the counterfactual framework to translate
the SEM approach within the counterfactual framework1 (e.g.,
Imai, Keele, & Tingley, 2010; Jo, 2008; Pearl, 2011; Sobel, 2008;
VanderWeele & Vansteelandt, 2009). Among traditional SEM
methods, we describe the product method and the difference
method. Assume a simple mediation model with no exposure–
mediator interaction. The rationale behind the product method is
that mediation depends on the extent to which the exposure A
changes the mediator M, �1 from Equation 1, and the extent to
which the mediator affects the outcome Y, �2 from Equation 2. The
product method estimator of the indirect effect is then simply �2�1.
Sobel (1982) proposed a test for a mediated effect from the product
method estimator.

The difference method approach is implemented by fitting an
outcome model with the mediator as in Equation 2 and also an
outcome model with no mediator:

E(Y�a,c � �0
* � �1

*a � �4
* � c. (6)

The value of the mediated or indirect effect is then estimated by
taking the difference in the coefficients from Equations 6 and 2,
�1

* � �1 this corresponds to the reduction in the independent
variable effect on the dependent variable when adjustment is made
for the mediator. The algebraic equivalence of the indirect effect
using the product method, �2�1, and the difference method, �1

* � �1

was shown by MacKinnon et al. (1995) for ordinary least squares
in linear models with continuous outcomes and discussed also in
Alwin and Hauser (1975). The product method and difference
method diverge, however, when using a binary outcome and

1 Note that a different way to think about inference with regard to an
intermediate within the counterfactual approach framework is to use the
concept of “principal strata” (Chiba, 2010; Frangakis & Rubin, 2002; Jo,
2008; Rubin, 2004; VanderWeele, 2008). For a discussion on the use of
principal stratification in mediation analysis the interested reader can refer
to the commentaries in the International Journal of Biostatistics (2011).
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logistic regression (MacKinnon & Dwyer, 1993), a point to which
we return below. When mediation models include an exposure–
mediator interaction term in the outcome regression, this is a
particular case or a variant of what is sometimes referred to as
“moderated mediation” (James & Brett, 1984; Preacher et al.,
2007). Moderated mediation considers the case in which a cova-
riate moderates the mediated effect (cf. MacKinnon, Fairchild, &
Fritz, 2007), that is, when the mediated effect varies by the level
of a covariate. Such moderated mediation by a covariate was also
analyzed by Yzerbyt, Muller, and Judd (2004) and Muller, Yzer-
byt, and Judd (2008). When the treatment itself is the moderator
for the mediator (as considered in Preacher et al., 2007), the effect
of the mediator is allowed to vary by treatment status; or, con-
ceived of another way, the effect of treatment is allowed to vary
with (i.e., it interacts with) the mediator. In this setting, Preacher
et al. (2007) derived an indirect effect estimator in the context of
moderated mediation using the product method.

The MacArthur approach (Kraemer, Kiernan, Essex, & Kupfer,
2008) gives criteria somewhat different than that of Baron and
Kenny (1986) in assessing mediation and allows also for assessing
exposure–mediator interactions. This approach to mediation anal-
ysis is based on the assumption that temporal antecedence and
association are necessary (but not sufficient) for a causal relation-
ship. The approach allows for nonlinear relations among variables
to qualify as mediation as long as there is a relationship between
the exposure A and the mediator M. In particular, it is proposed,
first, that if there is no association between A and M, and if M
precedes A, and if the A�M interaction is significant, then the
variable M is to be considered as a moderator rather than a
mediator. Second, for M to be a mediator for the effect of A on
outcome Y, A should precede M and M should precede Y, the
variables A and M should be correlated, and either the main effect
of M on the outcome or the A�M interaction should be significant.

Comparison of Traditional Approaches With the
Counterfactual Approach When There Are
Interactions and Nonlinearities

One of the chief advantages of the counterfactual approach to
mediation analysis is that it allows for the decomposition of a total
effect into a direct effect and an indirect effect even when there are
interactions and nonlinearities. As noted above, some of the sta-
tistical approaches, such as that of Preacher et al. (2007) or
Kraemer et al. (2008) allow one to assess mediation even when
there is exposure–mediator interaction. In fact, the indirect effect
of Preacher et al. (2007) for continuous outcome when there is an
exposure–mediator interaction is equivalent to the one given here.
However, neither Preacher et al. (2007) nor Kraemer et al. (2008)
gave a definition of a direct effect in the presence of exposure–
mediator interaction such that the sum of the direct and indirect
effects equals a total effect. The counterfactual approach provides
a general approach to do effect decomposition irrespective of the
statistical model and irrespective of possible interactions. The
counterfactual approach coincides with the criteria for mediation
of the MacArthur approach (Kraemer et al., 2008) but provides
actual direct and indirect effect estimates that combine to a total
effect and makes clear the no-unmeasured-confounding assump-
tions needed for a causal interpretation. The counterfactual ap-
proach also helps in understanding mediation with binary out-

comes and binary mediators. As noted previously, with a binary
outcome and logistic regression, the product method and differ-
ence method give different results (MacKinnon & Dwyer, 1993).
In fact, neither in general will be equal to an estimate of an indirect
effect with a causal interpretation (VanderWeele & Vansteelandt,
2010). VanderWeele and Vansteelandt (2010) did, however, show
that when there is no exposure–mediator interaction, the product
method and difference method will be approximately equivalent
when the outcome is rare; and both will then be approximately
equal to the natural indirect effect when all the no confounding
assumptions hold. The problem with dichotomous outcomes arises
when the outcome is common and has to do with the fact that
logistic regression uses the odds ratio, which is a measure that is
“noncollapsible.” Viewed intuitively, the problem occurs because
when the outcome is common, the odds ratio does not approximate
the risk ratio, and the extent of this lack of approximation can vary
with the other covariates in the models. With a common outcome,
the odds ratios with the mediator in the model versus without the
mediator in the model are thus not directly comparable, and so the
difference method essentially breaks down. The risk ratio does not
suffer this problem, and it is for this reason that we propose using
a log-linear model in this article when the outcome is common.
Moreover, this approach also allows us to define and estimate
direct and indirect effects when the outcome is binary and an
exposure–mediator interaction is present. We have, moreover,
using the counterfactual approach in this article, derived analytic
expressions for cases when the mediator itself is binary. The
counterfactual approach provides a versatile framework to derive
direct and indirect effects and to do effect decomposition even
with binary variables and nonlinear models.

As is perhaps now clear from this discussion, the traditional
statistical approach and the counterfactual approach to mediation
will in some settings coincide. For linear models and log-linear
models, they will coincide when there is no exposure–mediator
interaction; for logistic models, they will coincide when there is no
exposure–mediator interaction and when the outcome is rare
(VanderWeele & Vansteelandt, 2009, 2010). Thus, before an in-
vestigator proceeds with one of the traditional approaches (the
product method or difference method) he or she should (a) con-
sider whether control has been made for exposure–outcome con-
founders, mediator–outcome confounders, and exposure–mediator
confounders; (b) check whether there is exposure–mediator inter-
action; and (c) if the outcome is binary and logistic regression is
used, check whether the outcome is rare. If the no-unmeasured-
confounding conditions are satisfied, there is no interaction, and
the outcome is rare if logistic regression is used, then proceeding
with the traditional statistical approaches is fine. If there are
exposure–mediator interactions then the approach described in this
article, or another counterfactual-based approach, should be used.
If the outcome is common, a log-linear model can be used. If there
are confounders of the exposure–outcome, mediator–outcome, or
exposure–mediator relationship then, to the extent possible, these
should be controlled for in the models; otherwise sensitivity anal-
ysis techniques (VanderWeele, 2010; Imai, Keele, & Tingley,
2010) can be used.

As a final point of discussion, we note that even in the presence
of interaction and nonlinearities, the product method may be useful
to test for mediation even if the estimates are not themselves
interpretable as estimates of an indirect effect. In other words, to
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test for mediation we can test for whether the product of the
coefficients is nonzero even if this product is not equal to a causal
indirect effect measure. For example, with logistic model with
common outcome, the product method estimates will not in gen-
eral have a causal interpretation as a natural indirect effect. It is
nonetheless the case that although the product-method estimator is
not itself a measure of an indirect effect, the product method still
gives a valid test for the presence of a mediated effect, provided
that the identification assumptions hold and that the models are
correctly specified (a formal proof of this is given in the online
appendix of VanderWeele, 2011). The intuition is that even if the
product of the coefficients is not equal to a causal indirect effect,
if the product is nonzero then there must be an effect of the
exposure on the mediator and an effect of the mediator on the
outcome, and under the identification assumptions, this would also
imply the presence of a natural indirect effect. Thus, the product-
method approach can still be useful in testing for mediation even
when there are interactions and nonlinearities. For estimation and
for decomposing a total effect into a direct and indirect effect
(arguably the chief advantages of the counterfactual approach),
rather than just testing, methods such as those described in this
article can be employed.

Description of the SAS Macro

The present macro is designed to enable the investigator to
easily implement mediation analysis in the presence of exposure–
mediator interaction accounting for different types of outcomes
(normal, dichotomous-logistic or dichotomous log-linear, Poisson,
negative binomial) and mediators of interest (normal or dichoto-
mous with logit link). The logit link for dichotomous outcomes
should only be used if the outcome is rare. If the outcome is not
rare the log link can be used (although the outcome model may not
always converge). In the case of using the log link the direct and
indirect effects are on the risk ratio scale. In particular, these
macros for SAS and SPSS provide estimates, and confidence
intervals for the direct and indirect effects previously defined. The
estimates assume the model assumptions are correct and the iden-
tifiability assumptions discussed in the previous section hold.

Basic SAS Macro

The macro has been developed using SAS Version 9.2. In order
to implement mediation analysis via the mediation macro in SAS
the investigator first opens a new SAS session and inputs the data,
which has to include the outcome, treatment and mediator vari-
ables as well as the covariates to be adjusted for in the model.
Macro activation requires then the investigator to save the macro
script and input information in the statement

%mediation(data� ,yvar� ,avar� ,mvar� ,cvar� ,a0� ,a1� ,m�
,nc� ,yreg� ,mreg� ,interaction�)

run;

First one inputs the name of the data set (data �), then the name
of the outcome variable (yvar �), the treatment variable (avar �),
the mediator variable (mvar �), the other covariates, (cvar �).
Categorical variables need to be coded as a series of dummy
variables before being entered as covariates. The macro dumvar

from MCHP SAS Macros, for example, can be used for this
purpose. Then the investigator needs to specify the baseline level
of the exposure a* (a0 �), the new exposure level a (a1 �), the
level of mediator m (m �) at which the controlled direct effect is
to be estimated and the number of covariates to be used (nc �).
When no covariates are entered, then the user still needs to write
the commands cvar � and nc �, even though both are left blank.
The user must also specify which types of regression have to be
implemented. In particular, linear, logistic, loglinear, poisson or
negbin can be specified (yreg �). For the mediator either linear or
logistic regressions are allowed (mreg �). Finally, the analyst
needs to specify whether an exposure–mediator interaction is
present (interaction � true or false).

The macro provides the following output: first the regression
output for outcome and mediator models is provided. The output in
the SAS macro is derived from the procedures of proc reg when
the variable is continuous, and from proc logistic when the variable
is binary. When the outcome is specified as Poisson, negative
binomial or log-linear the procedure proc genmod is employed. If
the data set contains missing data the macro implements a com-
plete case only analysis. A table with direct and indirect effects
together with total effects follows. The effects are reported for the
mean level of the covariates C. The table contains standard errors,
and confidence intervals for each effect.

Other Options in the SAS Macro

The reduced output is the default option. The table will just
display controlled direct effect, natural direct effect, natural indi-
rect effect and total effect described above. When the option
output � full is used, both conditional effects and effects evaluated
at the mean covariate levels are shown. When the output � full
option is chosen, the investigator must enter fixed values for the
covariates C at which compute conditional effects. The macro
statement is as follows:

%mediation(data� ,yvar� ,avar� ,mvar� ,cvar� ,a0� ,a1� ,m�
,nc� ,yreg� ,mreg� ,interaction� ,output� ,c�)

run;

When output � full is added, then, in addition to the controlled
direct effect, and the natural direct and indirect effects described
above, other effects are also displayed. The natural direct and
indirect effects we have been considering are sometimes called the
“pure” natural direct effect and the “total” natural indirect effect
(Robins & Greenland, 1992). We can also instead consider the
“total” natural direct effect and the “pure” natural indirect effect.
For binary exposure the total natural direct effect expresses how
much the outcome would change on average if the exposure
changed from level a* � 0 to level a � 1, but the mediator for
each individual was fixed at the natural level that would have taken
at exposure level a � 1. The pure natural indirect effect expresses
how much the outcome would change on average if the exposure
were controlled at level a* � 0 but the mediator were changed
from the natural level it would take if a* � 0 to the level that would
have taken at exposure level a � 1. These effects are also reported
if the user selects output � full. If there is no exposure–mediator
interaction, the “pure” and “total” natural direct effects will coin-
cide and the “pure” and “total” natural indirect effects will coin-
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cide. These different types of effects are essentially different ways
of accounting for the exposure–mediator interaction (Robins,
2003; VanderWeele, in press).

The investigator also has the option of implementing mediation
analysis when data arise from a case-control design, provided the
outcome in the population is rare. To do so the option
casecontrol � true can be used. In this case the macro statement
changes to

%mediation(data� ,yvar� ,avar� ,mvar� ,cvar� ,a0� ,a1� ,m�
,nc� ,yreg� ,mreg� ,interaction� ,casecontrol�)

run;

Finally, the investigator can choose whether to obtain stan-
dard errors and confidence intervals via the delta method or a
bootstrapping technique. The default is the delta method. To use
bootstrapping the option boot � true can be given. In this case
the macro will compute 1,000 bootstrap samples from which
causal effects are obtained along with their standard errors (SE)
and percentile confidence intervals (p_95_CIlower

,p_95_CIupper). If the investigator wishes to use a higher num-
ber of bootstrap samples, instead of “true” he or she inputs the
number of bootstrap samples desired (e.g., boot � 5,000 would
estimate standard errors and confidence intervals using 5,000
bootstrap samples). The use of bootstrap for standard errors is
generally to be preferred if the sample size of the original
sample is small as it will lead to more accurate inferences than
the delta method (MacKinnon, 2008). However, these issues are
less important if the original sample is large and if this is the
case the use of delta method standard errors may be preferred
because of computational efficiency. (For example, Ananth &
VanderWeele, 2011, conducted a mediation analysis using a
sample of 26,000,000 individuals and bootstrapping would have
been computationally infeasible.) Bootstrapped standard errors
may also be preferred when fitting a log-linear model for the
outcome, due to convergence issues. When using the bootstrap
the macro statement changes to

%mediation(data� ,yvar� ,avar� ,mvar� ,cvar� ,a0� ,a1� ,m�
,nc� ,yreg� ,mreg� ,interaction� ,boot�)

run;

As noted previously, if the investigator wants to add a categorical
variable as covariate, this must be recoded as a series of indicator
variables. For example, if a covariate, named catvar, takes four levels
(1, 2, 3, 4) we could construct three “dummy” or “indicator” variables,
named, for example, ivar2, ivar3, and ivar4, leaving the first value as
the reference. The variable ivar2 would take the value 1 for all
observations that had catvar � 2, and 0 for all other observations. The
variable ivar3 would take the value 1 for all observations that had
catvar � 3 and 0 for all other observations, etc. The macro dumvar
mentioned previously requires the user to list the data set (data�), the
categorical variable (e.g., catvar) that needs to be transformed in the
input (dvar�). The user needs also to input the prefix of the name of
the dummy variables (e.g., ivar) that will be generated (prefix�) and
the reference category (drop�). Categorical variables can be both
character and numerical using dumvar. For example we can run the
following:

dumvar data � dat dvar�“catvar” prefix�“ivar” drop�“ivar1”

Running this command will generate three indicator variables:
“ivar2,” “ivar3,” “ivar4.” (The macro can be found at http://mchp-
appserv.cpe.umanitoba.ca/concept/_dumvar.sas)

Comparison With Other Macros

Before concluding the section we would like the reader to be
aware that a rich set of alternative programs is also available to
implement mediation analyses in certain settings. We believe that
our macro provides unique features that may be useful to investi-
gators. At the end of this section Table 1 compares our macro to
some of the existing and popular software tools. Preacher and
Hayes (2004) developed several macros for mediation mainly
implementable in SAS, SPSS and Mplus (indirect, mediate,
modmed, medcurve); Imai et al. (2009) and Imai, Keele, Tingley,
& Yamamoto (2010) also developed a macro in R (mediate). We
also compare the macros to recent procedures that have been
developed in Mplus (Muthén, 2012) in part based on the work we
present in this article. We compare the macros on the basis of
certain features. We check whether they provide both direct and
indirect effects and if they allow for nonlinearities such as inter-
actions, and binary or count variables. We also consider whether
they accommodate case-control designs and in which software
packages they can be implemented.

Our macro, in contrast with that of Preacher and Hayes (2004), (a)
allows for effect decomposition into direct and indirect effects even in
the presence of exposure–mediator interaction, (b) allows for dichot-
omous mediators and count outcomes, (c) allows for case-control
designs, and (d) gives estimates with a clear interpretation within the
counterfactual framework. In contrast with that of Imai, Keele, et al.
(2010), our macro (a) provides direct and indirect effects on a ratio
scale for dichotomous outcomes, (b) allows for case-control sampling
designs, (c) is implemented in SAS and SPSS, which are more
commonly employed in the social sciences. Our macro provides
similar features to Mplus, which is in part because recent develop-
ments in Mplus (Muthén, 2012) were implemented following the
results of our article. Our macro, in contrast to Mplus, allows for
case-control designs; Mplus, in contrast to our macro, allows for the
flexibility to handle ordinal outcomes.

Description of the SPSS Macro

The SPSS macro that we provide, which was developed under
the Version 19.0, performs exactly the same tasks described in the
previous section for the SAS macro. However, we point out some
small differences that the investigator has to take into account
when running mediation analysis using SPSS software.

Before invoking the mediation macro the user has to open a new
SPSS session and needs to specify the path in which he or she
wants to save relevant estimates from the mediator and outcome
regressions. This is simply done by running this command:

DEFINE !path()”C: “!ENDDEFINE.

In between the quotation marks the path is defined, here for
example the path “C:	” has been entered. For SPSS users, macro
activation requires that the macro script is then saved as a syntax
file (the syntax file should be called from the session that has just
been opened) and information is input in the following statement:
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mediation data� / yvar� /avar� /mvar� /cvar� /NC� /a0� /a1�
/m� /yreg� /mreg� /interaction�

[/casecontrol� /Output� /c�]

First one inputs the name of the data set (including the path, e.g.,
data�“C:	mydata.sav”), then the name of the outcome variable
(yvar�), the treatment variable (avar�), the mediator variable
(mvar�), and the other covariates (cvar�). Categorical variables
need to be coded as a series of dummy variables before being
entered as covariates. The macro dummit can be used for this
purpose. Then the investigator needs to specify the baseline level
of the exposure a* (a0�), the new exposure level a (a1�), the
level of mediator m at which the controlled direct effect is to be
estimated and the number of covariates to be used (nc�). When no
covariates are entered, then the user still needs to write the com-
mand cvar� and needs to specify that nc � 0. The user must also
specify which types of regression have to be implemented. In
particular, LINEAR, LOGISTIC, LOGLINEAR, POISSON or
NEGBIN can be specified in the option yreg. Logistic links for
yreg can be used for rare dichotomous outcomes; otherwise for
dichotomous outcomes that are not rare, log links should be used
for the outcome regression, and the effects are then given on the
risk ratio scale. For the option mreg either LINEAR or LOGISTIC
regressions are allowed. If the data set contains missing data the
macro implements a complete case only analysis.

Finally, the analyst needs to specify whether an exposure–
mediator interaction is present (TRUE or FALSE). As optional

inputs, the investigator can use the option casecontrol � TRUE,
when the data arise from a case-control study, and the outcome
is rare. More complete output (described in the previous sec-
tion) can be obtained using the option Output � FULL and
entering the values for the covariates at which to compute
causal effects conditional on those covariate values (c�). In
order to enter the covariate values the investigator needs to
create a separate data set that contains those values. For exam-
ple, if two covariates C are present in the model and the value
at which the investigator wants to fix the first is 4 and the value
at which the investigator wants to fix the second is 10, at the
beginning of the script the following commands need to be run:

Matrix.

compute c � make(1,2,0).

compute c(1,1) � 4.

compute c(1,2) � 10.

SAVE {c(1,:)} /OUTFILE�“C:	\c.sav”.

end matrix.

After having created data set for the covariate values, the user
can specify the option Output � FULL/c�“C:	c.sav” to obtain
the more complete output.

If the investigator wishes to obtain bootstrap standard errors,
he or she can use the option boot � true followed by the number

Table 1
Macro Comparison

Variable mediationc mediationb modmeda mediatea Sobela Indirecta medcurvea Mplusd

Causal effects
direct effects ✓ ✓ X ✓ X ✓ X ✓
indirect effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Interaction
M-A ✓ ✓ ✓ X X X X ✓
M-C X X ✓ X X X X ✓

Type of variables
continuous M ✓ ✓ ✓ ✓ (� M & A) ✓ ✓ (� M) ✓ ✓
binary M ✓ ✓ X X X X X ✓
continuous Y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
binary Y ✓ ✓ X ✓ ✓ ✓ X ✓
count Y ✓ ✓ X X X X X ✓
ordinal Y X ✓ X X X X X ✓
Additional covariate ✓ ✓ ✓ ✓ X ✓ ✓ ✓

Design
Cross-Sectional ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cohort ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Case-Control ✓ ✓ X X ✓ ✓ X X

Standard Errors
delta method ✓ X X X X X X ✓
bootstrap ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Software
SAS ✓ X X ✓ ✓ ✓ ✓ X
SPSS ✓ X ✓ ✓ ✓ ✓ ✓ X
R X ✓ X X X X X X
MPLUS X X ✓ X X X X ✓

Note. Check means option is available; X means option is not available. M � mediator; A � exposure; C � covariates; Y � outcome.
a Preacher and Hayes (2004). b Imai et al. (Imai, Keele, Tingley, & Yamamoto, 2010; Imai, Keele, & Yamamoto, 2009). The Imai et al. macros contain
a sensitivity analysis option. Mplus is adding these features in keeping up with the literature, and our macros will eventually have these features as
well. c Valeri and VanderWeele (2012) (current article). d Muthén (2012). A number of the recent developments in Mplus were motivated by the results
of the present article.
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of observations in the data set (nobs�) to compute causal
effects and standard errors with 1,000 bootstrap replications (or
“boot�n,” where n is the desired number of bootstrap samples).
Otherwise delta method standard errors is the default option.

As we mentioned in the previous section, if the investigator
needs to add a categorical variable as covariate, a series of indi-
cator variables needs to be generated. The SPSS macro dummit
works very similarly to the SAS macro. In particular, the investi-
gator needs to call the macro followed by three parentheses. In the
first parenthesis the number of levels is entered, in the second
parenthesis the name of the variable needs to be specified. Finally,
in the third parenthesis, the prefix for the new variables is entered.
For example if the variable we need to recode is “smoking,” which
takes levels “never,” “past,” “current.” Then we can run the
following macro:

dummit (3) (smoking) (smoke)

This macro would generate the following variables: “smoke-
dum2,” “smokedum3.” The category “never” is automatically
taken as a reference. More examples can be found at http://www.
glennlthompson.com/?p�92

Example

We present in this section an example of using the mediation
macro. We implement the analyses on a modified version of the
fictitious data set used by Preacher and Hayes (2004) to explain
their Sobel macro. The interest lies in the effects of a new cogni-
tive therapy intervention on life satisfaction after retirement. Res-
idents of a retirement home diagnosed as clinically depressed are
randomly assigned to receive 10 sessions of a new cognitive
therapy (A � 1) or 10 sessions of an alternative therapeutic method
(A � 0). After Session 8, the positivity of the evaluation the
residents make for a recent failure experience is assessed (M).
Finally, at the end of Session 10, the residents are given a ques-

tionnaire to measure life satisfaction (Y). We can then investigate
whether the cognitive therapy’s effect on life satisfaction is medi-
ated by the positivity of their attributions of negative experiences.

The new data set that we employ differs with respect to that of
Preacher and Hayes (2004) only in the way in which the outcome
is simulated. In particular, the exposure and mediator variables are
the same but now the outcome is simulated as a normally distrib-
uted variable with mean equal to the linear regression estimated
with the original data (the coefficients given in the outcome
regression in Preacher & Hayes, 2004) plus a new term, the
exposure–mediator interaction term, with coefficient equal to �3 �
0.5 indicating a positive interaction, and standard deviation equal
to the standard error of the residuals obtained from the outcome
regression using Preacher and Hayes data (http://www
.afhayes.com/spss-sas-and-mplus-macros-and-code.html).

We first consider the case in which the interaction between the
therapy and the attributions of negative experiences is omitted by
the investigator.

After having saved the data set and inserted macro script we run
the following command:

%mediation(data � dat ,yvar � satis ,avar � therapy ,mvar � attrib
,cvar� ,a0 � 0 ,a1 � 1 ,m � 0, nc� ,yreg � linear ,mreg � linear
,interaction � false)

run;

The first output provided is the results of the outcome and medi-
ator regressions (see Table 2).

Then the direct effects and indirect effects follow. We give the
reduced output, which provides estimates for the controlled direct
effect, the natural indirect effect, and the total effect (see Table 3).

We then run the mediation macro with the correctly specified
outcome regression model that includes the exposure–mediator
interaction term. We type the following command:

Table 2
Example: Output of Mediator and Outcome Regressions Ignoring Exposure–Mediator Interaction

Variable df Estimate SE t Pr � |t|

Dependent variable: Satis, parameter standard

Intercept 1 �0.71479 0.20449 �3.50 0.0017
Therapy 1 0.66788 0.30147 2.22 0.0354
Attrib 1 0.67186 0.16923 3.97 0.0005

Dependent variable: Attrib, parameter standard

Intercept 1 �0.35357 0.21837 �1.62 0.1166
Therapy 1 0.81857 0.29902 2.74 0.0106

Note. Therapy � exposure; Attrib � mediator; Satis � outcome.

Table 3
Example: Direct and Indirect Effects Ignoring Exposure–Mediator Interaction

Obs Effect Estimate SE p CI_95lower CI_95upper

1 cde � nde 0.66788 0.30147 0.026733 0.07700 1.25877
2 nie 0.54997 0.24403 0.024215 0.07167 1.02827
3 total effect 1.21785 0.33475 0.000275 0.56174 1.87396

Note. CI_95 � 95% confidence interval; cde � controlled direct effect; nde � natural direct effect; nie � natural indirect effect.
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%mediation(data � dat ,yvar � satis ,avar � therapy ,mvar � attrib
,cvar� ,a0 � 0 ,a1 � 1 ,m � 0 ,nc� ,yreg � linear ,mreg � linear,
interaction � true)

run;

The output from the outcome regression is the following (the
mediator regression will be the same; see Table 4). Table 5
contains our estimates for the effects.

We can see how the estimate of the indirect effect is downward
biased and is less significant if the interaction term is omitted. More-
over, when the interaction term is correctly added in the model,
controlled direct effects and natural direct effects differ. The hypo-
thetical example here has been included to illustrate the software. In
an actual application of these methods, one would want to control for
variables confounding the relationship between assessment of a neg-
ative life experience and overall life satisfaction (i.e., of the mediator–
outcome relationship).

Discussion

With the present work we have provided several contributions that
will likely be important for research in psychology and in the social
and biomedical sciences. First, by using a counterfactual approach for
the definition of the causal effects of interest, along with their iden-
tifiability conditions, we give the reader some intuitive rules allowing
for causal interpretation in mediation analysis. Issues of identification
and causal interpretation have often been neglected when using the
Baron and Kenny (1986) approach and other traditional approaches;
the overview here will hopefully guide researchers in thinking about
these questions. Second, we have described how progress in media-
tion analysis can be made in the case in which exposure–mediator
interaction is present, and we have derived new formulas in the
Appendix for settings with a binary mediator allowing for exposure–
mediator interactions. We have also extended this approach to count
outcomes. Third, the investigator who wishes to pursue mediation
analysis using regression models will find useful resources in the SAS
and SPSS macro that we developed. These macros implement medi-
ation analysis allowing for the presence of exposure–mediator inter-

action. The macro was created by applying and extending the work on
estimation of direct and indirect causal effects of VanderWeele and
Vansteelandt (2009, 2010). The current macro also allows for binary
and count data as outcomes and provides valid estimation under
case-control designs provided the outcome is rare.

Mediation analysis from a counterfactual perspective with
exposure–mediator interaction can also be performed in R and
STATA using the macro provided by Imai et al. (Imai, Keele, &
Tingley, 2010; Imai, Keele, Tingley, & Yamamoto, 2010). Their
approach to mediation analysis relies on Monte Carlo methods. How-
ever, the connections to product method and other popular methods in
mediation analysis are clearer with the regression-based approach we
have presented in that we have provided analytic formulae for the
direct and indirect effects, and these formulae coincide with the
product method when there are no interactions. The approach of Imai
et al. (Imai, Keele, & Tingley, 2010; Imai, Keele, Tingley, &
Yamamoto, 2010) has the advantage of not needing separate formulas
for each combination of the mediator and outcome models (since the
calculations are done by simulation). It has the disadvantage of being
much more computationally intensive, which may prohibit use in
large data sets.

The reader should note that if interactions between exposure or
mediator and additional covariates (C) are present, these might need
to be included in order to have a correctly specified model. However,
the identifiability conditions that we described above under the coun-
terfactual framework are applicable also to these more complex mod-
els. An investigator can still pursue mediation analysis with these
different models, but new formulas for the direct and indirect effects
defined above would have to be derived. The derivations in the online
supplemental materials provide a template that could be used to derive
these new formulas for the direct and indirect effects and their stan-
dard errors in other types of models that may include interactions
between covariates and the treatment or the mediator or that include
quadratic terms.

Finally we emphasize that the investigator needs to take particular
care in controlling for mediator–outcome confounding. The estimates
from the product method or difference method or our approach will be

Table 4
Example: Output of Outcome Regression Allowing for Exposure–Mediator Interaction

Variable df Estimate SE t Pr � |t|

Intercept 1 �0.84424 0.1964 �4.30 0.0002
Therapy 1 0.62132 0.27901 2.23 0.0348
Attrib 1 0.30575 0.21913 1.40 0.1747
Int 1 0.74464 0.31251 2.38 0.0248

Note. Therapy � exposure; Attrib � mediator; Satis � outcome; Int � exposure-mediator interaction.

Table 5
Example: Direct and Indirect Effects Allowing for Exposure–Mediator Interaction

Obs Effect Estimate SE p CI_95lower CI_95upper

1 cde 0.62132 0.27901 0.02596 0.07446 1.16818
2 nde 0.35804 0.34759 0.30298 �0.32323 1.03931
3 nie 0.85981 0.28782 0.00281 0.29568 1.42395
4 total effect 1.21785 0.33407 0.00027 0.56307 1.87263

Note. CI_95 � 95% confidence interval; cde � controlled direct effect; nde � natural direct effect; nie � natural indirect effect.
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biased if control is not made for these variables. Mediator–outcome
confounding can be present even if the exposure is randomized (since
the mediator is not randomized). Unfortunately, this point was not
made in the popular Baron and Kenny (1986) article, although it was
made by Judd and Kenny (1981) 5 years earlier, and it has now been
emphasized and clarified in the causal inference literature and is being
emphasized again in psychology. Psychologists, social scientists, and
biomedical researchers need to take this assumption seriously if they
hope to obtain valid conclusions about direct and indirect effects. If
the investigator thinks that unmeasured confounding may be present,
sensitivity analysis should be used (Imai, Keele, & Tingley, 2010;
VanderWeele, 2010). We hope to automate sensitivity analysis in the
macro in future work.
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Appendix

Definitions Under the Counterfactual Framework

We let Ya and Ma denote, respectively, the values of the out-
come and mediator that would have been observed had the expo-
sure A been set to level a. We let Yam denote the value of the
outcome that would have been observed had the exposure A, and
mediator, M, been set to levels a, and m, respectively. The average
controlled direct effect comparing exposure level a to a* and fixing
the mediator to level m is defined by CDEa,a*�m� � E�Yam �
Ya*m�. The average natural direct effect is then defined by
NDEa,a*�a*� � E�YaMa* � Ya*Ma*�. The average natural indirect
effect can be defined as NIEa,a*�a*� � E�YaMa

� YaMa*�, which
compares the effect of the mediator at levels Ma and Ma* on the
outcome when exposure A is set to a. Controlled direct effects and
natural direct and indirect effects within strata of C � c are then
defined by CDEa,a*|c�m� � E�Yam � Ya*m�c�, NDEa,a*|c�a*� � E
�YaMa* � Ya*Ma*�c�, and NIEa,a*|c�a*� � E�YaMa

� YaMa*�c� respec-
tively.

For a dichotomous outcome the total effect on the odds ratio
scale conditional on C � c is given by ORa,a*|c

TE
�

P�Ya � 1�c�⁄�1�P�Ya � 1�c��
P�Ya* � 1�c�⁄�1�P�Ya* � 1�c��

. The controlled direct effect on

the odds ratio scale is given by ORa,a*|c
CDE �m� �

P�Yam � 1�c�⁄�1�P�Yam � 1�c��
P�Ya*m � 1�c�⁄�1�P�Ya*m � 1�c��

. The natural direct effect on the

odds ratio scale conditional on C � c is given by ORa,a*|c
NDE �a*� �

P�YaMa* � 1�c�⁄�1�P�YaMa* � 1�c��

P�Ya*Ma* � 1�c�⁄�1�P�Ya*Ma* � 1�c��
. The natural indirect effect

on the odds ratio scale conditional on C � c is given by

ORa,a*|c
NIE �a� �

P�YaMa
� 1�c�⁄�1�P�YaMa

� 1�c��

P�YaMa* � 1�c�⁄�1�P�YaMa* � 1�c��
.

As discussed in the text, identification assumptions (a)–(d) will
suffice to identify these direct and indirect effects. If we let X�Y|Z
denote that X is independent of Y conditional on Z then these four
identification assumptions can be expressed formally in terms of
counterfactual independence as (a) Yam�A|C, (b) Yam�M|�A,C�,
(c) Ma�A|C, and (d) Yam�Ma*|C. As discussed in the text, the
intuitive interpretation of these assumptions is that conditional on
C there is (a) no unmeasured exposure–outcome confounding, (b)
no unmeasured mediator–outcome confounding, (c) no unmea-
sured exposure–mediator confounding and (d) no mediator–
outcome confounder affected by the exposure. Assumptions (a)
and (b) suffice to identify controlled direct effects; assumptions
(a)–(d) suffice to identify natural direct and indirect effects (Pearl,
2001; VanderWeele & Vansteelandt, 2009). The intuitive interpre-
tation of these assumptions as described in the text follows
from the theory of causal diagrams interpreted as nonparametric
structural equations (Pearl, 2001). Alternative identification as-
sumptions have also been proposed (Hafeman & VanderWeele,
2011; Imai, Keele, & Tingley, 2010). However, it has been
shown that the intuitive graphical interpretations of these alter-
native assumptions are in fact equivalent (Shpitser & Vander-
Weele, 2011). Technical examples can be constructed where
one set of identification assumptions holds and another does not
(see also Robins & Richardson, 2010), but on a causal diagram
corresponding to a set of nonparametric structural equations,
whenever one set of the assumptions among those in Vander-
Weele and Vansteelandt (2009); Imai, Keele, and Tingley
(2010); and Hafeman and VanderWeele (2011) holds, the others
will also.

(Appendix continues)
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Continuous Outcome and Continuous Mediator

Suppose that both the mediator and the outcome are continuous
and that the following models fit the observed data:

E[M�a, c] � �0 � �1a � ��2c

E[Y�a, m, c] � �0 � �1a � �2m � �3am � ��4c

If the covariates C satisfied the no-unmeasured confounding as-
sumptions (a)–(d) above, then the average controlled effect and the
average natural direct and indirect effects would be given by
(VanderWeele & Vansteelandt, 2009):

CDE � (�1 � �3m)(a � a*)

NDE � ��1 � �3(�0 � �1a
* � ��2c)�(a � a*)

NIE � (�2�1 � �3�1a)(a � a*)

Continuous Outcome and Binary Mediator

Suppose that the mediator is binary, and the outcome is contin-
uous and that the following models fit the observed data:

E[Y�a, m, c] � �0 � �1a � �2m � �3am � ��4c

logit�P(M � 1�a, c)� � �0 � �1a � ��2c

If the covariates C satisfied the no-unmeasured confounding as-
sumptions (a)–(d) above, then the average controlled effect and the
average natural direct and indirect effects would be given by

CDE � (�1 � �3m)(a � a*)

NDE � �1(a � a*) � ��3(a � a*)�
exp��0 � �1a

* � ��2c)

1 � exp��0 � �1a
* � ��2c)

NIE � (�2 � �3a)� exp��0 � �1a � ��2c)

1 � exp��0 � �1a � ��2c)
�

exp��0 � �1a
* � ��2c)

1 � exp��0 � �1a
* � ��2c)	

Binary Outcome and Continuous Mediator

Suppose that the mediator is continuous, and the outcome is
binary and rare and that the following models fit the observed data:

logit�P(Y � 1�a, m, c)� � �0 � �1a � �2m � �3am � ��4c

E[M�a, c] � �0 � �1a � ��2c

If the covariates C satisfied the no-unmeasured confounding as-

sumptions (a)–(d) above, then the average controlled effect and the
average natural direct and indirect effects would be given approx-
imately by

log�ORCDE� � (�1 � �3m)(a � a*)

log�ORNDE� � ��1 � �3(�0 � �1a
* � �2

’ c � �2�
2)�(a � a*) � 0.5�3

2�2(a2 � a*2)

log�ORNIE� � (�2�1 � �3�1a)(a � a*)

These expressions apply also if the outcome is not rare and
log-linear rather than logistic models are fit to the data; the
expressions are then for direct and indirect effect risk ratios rather
than odds ratios.

Binary Outcome and Binary Mediator

Suppose that both the mediator and the outcome are binary and
that the following models fit the observed data:

logit�P(Y � 1�a, m, c)� � �0 � �1a � �2m � �3am � ��4c

logit�P(M � 1�a, c)� � �0 � �1a � ��2c

If the covariates C satisfied the no-unmeasured confounding as-
sumptions (a)–(d) above, then the average controlled effect and the
average natural direct and indirect effects would be given by

ORCDE � exp�(�1 � �3m)(a � a*)�

ORNDE �
exp(�1a)�1 � exp(�2 � �3a � �0 � �1a

* � �2
’ c)�

exp(�1a
*)�1 � exp(�2 � �3a

* � �0 � �1a
* � �2

’ c)�

ORNIE �
�1 � exp(�0 � �1a

* � �2
’ c)��1 � exp(�2 � �3a � �0 � �1a � �2

’ c)�
�1 � exp(�0 � �1a � �2

’ c)��1 � exp(�2 � �3a � �0 � �1a
* � �2

’ c)�

These expressions apply also if the outcome is not rare and
log-linear rather than logistic models are fit to the data; the
expressions are then for direct and indirect effect risk ratios rather
than odds ratios. As discussed in the online supplement, the
expressions for binary outcomes also apply to count outcomes
using models with log links. Derivations and standard errors are
also given in the online supplement.
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