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Abstract

Recent advances in the causal inference literature on mediation have extended traditional 

approaches to direct and indirect effects to settings that allow for interactions and non-linearities. 

In this paper, these approaches from causal inference are further extended to settings in which 

multiple mediators may be of interest. Two analytic approaches, one based on regression and one 

based on weighting are proposed to estimate the effect mediated through multiple mediators and 

the effects through other pathways. The approaches proposed here accommodate exposure-

mediator interactions and, to a certain extent, mediator-mediator interactions as well. The methods 

handle binary or continuous mediators and binary, continuous or count outcomes. When the 

mediators affect one another, the strategy of trying to assess direct and indirect effects one 

mediator at a time will in general fail; the approach given in this paper can still be used. A 

characterization is moreover given as to when the sum of the mediated effects for multiple 

mediators considered separately will be equal to the mediated effect of all of the mediators 

considered jointly. The approach proposed in this paper is robust to unmeasured common causes 

of two or more mediators.
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1. Introduction

The causal inference literature has provided important advances in mediation analysis in 

clarifying the assumptions needed for a causal interpretation of direct and indirect effect 

estimates and in developing approaches to mediation analysis allowing for models with 

interactions and non-linearities (Robins and Greenland, 1992; Pearl, 2001; van der Laan and 

Petersen, 2008; VanderWeele and Vansteelandt, 2009, 2010; Imai et al., 2010; Tchetgen 

Tchetgen and Shpitser, 2012; Valeri and VanderWeele, 2013). With a few notable 

exceptions (Avin et al., 2005; Albert and Nelson, 2011; Imai et al., 2012; Zheng and van der 

Laan, 2012) most of this literature has been restricted to the setting of a single mediator.

When multiple mediators are of interest one approach would be to consider the mediators 

one at a time. As described below, however, this will in general require that the mediators do 

not affect one another. In this paper we develop an approach that allows an investigator to 

assess mediation with multiple mediators simultaneously, and which can also accommodate 
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cases in which the mediators affect one another. We allow for potential exposure-mediator 

interactions as well as, to a certain extent, mediator-mediator interactions. When the 

ordering of the mediators is known we also discuss how the magnitude of certain path-

specific effects can be inferred by applying the approach sequentially. We give two different 

statistical techniques - one based on regression and one based on weighting - to estimate 

direct and indirect effects in these cases. We show how our approach is robust to 

unmeasured common causes of two or more mediators, whereas handling the mediators one-

by-one will fail in these cases. When mediators are handled one by one, the sum of the 

proportion mediated on the additive scale for the mediators can sometimes total more than 

one hundred percent, even if the direction of mediation is the same for all mediators. We 

show that when this arises, it is because the mediators in fact affect one another or because 

of mediator-mediator interactions. The methods we propose in this paper can handle these 

situations. In a related paper (VanderWeele et al., 2013) we discuss effect decomposition in 

the presence of exposure-induced mediator outcome confounding in which there are 

multiple mediators but only one mediator is of principal interest. In this paper we focus on 

assessing direct and indirect effects when multiple mediators are of interest simultaneously. 

Tchetgen Tchetgen and Shpitser (2012), Zheng and van der Laan (2012) and Vansteelandt et 

al. (2012) develop semiparametric approaches that can also potentially be used for multiple 

mediators. Here we develop a simple parametric approach that is easy to implement 

extending the work of VanderWeele and Vansteelandt (2009, 2010) and Valeri and 

VanderWeele (2013) to handle multiple mediators.

2. Direct and Indirect Effects for a Single Mediator: A Review

Let A denote the exposure for an individual, let Y denote some outcome, and let M denote 

the value of a single potential mediator that may be on the pathway from exposure to 

outcome. Let C denote some set of confounding variables that may affect the exposure, 

mediator and/or outcome. The relationships between A, M, Y and C are given in Figure 1.

There may be other mediators as well but when focusing on only one mediator these would 

be represented by the direct path from A to Y not through M.

Let Ya denote a subject's potential or counterfactual outcome if exposure A were set, 

possibly contrary to fact, to a. Let Ma denote a subject's counterfactual value of the 

intermediate M if exposure A were set to the value a. Let Yam denote a subject's 

counterfactual value for Y if A were set to a and M were set to m. For a single mediator, 

Robins and Greenland (1992) and Pearl (2001) provided the following definitions. The 

controlled direct effect of exposure A on outcome Y comparing A = a with A = a* and setting 

M to m is defined by Yam − Ya*m and measures the effect of A on Y not mediated through M, 

i.e. the effect of A on Y after intervening to fix the mediator to some value m. The natural 

direct effect of exposure A on outcome Y comparing A = a with A = a* intervening to set M 

to what it would have been if exposure had been A = a* is defined as YaMa* − Ya*M*. 

Essentially, the natural direct effect assumes that the intermediate M is set to Ma*, the level 

it would have been for each individual had exposure been a*, and then compares the direct 

effect of exposure. The natural indirect effect comparing A = a with A = a* and intervening 

to set exposure A to a is defined as YaMa − YaMa*. The natural indirect effect assumes that 
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exposure is set to some level A = a and then compares what would have happened if the 

mediator were set to what it would have been if exposure had been a versus what would 

have happened if the mediator were set to what it would have been if exposure had been a*. 

A total effect can be decomposed into a natural direct and indirect effect. The total effect Ya 

− Ya* can be written as Ya −Ya* = YaMa −Ya*M* = (YaMa −YaMa*)+(YaMa* −Ya*Ma*), where 

the first expression in the sum is the indirect or mediated effect and the second expression is 

the natural direct effect. We can likewise define average controlled direct and natural direct 

and indirect effects conditional on covariates C = c by E[Yam − Ya*m|c], E[YaMa* − Ya*M*|c], 

and E[YaMa − YaMa*|c] respectively.

With a binary outcome, we can define direct and indirect effects on a risk ratio or odds ratio 

scale (VanderWeele and Vansteelandt, 2010). On the odds ratio scale, the total effect 

conditional on C = c is given by . The controlled 

direct effect on the odds ratio scale conditional on C = c is given by 

 The natural direct effect on the odds 

ratio scale conditional on C = c is given by 

. The natural indirect effect on the 

odds ratio scale conditional on C = c is given by 

. On a risk ratio scale conditional on C 

= c, the total effect is given by , the controlled direct effect is given 

by , and the natural direct effect is given by 

. The natural indirect effect on the risk ratio scale conditional 

on C = c is given by . The total effect then decomposes into the 

product of the natural direct and indirect effects on the odds ratio or risk ratio scale: 

.

The identification of direct and indirect effects requires various no-unmeasured confounding 

assumptions. We will use the notation A ⫫ B|C to denote that A is independent of B 

conditional on C. Controlled direct effects are identified if control is made for a covariate set 

C that includes all confounders of not only the exposure-outcome relationship but also the 

mediator-outcome relationship. In counterfactual notation, we require that for all a and m,
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(1)

(2)

Assumption (1) can be interpreted as: conditional on C, there is no unmeasured confounding 

for the exposure-outcome relationship. Assumption (2) can be interpreted as there is no 

unmeasured confounding for the mediator-outcome relationship. Natural direct and indirect 

effects will be identified if four no-unmeasured confounding assumptions hold. Natural 

direct and indirect effects will be identified if, in addition to assumptions (1) and (2), the 

following two assumptions hold, that for all a, a* and m,

(3)

(4)

Assumption (3) can be interpreted as: conditional on C, there is no unmeasured confounding 

of the exposure-mediator relationship. On a causal diagram interpreted as a set of non-

parametric structural equations (Pearl, 2009), if assumption (2) holds, then assumption (4) 

will hold if there is no effect L of exposure A that itself affects both M and Y, i.e. no effects 

of exposure A that confound the mediator-outcome relationship. If, however, there is an 

effect of the exposure that confounds the mediator-outcome relationship, then natural direct 

and indirect effects will not in general be identified irrespective of whether data is available 

on that variable or not (Avin et al., 2005). Exceptions arise under strong assumptions about 

no-interaction at the individual level (Robins, 2003).

We will now present a simple regression-based approach to the estimation of direct and 

indirect effects, which we will extend below to allow for multiple mediators. Suppose 

assumptions (1)-(4) hold, that Y and M are continuous and that the following regression 

models for Y and M are correctly specified:

Then it can be shown (VanderWeele and Vansteelandt, 2009) that the average controlled 

direct effect and the average natural direct and indirect effects are given by
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VanderWeele and Vansteelandt (2009) also derived standard errors for these effects using 

the delta method; alternatively bootstrapping can also be used. If there is no interaction 

between A and M so that θ3 = 0, then these expressions reduce to the expressions of Baron 

and Kenny (1986) employed in the psychology literature. The controlled direct effect and 

the natural direct effect are then both equal to θ1(a − a*) and the natural indirect effect is 

θ2β1(a − a*).

Likewise for a binary outcome, suppose that the following models fit the observed data:

and that the error term in the regression model for M is normally distributed with mean 0 

and conditional variance σ2. If the covariates C sufficed to control for confounding, 

satisfying assumptions (1)-(4) above, and the outcome were rare, then the conditional 

controlled direct effect and the average natural direct and indirect effects on the odds ratio 

scale would be given by (VanderWeele and Vansteelandt, 2010):

The approximations hold to the extent that the outcome is rare. These expressions would 

also hold exactly for a rare or common binary outcome if the logistic model was replaced by 

a log-linear model and natural direct and indirect effects on the risk ratio scale were used. 

Valeri and VanderWeele (2012) derived similar expressions for either binary or continuous 

outcomes when the mediator is binary. Similar expressions also hold if the binary outcome 

is replaced by a count outcome with a Poisson or negative binomial model and rate ratios are 

used (Valeri and VanderWeele, 2012).

3. Direct and Indirect Effects for Multiple Mediators

3.1. Notation, Definitions and Assumptions with Multiple Mediators

Suppose now that there are multiple mediators of interest, M = (M (l), …, M (K)) and that we 

are interested in the effects mediated through (M (l), …, M (K)) jointly and the effects 

independent of (M (l), …, M (K)). We can define controlled direct effects and natural direct 

and indirect effects in a similar way as before simply replacing our single mediator M with 

the entire vector of mediators M = (M (l), …, M (K)). Thus, let Ma be the counterfactual 

value of M if exposure A were set to the value a and let Yam denote the counter-factual value 

for Y if A were set to a and M were set to m. The controlled direct effect is defined by Yam − 

Ya*m; the natural direct effect is defined as YaMa* − Ya*Ma* ; the natural indirect effect is 

defined as YaMa − YaMa* ; and once again the total effect can be decomposed into a natural 

direct and indirect effect: Ya − Ya* = YaMa − Ya*Ma* = (YaMa − YaMa*) + (YaMa* − Ya*Ma*).
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Suppose again that the four assumptions about confounding hold but now with respect to the 

whole set of mediators M = (M (l), …, M (K)). In other words suppose we have (1) Yam ⫫ A|

C, (2) Yam ⫫ M|{A, C}, (3) Ma ⫫ A|C, and (4) Yam ⫫ Ma* lC. We once again need to control 

for all exposure-outcome, mediator-outcome, and exposure-mediator confounders, but note 

that now for assumptions (2) and (3) the mediator-outcome confounders must be controlled 

for all of the mediators, not just one and likewise the exposure-mediator confounders must 

be controlled for all of the mediators, not just one. Assumption (4) again requires that there 

be no effect of the exposure that confounds the mediator-outcome relationship for any of the 

mediators. If there were such a variable then to proceed it would have to be included in the 

mediator vector M if assumption (4) were not to be violated.

3.2. A Regression-Based Approach for Multiple Mediators with a Continuous Outcome

Under these assumptions the natural direct and indirect effects can once again be estimated 

using a parametric regression-based approach. We will use one regression for the outcome Y 

and a separate regression for each of the mediators. For simplicity and ease of 

implementation we will use parametric rather than non-parametric regression here. We will 

begin with the case of a continuous outcome with continuous mediators and no interactions 

and we will consider extensions allowing for exposure-mediator interactions, mediator-

mediator interaction as well as binary mediators and outcomes below.

Suppose then that assumptions (1)-(4) held for the vector of mediators M = (M (l), …, M (K)) 

and that the following regressions are correctly specified and fit to the data:

We show in the Appendix that the controlled direct effect and natural direct and indirect 

effects are then given by

(5)

The direct effects are perhaps exactly what one might expect, simply the coefficient for the 

exposure, θ1, in the model that contains all of the mediators. The natural indirect effect is 

equal to the sum over the various mediators, M (1), …, M (K), of the product of the 

coefficient for the exposure (*****(k) for the kth mediator) in the model for the mediator and 

the coefficient for the mediator  for the kth mediator) in the model for the outcome that 

has all the mediators. The indirect effect has this fairly intuitive form. Note, however, that 

this is different from applying the approach to mediation for a single mediator described in 

section 2 one mediator at a time and then summing up the indirect effects. This is because if 

the mediators were handled one at a time then a different regression for Y would be fit for 

each mediator and only one mediator would be included in each of these regressions. The 
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approach described in this section fits only a single regression for Y which includes all of the 

mediators under consideration.

In the Appendix we show that these two approaches will coincide if the mediators do not 

affect one another (or more precisely, if the mediators are independent of one another 

conditional on A and C) but they will diverge otherwise. They will diverge if they affect one 

another because certain pathways will be counted twice if the mediation analysis is done one 

at a time. For example if there are two mediators where M (1) affects M (2) as in Figure 2 and 

if the analysis were done one mediator at a time then the path A − M (1) − M (2) − Y would be 

included in the indirect effect both for the analysis for M (1) and for the analysis for M (2). If 

the two "indirect effects" were summed, the path would essentially be counted twice.

The approach described in this section circumvents this difficult by fitting only one 

regression for Y. When the mediators affect one another the approach of handling one 

mediator at a time also suffers from another difficulty. This other difficulty is that for the 

second (and potentially each subsequent) mediator, assumption (2) will not hold if the 

mediators are considered one at a time. This is because M (1) may affect both M (2) and Y 

and thus be a mediator-outcome confounder. Including M (1) in the covariate set C would 

not remedy this when M (1) is affected by A, for then assumption (4) is still violated. 

Assumption (4) may nonetheless hold with regard to a whole collection of mediators M = 

(M (1), …, M (K)) without holding for each mediator individually. When mediators are 

considered one mediator at a time, natural direct and indirect effects will thus often not be 

identified except under strong assumptions about the absence of interaction (cf. Robins, 

2003). See VanderWeele et al. (2012) for methods relevant to such exposure-induced 

mediator-outcome confounding.

As will be seen in the next subsection, however, the approach described here will also be 

able to be used even in the presence of interaction. Moreover, later in the paper we will see 

that even if the mediators are in fact dependent of one another, the approach described here 

will be robust to unmeasured common causes of two or more mediators, whereas the 

approach considering the mediators one at a time will not be robust to such unmeasured 

variables.

3.3. Exposure-Mediator Interactions, Binary Mediators, and Mediator-Mediator Interactions

In this subsection we will discuss how the simple approach above can be easily adapted to 

allow for exposure-mediator interactions, binary mediators, and, to a certain extent, 

mediator-mediator interactions. We will describe how to go about estimating causal effects 

for each of these variations; justification for all statements is given in the Appendix. 

Although it would not be difficult to give analytic standard errors for each of the variations 

below using the delta method, there are, as will be seen, numerous possible variations and 

new formulae would have to be derived in each case. We therefore recommend 

bootstrapping in the estimation of standard errors for the purposes of simplicity.

Suppose we wished to allow for an interaction between the exposure A and a mediator M (i) 

in the model for Y e.g. so that the outcome model became:
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(5)

Provided the models are correctly specified, the expressions for the controlled direct effect 

and natural direct and indirect effects in (5) are then modified by adding  to 

the controlled direct effect,  to the natural direct effect and 

 to the natural indirect effect so that the effects become:

If a further interaction is thought to be present between the exposure and another of the 

mediators, e.g. mediator j say, then the same terms could once again be added to these 

expressions:  to the controlled direct effect, 

to the natural direct effect, and  to the natural indirect effect. And similarly 

for other exposure-mediator interactions; any number of exposure-mediator interactions 

could be accommodated in this manner.

Thus far we have assumed all mediators are continuous. Suppose that one or more of the 

mediators is binary, say mediator j, and that we fit a logistic regression model for M (j) 

(instead of a linear regression model):

Provided the models are correctly specified, the expressions for the controlled direct effect 

and natural direct effect then remain the same, but the expression for the natural indirect 

effect is modified. Instead of the term  for the jth mediator we would include 

in the natural indirect effect the term: 

 ; i.e. we would 

replace  in the expression in (5) with 

 and we would likewise do this 

for each mediator that were binary. If we also wanted to allow for exposure-mediator 

interaction with a mediator that were binary, we would further add  to the 

controlled direct effect,  to the natural direct effect, 
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and  to the natural indirect 

effect. We could once again do this for each mediator that were binary and for which we 

wanted to include an exposure-mediator interaction.

Finally, suppose, that a binary exposure variable A were randomized and that no covariates 

were needed for assumptions (1)-(4) to hold. Suppose that we wanted to allow for mediator-

mediator interaction between two mediators i and j as for example in the regression model:

Provided the models are correctly specified, the controlled direct effect and natural direct 

effect will both be exactly the same as described above. However, the natural indirect effect 

needs to be modified further. In particular, we could fit a linear regression model for the 

product

We then would add the term  to the natural indirect effect. Unfortunately, as 

discussed in the appendix, if covariates C are included in the model then this can lead to 

issues of model compatibility between the models for M (i) and M(j) and that for the product 

M (i)M (j). In section 4 we present an alternative weighting approach that circumvents this 

issue and is applicable to settings with mediator-mediator interactions.

3.4. A Regression-Based Approach for Multiple Mediators with a Binary Outcome

When the outcome is binary, rather than continuous, a similar approach to that described 

above, can also be employed but it is subject to the restriction that it will only work when all 

of the mediators are continuous. In the next section, however, we will also describe a 

weighting-based approach which can be used if the mediators are binary (or if some are 

binary and some are continuous) and that can also accommodate potential mediator-

mediator interactions.

Suppose then the outcome is binary and all mediators are continuous and the following two 

models are correctly specified and fit to the data:

Suppose also now that the mediators M (1), …, M (K) follow a multivariate normal 

distribution conditional on A and C. We show in the Appendix that when the models are 

correctly specified and when assumptions (1)-(4) hold and when the outcome is rare (or the 
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logistic regression model is replaced by a log-linear model for a common outcome with the 

effect measures interpreted as relative risks rather than odds ratios) then the log of the 

controlled direct effect and natural direct and indirect effect odds ratios are given by:

These were the same expressions we had obtained in (5) for a continuous outcome. If we 

wish to allow for exposure-mediator interactions we can simply add additional terms. 

Suppose we wished to allow for an interaction  between the exposure A and a 

mediator M (i) in the model for Y. The expressions for the controlled direct effect and natural 

indirect effects are then modified by adding  to the controlled direct effect, 

and  to the natural indirect effect; however, the expression for the natural 

direct effect is more complicated as it involves the correlation between the mediators; it is 

given in the Appendix.

If the data come from a case-control study with a rare outcome, then this same approach and 

the same expressions can be used but the regression models for the mediators are then fit 

only among the controls; see VanderWeele and Vansteelandt (2010) for further details. The 

same expressions can likewise be used for the ratio of expectations if the outcome is a count 

outcome and the logistic regression model is replaced by a log-linear model.

The approach described here for a binary or count outcome will, as noted above, only apply 

if all of the mediators are continuous. If one or more of the mediators are binary then an 

alternative approach will need to be used. Moreoever, as we have seen, even if all of the 

mediators are continuous, the expressions for the natural direct effect become more 

complicated if there are exposure-mediator interactions. All of this motivates the alternative 

weighting approach, described below, which can much more flexibly accommodate binary 

outcomes.

3.5 Assessing Mediators Sequentially

Before moving on a few additional comments merit attention. First, the approach we have 

described so far does not necessarily require knowing the ordering of the mediators M (1), 

…, M (K), though it does again require that there is no further variable that is affected by the 

exposure and that goes on to affect one of the mediators M (1), …, M (K) and also the 

outcome. If there is such a variable it needs to be included in the set M (1), …, M (K). If the 

ordering of M (1), …, M (K) is known then some further progress can also be made. One 

could for example, begin with the first mediator M (1) and use the approach described here to 

examine the portion of the effect mediated through M (1). One could then consider M (1) and 

M (2) jointly and use the approach described here to examine what proportion of the effect is 

mediated through both M (1) and M (2) together. Doing so would allow one to assess the 

additional contribution of M (2) beyond M (1) alone. Note that the difference between the two 

will potentially be different than simply the effect mediated through M (2) itself because for 
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example, M (1) and M (2) may share common pathways (if for example M (1) affected M (2) 

or if, as discussed later in the paper, M (1) and M (2) interact in their effects). One could 

further then consider (M (1), M (2), M (3)) and examine the proportion mediated by all three 

jointly along with the additional contribution of M (3) beyond (M (1), M (2)). One could carry 

on this process, adding sequentially one mediator at a time, until all K mediators are 

included.

Undertaking this sequential approach does, however, place additional restrictions on the 

models being used. This is because for each group of mediators a different model is being fit 

for Y. In particular, as is discussed at greater length in the Appendix, for the various models 

for Y to be compatible with one another when the exposure is binary, it is necessary that 

either (i) there are no exposure-mediator or mediator-mediator interactions or (ii) the models 

must be extended to allow for exposure-covariate interaction. See the appendix for further 

details.

4. A Weighting Approach

Because of the aforementioned concerns about model incompatibility that arise because of 

mediator-mediator interactions and because the addition of mediators increases the need for 

modeling, we also present a simple alternative approach based on inverse probability 

weighting. This alternative weighting approach does not require models for the mediators. 

Instead a model for the exposure is used and this then essentially overcomes the issue of 

model incompatibility. This weighting approach can be used for essentially any type of 

outcome, including non-rare binary outcomes, and it can be used regardless of whether there 

are exposure-mediator or mediator-mediator interactions. However, as with other weighting 

approaches, its performance is best when the exposure is binary or discrete with only a few 

levels.

The weighting approach estimates the marginal natural direct effect, E[YaMa*]−E[Ya*Ma*], 

and the marginal natural indirect effect, E[YaMa] − E[YaMa*]. Doing so, requires the 

estimation of three counterfactuals: E[YaMa*], E[Ya*Ma*], and E[YaMa]. For the 

counterfactual E[Ya*Ma*] we can obtain this by taking a weighted average of the subjects 

with A = a* where each subject i is given a weight

where ci denotes the actual covariate value for subject i. For a binary exposure with a = ⫫ 

and a* = 0, the probabilities P(A = 0|ci) could be fit, for example, using logistic regression 

and obtaining the predicted probabilities for P(A = 0|ci) for each subject i. The approach 

requires that such models are correctly specified. Likewise we can obtain the counterfactual 

E[YaMa] by taking a weighted average of the subjects with A = a where each subject i is 

given a weight
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where again ci denotes the actual covariate value for subject i. And again for a binary 

exposure with a = 1 and a* = 0, the probabilities P(A = 1|ci) could be fit, for example, using 

logistic regression and obtaining the predicted probabilities for P(A = 1|ci) for each subject i.

Finally, for the counterfactual E[YaMa*], for each subject i with Ai = a*, one uses an 

outcome model E(Y la, mi, ci) (which can include exposuremediator or mediator-mediator 

interactions) to obtain a predicted estimate of the outcome if the individual had had exposure 

Ai = a rather than Ai = a*, but using the individual's own values of the mediator, M = mi, 

and covariates, C = ci. The weighting approach requires that the outcome model is correctly 

specified. Once these predicted values are calculated one can obtain an estimate for the 

counterfactual E[YaMa*] by taking a weighted average of these predicted values for subjects 

with Ai = a* where each subject i is given the weight

Once the various counterfactuals are obtained, we can estimate the natural direct effect by 

taking the difference E[YaMa*] − E[Ya*Ma*], and the natural indirect effect by taking the 

difference E[YaMa] − E[YaMa*]. Alternatively, on a ratio scale we could obtain risk ratios for 

the natural direct effect by taking the ratio E[YaMa*]/E[Ya*Ma*], and for the natural indirect 

effect by taking the ratio E[YaMa]/E[YaMa*] and likewise for effects on an odds ratio scale. 

We recommend bootstrapping for confidence intervals. This approach essentially constitutes 

a straightforward generalization of the result in Albert (2012) to the case of a vector of 

mediators and is also closely related to the imputation approach of Vansteelandt et al. 

(2012). SAS code to implement this weighting approach is given in the Appendix. As with 

other weighting approaches, the approach here can be unstable if some of the probabilities in 

the denominator are very small so that some of the weights are very large; it is also good to 

check overlap in the distribution of the weights among the exposed and unexposed.

Both the weighting approach in this section and the regression approach in the previous 

section assume that the models are correctly specified. However, these different approaches 

make different modeling assumptions in that they require different models to be correctly 

specified. The regression approach in the previous section requires that the model for the 

outcome and the models for each of the mediators are correctly specified; no model for the 

exposure is need in the regression approach. The approach will be biased if the models for 

the either the outcome or the mediators are mis-specified. In contrast, the weighting 

approach requires that the model for the outcome and the model for the exposure are 

correctly specified; no models for the mediators are needed. The approach will be biased if 

the models for the either the outcome or the exposure is mis-specified.
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5. Illustration

To illustrate the weighting approach we will analyze 2003 US birth certificate data and will 

consider whether the exposure, A, of adequate or inadequate prenatal care (n = 2, 629, 247; 

those with intermediate or superadequate care are excluded from the analysis for the 

purposes of this illustration) on preterm birth (Y) is mediated by maternal smoking and/or 

drinking (M (1)) or preeclampsia (M (2)). Adequacy of prenatal care categories are 

determined from data on the month prenatal care was initiated, on the number of visits, and 

on gestational age, according to the American College of Gynecologists recommendation as 

encoded in a modification of the APNCU index (Kotelchuck, 1994; VanderWeele, 2009). In 

this analysis we will take age category (below 20 years, between 20 and 35 years, or above 

35 years), ethnicity (black, Hispanic, native American, white), education and marital status 

as baseline confounders (C). Our analysis is certainly a simplification of a more complex 

reality as prenatal care and maternal smoking are both ultimately time-varying and 

preeclampsia and preterm birth could be conceived of as processes whereas we will treat 

them as dichotomous.

Inverse probability weights were constructed on the basis of logistic regression models for 

adequate care. In view of the large sample size and the resulting computational burden, 

standard errors and confidence intervals were constructed using the subsampling 

bootstraP(Politis and Romano, 1994). This is similar to the bootstrap, but involved repeating 

the analysis for 1000 sub-samples of size n = l3l46 (0.5% of the total sample size); on the 

basis of the empirical standard deviation of the 1000 estimates, the standard error of the 

estimates that were obtained from the analysis of the full data set can be inferred (accounting 

for correlation resulting from the fact that some data points may be shared between 

subsamples).

In the sequential approach, we first considered maternal drinking and smoking as mediators. 

This shows that the direct effect of adequate care, through pathways other maternal smoking 

or drinking (M (1)), is a 5.6% (95% CI 5.5% to 5.7%) reduction in the risk of preterm birth 

and that the mediated effect via maternal smoking and/or drinking is a 0.09% (95% CI 

0.08% to 0.10%) reduction in the risk of preterm birth. When preeclampsia is considered as 

an additional mediator (M (2)), we found essentially the same direct and indirect effects of 

5.6% (95% CI 5.5% to 5.7%) and 0.09% (95% CI 0.08% to 0.10%). The effect of adequate 

prenatal care on preterm birth by pathways through pre-eclampsia, but not through maternal 

smoking and drinking thus seem minimal.

6. Some Further Properties: Robustness to Mediator Confounding and 

Joint Versus Summed Proportion Mediated

As noted above, when multiple mediators are of interest, the approach of considering 

mediators one at a time will only be appropriate if the mediators do not affect one another. If 

one of the mediators of interest affects another then assumption (4) will be violated for one 

or more mediators. The approach we have described in this paper can, however, still be 

used. The approach described here has other advantages, even if the mediators do not affect 
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one another. Suppose for example the mediators do not affect each other but there is a 

unmeasured common cause U of two or more mediators as in Figure 3.

In this case, the approach of considering the mediators M (1) and M (2) one by one will be 

biased because when M (1) alone is considered, U will be an unmeasured confounder for the 

effect of M (1) on Y (it affects Y through M (2)) and when M (2) alone is considered, U will be 

an unmeasured confounder of the effect of M (2) on Y (it affects Y through M (1)). However, 

when M (1) and M (2) are considered jointly as in this paper, U no longer serves as a 

confounder for the joint effect of (M (1), M (2)) on Y because U no longer affects Y, except 

through (M (1), M (2)).

When the mediators affect one another then, as discussed above, we generally cannot 

estimate the natural direct and indirect effects for one or more mediators. Even if we could, 

the sum of the proportion mediated can be more than 100%, even if all pathways affect the 

outcome in the same direction, because certain paths may be counted twice. In Figure 2, if 

the analysis were done one mediator at a time then the path A − M (1) − M (2) − Y would be 

included in the indirect effect both for the analysis for M (1) and for the analysis for M (2). 

The approach described in this paper circumvents this difficulty. However, we might then 

think that if the mediators do not affect one another - if for example, the mediators are 

independent of one another conditional on A and C - then the sum of two mediated effects 

considered separately should equal the joint mediated effect when both mediators are 

considered together. In fact, even if the mediators are independent and do not affect each 

other this need not hold. The sum of two mediated effects considered separately may diverge 

from the joint mediated effect when there are interactions between the effects of the two 

mediators on the outcome. Note that such interaction can arise even if the mediators do not 

affect each other. We show in the Appendix that if there is no additive interaction in the 

effects of the two mediators at the individual counterfactual level, and if the two mediators 

do not affect each other then the sum of two mediated effects on the additive scale, 

considered separately, will equal the joint mediated effect when both are considered 

together. If the two diverge then either the mediators must affect one another or there must 

be an additive interaction at the individual level between the effects of the two mediators.

In some applications, mediators are considered one at a time and the proportion mediated is 

calculated for each of these. Sometimes, when doing this, the sum of the proportion 

mediated can exceed 100%. One possible explanation for this is that there are other 

pathways (that operate through other mediators) that affect the outcomes in the opposite 

direction from those under consideration. The sum of the proportion mediated may exceed 

100% if there are other mediators with a "negative" proportion mediated. If this is thought 

not to be the case, i.e. if all pathways are thought to operate on the outcome in the same 

direction, then the true proportion mediated for all mediators (known and unknown) 

considered jointly must be 100%. If the sum of the proportion mediated when each 

measured mediator is considered separately exceeds 100% then the sum and the joint 

proportion mediated would be different and thus it must be the case that either the mediators 

affect one another or that there are interactions between the effects of the mediators on the 

outcome. The approach described in this paper could accommodate these complications by 

considering all mediators jointly in contrast to the approach of assessing mediators one at a 
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time which cannot. In summary, if the sum of the proportion mediated exceeds 100% then 

one of the following must be true: (i) there are other mediators with a negative proportion 

mediated; (ii) the mediators affect one another; (iii) there are interactions between the 

mediators.

Comparing the sum of the mediated effects to a joint mediated effect (or examining if the 

sum of the proportion mediated exceeds 100% if all mediators are thought to operate in the 

same direction) would thus constitute one strategy whereby an investigator could assess 

whether the approach of examining one mediator at a time might fail. An alternative 

approach might consist of examining the independence of the mediators more directly. For 

example, in the case of two mediators, M (1) and M (2), a regression of M (2) on M (1), A, C 

should have M (1) independent of M (2) in the regression. Statistical dependence between the 

two conditional on A and C would indicate that the approach of examining mediators one at 

a time cannot be used.

Statistical dependence between M (1) and M (2) conditional on A and C cannot distinguish 

between Figures 2 and 3 (or Figure 4 in which one mediator affects the other and they share 

an unmeasured common cause), but in either case, the approach of examining the mediators 

one at a time fails because assumptions required for such an approach are then violated.

7. Discussion

In this paper we have considered methods for assessing the effects of an exposure on an 

outcome through several mediators considered jointly. We have described a regression-

based approach and a weighting-based approach, which are simple extensions of methods 

for a single mediator (VanderWeele and Vansteelandt, 2009, 2010; Valeri and 

VanderWeele, 2012; Albert, 2012). The weighting-based approach allowed for somewhat 

more flexibility in settings with a binary outcome, in allowing for mediator-mediator 

interaction and mediators of different types (e.g., continuous and categorical). Otherwise, 

however, the regression-based approach is perhaps to be preferred on the grounds that it will 

in general yield more efficient estimates.

The approaches considered here are parametric and require correct model specification. 

Both approaches demand correct specification of an outcome model, but differ in that the 

regression-based approach additionally requires correct specification of models for each of 

the mediators, whereas the weighting approach additionally requires correct specification of 

a model for the exposure. When the number of mediators is large, the weighting approach is 

thus considerably less demanding in terms of the number of models it requires. It is 

moreover less demanding in settings where the exposure is highly predictive of (one of) the 

mediators, since correct specification of a model for the mediators is then more difficult. 

The weighting approach is particularly desirable when the exposure is randomly assigned so 

that the model for the exposure is known by design: it then merely requires correct 

specification of a model for the outcome.

Recent work has proposed multiply robust estimators that specify models for the exposure, 

mediator and outcome and yield valid inferences if at least two of these models are correctly 
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specified (Tchetgen Tchetgen and Shiptser, 2012; Vansteelandt et al., 2012; Zheng and van 

der Laan, 2012). These semiparametric approaches have been studied in settings with a 

single mediator, but can in principle deal with multiple mediators as well. They have greater 

robustness to model mis-specification but are more difficult to implement in practice. 

Robustness against model mis-specification can alternatively be improved using a slight 

modification of the weighting approach, which uses outcome predictions obtained via more 

general statistical learning methods rather than parametric methods. The practical 

performance of these different variations and approaches deserves further study, particularly 

in settings where the number of confounders is large and model mis-specification thus more 

likely.

The assumptions required for the estimation for the approaches proposed here, like all work 

on mediation, are quite strong. Sensitivity analysis for direct and indirect effects are now 

available for a single mediator (VanderWeele, 2010; Imai et al., 2010) and these approaches 

could perhaps be applied and extended to settings with multiple mediators. However, by 

being able to handle multiple mediators at least one of the assumptions for the estimation of 

direct and indirect effects is in some sense made more plausible: namely the assumption that 

there is no mediator-outcome confounder that is itself affected by the exposure. The 

approach described in this paper renders this assumption more plausible in that if there were 

such a variable then it itself could be included in the mediator vector and the methods could 

still be employed. The methods we have provided here are relatively general and also fairly 

straightforward to use in practice and we hope will be of use in settings in which multiple 

mediators might be of interest.

Appendix

Regression-based Approach

Consider the regression models:

Under assumptions (1) and (2), we have for the controlled direct effect:

Under assumptions (1)-(4) we have by Pearl's mediation formula
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Thus the natural direct effect is given by:

If M (i) is continuous, . If M (i) is binary, 

. The natural indirect effect is given by

If M (i) is continuous, . If M (i) is binary, 

.

For the mediator-mediator interaction terms, we could consider the following models:
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Under these models, if at least one of M (i) or M (j) is continuous, 

. If both M (i) and M (j) are binary 

. Note, however, if covariates C are included in the model and a mediator-mediator 

interaction term, τ(ij)m(i)m(j) is also included, then this can lead to issues of model 

compatibility between the models for M (i) and M (j) and that for the product M (i)M (j). For 

continuous mediators, a possible solution would be to assume a constant covariance matrix, 

in which case the average product follows from knowledge of the covariance and means. For 

instance, we would have that

where ε(i), ε(j) are the residuals in the models for both mediators. For dichotomous 

mediators, the Plackett copula could be used; that is, on top of the models for each mediator 

separately, one could postulate the model odds(M (i) = 1|M (j) = l, a, c)/odds(M (i) = 1|M (j) = 

0, a, c) = a with a unknown; a could be estimated using standard software for alternating 

logistic regression, which is, for instance, available via the option 'logor exch' in proc 

genmod. With p(i) ≡ E[M (i)lc, a] and p(j) E[M (j)lc, a], we then have that

Binary Outcome

Now suppose that the outcome is binary and rare and the following regression models are fit 

to the data:

with the vector of mediators M following a multivariate normal distribution conditional on A 

and C with conditional covariance matrix Σ. Under assumptions (1)-(4) we then have 

logit{P (YaMa* = 1|c)}
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Note that conditional on a* and c,  follows a normal distribution with 

mean  and variance , where 

 thus follows that logit{P(YaMa* = 1|c)}

The log of natural direct effect odds ratio is then given by:

The log of natural indirect effect odds ratio is then given by:
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Sequential Approach

Let  be the subset of mediators (M (1), …, M (k)). Consider the regression models:

for i = 1, …, k. Under assumptions (1)-(4), we then have by Pearl's mediation formula that 

the exposure effect that is mediated by the first k mediators equals:

While this approach is valid for each fixed k, a concern is that the models for 

and E[M(k)|a, c] may not be compatible across k. To illustrate the difficulty of correct 

specification of these models across k, suppose that

for i = 1, …, k, which is compatible with the aforementioned models for E[M (i)la, c]. Then 

the model for  implies that

This model is no longer of the same form as it includes interactions between a and c, as well 

as squared terms a2 that were not previously allowed for. This can be remedied by extending 

the outcome regression model to include such terms:

With this extension one still has

If the exposure is binary and we allow for exposure-covariate interaction in the outcome 

model then this particular problem of correct model specification is thus remedied. 
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Alternatively, if there are no exposure-mediator interactions in the outcome model then the 

models will remain compatible with each other.

Weighting Approach

The weighting approach is based on the following identity:

For the sequential approach, one likewise obtains that

Applying the sequential approach thus demands models for the conditional expectation 

 a possible concern is then that these models for different k may not be 

compatible with each other.

Sum of Individual Mediated Effects Versus Joint Mediated Effects

Consider two mediators, M (1) and M (2), and suppose that neither affects the other. For 

simplicity assume a binary exposure. The natural indirect effect through M (1) is by 

definition . The natural effect through M (2) is by definition . 

The natural indirect effect through (M(1)M (2)), is by definition . If the 

mediators do not affect each other then the natural indirect effect through M (1) is equal to 

 and the natural indirect effect through M(2) is equal 

to Y . The sum of the two natural indirect effects for M (1) and M (2) 

considered separately is thus . The 

difference between the sum of the two natural indirect effects for M (1) and M (2) considered 

separately and the natural indirect effect through (M (1)M (2)) jointly is then given by:

VanderWeele and Vansteelandt Page 21

Epidemiol Method. Author manuscript; available in PMC 2015 January 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



This difference in some sense captures the effect mediated by the interaction between M (1) 

and M (2).

We now show that if the mediators do not affect each other and if there is no interaction 

between M (1) and M (2) at the individual counterfactual level then the sum of the two natural 

indirect effects for M (1) and M (2) considered separately and the natural indirect effect 

through (M (1)M (2)) jointly must be equal. We will say that there is no interaction between 

M (1) and M (2) at the individual counterfactual level if for any a and any two values m(1), 

m(1)† of M(1), Yam
(1)

m
(2) - Yam

(1)m(1)† is constant across m(2) or, equivalently, for any a and 

any two values m(2), m(2)† of M (2), Yam
(1)m(2) − Yam

(1)
m

(2)† is constant across m(1). If this 

is the case then  must be constant across m(2) and thus 

 must be equal to  and so 

 must be equal to 0.

We now also show a similar result with linear models on the additive scale with interaction 

on the population-average-rather than individual-level. The approach that uses one mediator 

at a time, uses regression models for E[Y |a, m(i), c], which are of the form

Under this model, the natural indirect effect is given by:
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When M (i) is independent of all other mediators (conditional on a and c), then this reduces 

to

It follows from this that the natural indirect effect E[YaMa −YaMa* lc] equals the sum of the 

individual natural indirect effects when either none of the mediators is affected by the 

exposure, or none of the mediators affects the outcome, or the mediators are mutually 

independent (conditional on a and c) and there are no mediator-mediator interactions, but 

not generally otherwise.

SAS implementation

We describe how the proposed weighting approach given above can be implemented in SAS 

statistical software (SAS Institute, Inc., Cary, North Carolina). Below we let c, a, m and y 

correspond to the observed confounders C, exposure A, mediator M and outcome Y, and 

assume, for the illustration, that A and Y are dichotomous.

proc logistic data = mydata;

model a = c;

score data = mydata out = preda;

run;

data preda;

set preda;

pa1 = P_1;
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run;

data mydataO;

set mydata;

a = O; output;

run;

data mydata1;

set mydata;

a = 1; output;

run;

proc logistic data mydata;

model y = a m c;

score data = mydataO out = predyO;

score data = mydata1 out = predy1;

run;

data predyO;

set predyO;

pyO = P_1;

run;

data predy1;

set predy1;

py1 = P_1; run;

data mydataw;

merge preda predyO predy1 mydata;

run;
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data mydataw;

set mydataw;

w = a/pa1+(1-a)/(1-pa1);

run;

The mean E[Y1M0] (except for standard errors) can now be estimated using:

proc reg data = mydataw;

where a = O;

model py1 = ;

weight w;

run;

and the mean E[YOM1] (except for standard errors) using:

proc reg data = mydataw;

where a = 1;

model pyO =;

weight w;

run;
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Figure 1. 
Mediation with a single mediator M, exposure A, outcome Y, and confounders C.
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Figure 2. 
Mediation with two mediators of interest.
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Figure 3. 
Two mediators with an unmeasured common cause.
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Figure 4. 
Two mediators in which one affects the other and they share an unmeasured common cause 

U.
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