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Intractable neuropathic pain is a frequent consequence of nerve injury or disease.

When peripheral nerves are injured, damaged axons undergo Wallerian degeneration.

Schwann cells, mast cells, fibroblasts, keratinocytes and epithelial cells are activated

leading to the generation of an “inflammatory soup” containing cytokines, chemokines

and growth factors. These primary mediators sensitize sensory nerve endings,

attract macrophages, neutrophils and lymphocytes, alter gene expression, promote

post-translational modification of proteins, and alter ion channel function in primary

afferent neurons. This leads to increased excitability and spontaneous activity and

the generation of secondary mediators including colony stimulating factor 1 (CSF-1),

chemokine C-Cmotif ligand 21 (CCL-21), Wnt3a, andWnt5a. Release of thesemediators

from primary afferent neurons alters the properties of spinal microglial cells causing them

to release tertiary mediators, in many situations via ATP-dependent mechanisms. Tertiary

mediators such as BDNF, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and

other Wnt ligands facilitate the generation and transmission of nociceptive information

by increasing excitatory glutamatergic transmission and attenuating inhibitory GABA and

glycinergic transmission in the spinal dorsal horn. This review focusses on activation of

microglia by secondary mediators, release of tertiary mediators from microglia and a

description of their actions in the spinal dorsal horn. Attention is drawn to the substantial

differences in the precise roles of various mediators in males compared to females.

At least 25 different mediators have been identified but the similarity of their actions

at sensory nerve endings, in the dorsal root ganglia and in the spinal cord means

there is considerable redundancy in the available mechanisms. Despite this, behavioral

studies show that interruption of the actions of any single mediator can relieve signs of

pain in experimental animals. We draw attention this paradox. It is difficult to explain

how inactivation of one mediator can relieve pain when so many parallel pathways

are available.
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INTRODUCTION

This review outlines aspects of the etiology of neuropathic pain
at both the spinal and peripheral level. A variety of chemical
mediators effect communication between the various cell types
involved in the generation of pathological pain. We focus on
mediators that affect spinal microglia, mediators released from
microglia and their actions on their target cell types.

Peripheral nerve trauma, post herpetic neuralgia, spinal
cord injury, traumatic brain injury, stroke and neuropathies
associated with chemotherapy, diabetes or HIV infection can
give rise to intractable neuropathic pain (1–13). Neuropathic
components also contribute to pain associated with COVID-
19, multiple sclerosis, fibromyalgia, migraine, osteoarthritis,
rheumatoid arthritis, autoimmune disease, and complex regional
pain syndromes (14–23). Although the signs and symptoms of
neuropathic pain are similar in males and females, it is now
well-established that the underlying cellular mechanisms are
very different (24–33). Unlike nociceptive pain, which signals
and protects an individual from tissue injury, neuropathic pain
persists long after tissue healing and recovery has taken place
(2). It is therefore maladaptive and serves no obvious biological
purpose (5, 34, 35).

Many of the investigations into the etiology of neuropathic
pain involve controlled, traumatic perturbations leading to
defined and reproducible injuries to the spinal cord or peripheral
nerves. Surgical, chemical or genetically-induced lesions to
rodent peripheral neurons are followed by in vivo or ex vivo
investigations of the properties of primary afferent, spinal or
supra-spinal neurons. These are correlated with behavioral
studies that seek to assess pain intensity by indices such as
thermal or mechanical allodynia and hyperalgesia (36–40).
Improvements in behavioral approaches within the last 15
years have focused on assessing pain in terms of its accepted
definition as “An unpleasant sensory and emotional experience
associated with, or resembling that associated with, actual or
potential tissue damage,” (41). Thus, contemporary operant
models seek to provide quantification of pain per se as opposed
to nociception (39). For example, rodents may be required to
make a conscious choice between being in a pain-inducing
environment and an otherwise undesirable environment such as
a brightly illuminated space (4, 42–44). The time spent in the
undesirable environment gives an index of the pain the animal is
experiencing. A complementary approach to pain quantification
involves assessment of behaviors such as social interaction, nest-
building, ultrasonic vocalization, burrowing behavior and “facial
grimace score” (45–47).

Regardless of the methodology used to assess the behavioral
consequences of peripheral nerve injury, it is generally
accepted that;

1. Peripheral nerve injury promotes Wallerian degeneration of
severed axons, macrophage, neutrophil and T-lymphocyte
invasion, Schwann cell, fibroblast, mast cell, and epithelial
cell activation and the generation of an “inflammatory soup”
containing primarymediators such as chemokines, cytokines,

Wnt ligands, neuropeptides, and growth factors (see Table 1
and Figure 1).

2. Primary mediators sensitize sensory nerve endings, attract
additional macrophages and lymphocytes, alter gene
expression, promote post-translational modification of
proteins, and alter ion channel function in primary afferent
neurons. This leads to increased excitability, spontaneous
activity and the generation of secondary mediators (see
Table 2 and Figure 1).

3. Secondary mediators such as colony stimulating factor 1
(CSF-1), chemokine (C-C motif) ligand 21 (CCL21), and
wingless-type mammary tumor virus integration site family,
member 5A (Wnt5a) are released from primary afferent
terminals in the spinal dorsal horn. They affect the properties
of spinal microglial cells causing them to release tertiary
mediators. In this way, spinal microglia can detect and
respond to peripheral nerve injury.

4. Microglial-derived tertiary mediators such as BDNF, TNF-
α, and IL-1β (Brain derived neurotrophic factor, tumor
necrosis factor alpha, and interleukin-1β) increase excitatory
transmission and attenuate inhibitory synaptic transmission
in the superficial dorsal horn (see Table 3 and Figure 1).

5. This and other aspects of synaptic plasticity facilitate
the transfer of nociceptive information and promote
misprocessing of sensory information leading to central
sensitization at both the spinal and supra-spinal level.

6. Although it was once believed that altered microglial function
was transient and confined to the onset phase of neuropathic
pain, newer data implicates sustained alteration of microglial
function in its long term maintenance. This is associated with
long-term changes in astrocyte function.

7. Cell type involvement is sex dependent. Whereas, microglia
play a predominant role in central sensitization in males,
this is effected by macrophages and T-lymphocytes
in females.

8. In addition to release of mediators, recent evidence suggests
that cell to cell communication may be affected by the transfer
of materials such as microRNA’s in secreted extracellular
vesicles or exosomes.

Each of these steps will be discussed below with special emphasis
on the actions of secondary mediators on microglial activity
and the release and actions of tertiary mediators in the spinal
dorsal horn (Figure 1). Cytokine/chemokine/growth factor/glial
cell interactions are also involved in modulation of sensory
information in supraspinal structures following peripheral nerve
injury. This includes the mesolimbic system (185) thalamus,
sensory cortex, and amygdala (186–188). Interestingly, microglial
activation appears on the contralateral side following nerve injury
thus reflecting the projections of ascending tracts. Activation
is not seen in areas which are not involved in pain processing
such as the motor cortex (186). This implies that microglial
activation in higher centers is not simply the result of diffusion
of messengers via the cerebrospinal fluid (CSF). The present
review will however focus on microglia activity within the spinal
dorsal horn.
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TABLE 1 | Primary mediators from site of nerve injury.

Primary mediator Generated and/or released by

injured peripheral tissue

Mimicking neuropathic pain

in vivo

Alleviation of neuropathic

pain in knockouts or by

antagonists etc. in vivo

Demonstrated effect on

dorsal root ganglion neurons

IL-1β (48–54) (55, 56) (48, 57–60) (61–65)

IL-15 (66) (67)*

IL-17 (68, 69) (21, 70) (21, 71, 72) (21)

IL-18 (73)

LIF (74, 75) (75) (76–78)†

(79)††

TNF-α or β (48, 50, 51, 54, 80–82) (48, 54, 55, 80, 83) (48, 52, 83–87) (83, 88–92)

Prostaglandins and other

eicosanoids

(54, 93, 94)** (95)*** (96)

(95)***
(94) (97, 98)

(95)***

NGF (99) (100, 101) (99, 100, 102, 103) (101, 104)

Substance P (105, 106) (107) (108, 109) (110–112)

MCP-1/CCL2 (49, 52, 113–116) (116) (52, 116, 117) (116, 118, 119)

CXCL-1 (120, 121) (122–124)

CXCL-4 (125) (123, 125, 126) (125)

Histamine (127) (128) (128–130) (128, 130)

Wnt3a (131–134) (133) (131, 133) (131, 133)

Wnt5a (135)

Released from Site of injury and affect primary afferent neurons.

*Implied from observations on osteoarthritis patients.

**Measured increased cyclo-oxygenase 2 (COX 2) levels.

***This work addresses the actions of the novel eicosanoid 5,6 epoxyeicosatrienoic acid (5,6 EET).
†
These 3 papers show LIF promotes sprouting of perivascular sympathetic axons in DRG.

† †
This paper demonstrated a direct action of LIF on DRG neurons.

NERVE INJURY, WALLERIAN
DEGENERATION, INFLAMMATION AND
GENERATION OF PRIMARY MEDIATORS

Wallerian degeneration of injured peripheral nerves is associated
with neutrophil, macrophage and T-lymphocyte infiltration,
mast cell, endothelial cell, keratinocyte and fibroblast activation
and alteration of Schwann cell properties (2, 54, 68, 80,
98, 189–196). All of these cell types produce and release a
variety of inflammatory mediators and a few anti-inflammatory
agents at the site of injury (2, 190, 197) and Table 1. These
primary mediators include pro-inflammatory agents such as
interleukin 1β (IL-1β) (48–50, 55, 57–59, 141), leukemia
inhibitory factor (LIF) (74–76, 79, 198), interleukin 15 (IL-
15) (66), interleukin 17 (IL-17) (21, 68, 70), interleukin 18
(IL-18) (199) tumor necrosis factor (TNF-α) (48, 51, 80, 83,
85–88, 200–203), monocyte chemoattractant protein 1 (MCP-
1/CCL2) (49, 113–115, 118), chemokine (C-X-C motif) ligand
1 (CXCL1) (120–124) and CXCL4 (125), histamine (127–
130), and the secreted glycoproteins Wnt3a (wingless-type
mammary tumor virus integration site family, member 3A) and
Wnt5a (133, 135). For a more complete list see Moalem and
Tracey (54).

As discussed below, most of these mediators excite peripheral
nerve endings as well as the cell bodies of primary afferent
fibers in the dorsal root ganglion (DRG) (53). Release of pro-
inflammatory primary mediators both at the site of injury and

within the DRG provokes changes in the cell bodies, axons
and peripheral endings of both injured and uninjured primary
afferent axons (141, 204–206).

Satellite glial cells that surround the cell bodies of dorsal
root ganglia (DRG) neurons represent an additional source
of primary inflammatory mediators (2, 78, 142, 207–209). IL-
1β may also be derived from macrophages that invade DRG
after injury (141) as well as from sensory neuron resident
macrophages (210). Peripheral nerve injury causes extensive
satellite glial cell activation (as defined by glial fibrillary acidic
protein [GFAP] immunoreactivity). This is prevented by local
perfusion of TTX or bupivacaine. Na+ channel block also
reduces levels of NGF at a time when activated glia (Schwann
cells) are an important source of NGF. This implicates injury-
induced increased spontaneous activity in primary afferents
in the activation of satellite glial cells (211). This aligns
with the general concept of “neurogenic neuroinflammation”
whereby intense neuronal activity can orchestrate immune cell
activation (212).

In addition to the interactions of inflammatory mediators
with neurons, many of them promote plasma extravasation and
exhibit chemoattractant properties, both of which enable the
recruitment of immunocompetent leucocytes and lymphocytes
to the site of injury (54, 66, 68, 194). As already mentioned, these
myeloid and lymphoid cells themselves release a host of cytokines
and chemokines thereby instigating a positive feedback process in
the initiation of neuroinflammation.
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FIGURE 1 | Sites of action of primary, secondary, and tertiary mediators in signaling of neuropathic pain. Sources of primary mediators include Schwann cells (s),

epithelial cells (e), mast cells (m-c), t-lymphocytes (t-l), macrophages (m), fibroblasts (f), and neutrophils (n).

TABLE 2 | Secondary mediators released from primary afferents.

Secondary mediator Generated and/or released by

DRG neurons

Mimicking neuropathic pain

in vivo

Alleviation of neuropathic

pain in knockouts or by

antagonists etc. in vivo

Demonstrated effect on

microglia

CSF-1 (136–142) (138) (138, 139) (138–140)

(143)*

CCL21 (144–146) (144, 147) (144, 147–149) (144, 148)

Released from primary afferents to affect spinal microglia†.

*This paper provides indirect evidence, CSF-1 releases BDNF from microglia as monitored by increased dorsal horn excitability, some of the effect of CSF-1 on excitability is abrogated

by BDNF binding protein.
†Wnt3a may be released from primary afferent terminals after nerve injury but is thought to signal directly to dorsal horn neurons without the intervention of microglia (134).

Although inflammation is a primary response to tissue injury,
it should be noted that some of the primary mediators associated
with neuropathic pain also serve to initiate neuronal recovery

and repair (213). Thus, production of NGF at the site of nerve
injury (99, 100, 102, 103, 214) may be viewed as both an initiator
of inflammation and an activator of neuronal regeneration and
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TABLE 3 | Tertiary mediators produced by microglia to affect spinal dorsal horn neurons.

Tertiary mediator Generated and/or released by

microglia

Mimicking neuropathic pain

in vivo

Alleviation of neuropathic

pain in knockouts or by

antagonists etc. in vivo

Demonstrated effect on

spinal dorsal horn neurons

BDNF (150, 151) (152–154) (150, 151, 153, 155) (4, 143, 150, 154, 156–165)

IL-1β (166–168) (166, 169)

(55)*
(2, 54, 57–60, 166, 170–174) (175–179)

TNF-α (54, 180) (40, 181) (84, 203, 277, 386). (175, 182–184)

Microglia to spinal dorsal horn neurons.

*These experiments involved injection of IL-1β into peripheral nerve, thus its ability to produce allodynia most likely reflected its peripheral role as a primary mediator.

repair. Moreover, functional recovery after peripheral nerve
injury may depend on the pro-inflammatory cytokines IL-1β and
TNF (48).

The situation with GDNF family ligands such as artemin
is complex, whilst some reports describe its pro-inflammatory
action and possible involvement in neuropathic pain, others
suggest that artemin may be anti-inflammatory and activation of
its receptors provide pain relief (215–219).

Interleukin 4 (IL-4) produced by peripheral nerve injury
has exclusive anti-inflammatory and anti-nociceptive actions
(220). These findings relate to the generalization that both
inflammatory and anti-inflammatory mediators are released by
nerve injury and it is disturbance of the balance between these
two processes that can lead to pain (197).

Downstream Effectors of Mediator Actions
Although receptors for individual cytokines are selective for
their respective ligands, the downstream transduction pathways
often converge, resulting in translocation of transcription factors
to the nucleus and transcription of additional downstream
mediators. Common signaling pathways activated following
cytokine receptor activation include (1) nuclear factor-κB (NF-
κB), (2) the mitogen-activated protein kinases (MAPKs), (3)
the janus kinase (JAK) and signal transducer and activator
of transcription (STAT), and (4) the Smad family signaling
pathways (50, 187).

By contrast, chemokines, histamine and neuropeptides such as
substance P signal via heptahelical G-protein coupled receptors
(221, 222).

At least some of the actions of inflammatory cytokines
involve activation of cyclo-oxygenase 2 (105, 223, 224) and
products such as prostaglandins (93, 94, 167, 180, 225, 226) and
prostacyclin (227).

Wnt ligands (Wnt; wingless-type mammary tumor virus
integration site family) are a family of 19 secreted glycoproteins
that are important and versatile mediators of cell–cell
communication, cell morphology and development. Ligands
signal by the canonical Wnt pathway, the non-canonical planar
cell polarity pathway, and the non-canonical Wnt/calcium
pathway (133, 228). Wnt3a acts through the canonical pathway
which involves β catenin. Wnt5a acts through the non-canonical
β catenin independent planar cell polarity pathway and the
Ryk (134).

The downstream mediators of BDNF activation of TrkB
and NGF activation of TrkA are well-characterized and include
the phosphatidyl inositol-3 (PI3)-kinase (also known as Akt
or protein kinase B), phospholipase C-γ1 and the ras-MAPK
pathway, also known as the extracellular receptor kinase
(ERK) pathway (229). Since ras-MAPK is a mediator of
both neurotrophin and cytokine receptor activation, there is
considerable interest in its potential as a drug target (230–232).

EFFECTS OF PRIMARY MEDIATORS ON
PRIMARY AFFERENT NEURONS

Gene array analysis of perturbations in primary afferent neurons
following nerve injury have identified marked changes in genes
coding for neuropeptides, cytokines, chemokines, receptors, ion
channels, signal transduction molecules and synaptic vesicle
proteins (146, 233) as well as changes in expression of long non-
coding RNA’s (234) and microRNA’s (235–238). The latter post-
transcriptionally regulate the protein expression of hundreds
of genes in a sequence-specific manner (239). For example
the microRNA (miRNA-let-7b) can be released from DRG
neurons by neuronal activation. It acts in a paracrine function
to induce rapid inward currents and action potentials in other
DRG neurons by inducing toll like receptor 7 (TLR7)/TRPA1-
dependent single-channel activities. Intraplantar injection of
miRNA-let-7b elicits rapid spontaneous pain via TLR7 and
TRPA1 (240). These observations again align with the concept
of neurogenic neuroinflammation (212).

In addition, miR-21-5p which is released in the exosomal
fraction of cultured DRG neurons, may be involved in neuron-
macrophage communication after nerve injury (238, 241). The
concept of cell-to-cell transport of material via exosomes or
extracellular vesicles represents an exciting new direction for pain
research (238, 241–245). A recent review focussed on release of
extracellular vesicles from microglia (246).

Changes in DRG Excitability and Ion
Channel Function
Recordings from rodent DRG neurons both ex vivo and in
vitro confirmed that peripheral nerve injury increases their
excitability and may provoke spontaneous discharge of action
potentials (247–253). This peripheral sensitization and ongoing,
aberrant spontaneous activity is a well-established harbinger of
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central sensitization and chronic pain (5, 7, 9, 251, 252, 254–
260). Spontaneous activity is also known to promote activation
of spinal microglia and astrocytes (211, 212). Suppression of
this activity in vivo by either pharmacological (257, 261) or
optogenetic methodologies (262) leads to abatement of injury-
induced allodynia and attenuation of hyperalgesia.

Increased DRG excitability is driven by increased
expression and/or function of voltage-gated Na+, Ca2+

and hyperpolarization activated cyclic nucleotide gated channels
(HCN channels) (263–265) as well as decreased expression
and/or function of K+ channels (260) and altered expression,
modulation and function of acid sensing ion channels (ASIC
channels) and transient receptor potential (TRP) channels
including TRPV1, TRPA1, and TRPM8 (215, 266–268).

Acute and/or long term exposure of DRG neurons
to pro-inflammatory primary mediators such as IL-1β
(interleukin 1β), IL-17 (interleukin 17), TNF (tumor
necrosis factor), MCP-1/CCL-2 (monocyte chemoattractant
protein-1/chemokine ligand 2), stromal cell-derived factor 1
(CXCL12), Wnt3a or prostaglandin E2 increases their excitability
(21, 61, 64, 65, 88, 91, 116, 118, 119, 123, 125, 131, 133, 269, 270).

In general, the effects of primary mediators on cation channel
function parallel the changes provoked by peripheral nerve
injury (62, 63, 92, 125, 184, 271, 271–274) and it is now well-
established that these excitatory actions play an indispensable
role in the development and/or persistence of neuropathic pain.
For example, administration of antibodies to interleukin I-
receptor (IL-lR) or its genetic deletion or overexpression of
interleukin receptor antagonist (IL-RA) reduce pain behavior in
mice with experimental neuropathy thereby implicating IL-1β in
the onset of neuropathic pain (2, 54, 57, 58, 202). Although IL-
1β is involved at several points in the sensory system following
nerve injury (176, 179, 187, 275, 276), its peripheral actions
are underlined by the observation that local microinjection of
recombinant IL-1β at the site of sciatic nerve injury in IL-
1β-knock-out mice lowers mechanical pain thresholds to levels
observed in injured wild-type animals (48).

The role of IL-17 has been studied in the paclitaxel model
of chemotherapy induced pain. In addition to increasing DRG
excitability, both IL-17 and paclitaxel facilitate sEPSC activity and
attenuate sIPSC activity in the lamina II outer of themouse dorsal
horn. Selective knockdown of IL-17R in certain dorsal horn cells
reduces paxlitaxel-induced hypersensitivity. Taken together these
findings provide strong support for a role for IL-17 in this type of
chronic pain (21).

Actions and involvement of TNF-α as a primarymediator very
much parallel those of IL-1β Levels of TNF-α are elevated in
sciatic nerve after injury (82, 85) and Nadeau et al. (48) showed
that microinjection of TNF-α into TNF-knock-out mice lowered
mechanical pain threshold in a similar fashion to IL-1β TNF-α
also upregulates Nav1.7 in DRG (89) and inhibition of TNF-
α signaling results in attenuation or accelerated recovery from
injury induced neuropathic pain (52, 84, 277). TNF-α receptors
are also upregulated (84). Unlike IL-1β, TNF-α does not appear
to participate in macrophage to DRG neuron signaling (141) but
like IL-1β actions of TNF-α are not confined to the peripheral
nervous system (180, 187, 277).

Although IL-6 is markedly upregulated in the peripheral and
central nervous systems following nerve injury (50–52, 278, 279)
and is released by macrophages at the site of nerve injury (51,
279), it fails to affect DRG excitability (53) yet has been reported
to attenuate peripheral nociceptive transmission (280). This
contradicts the finding that sciatic chronic constriction injury
(CCI) failed to induce hypersensitivity to cutaneous heat and
pressure in mice with a null mutation of the IL-6 gene (281). Its
potential role as a primary mediator thus remains to be resolved.
One possibility is that IL-6 serves as an “off signal” to ensure
the transient nature of injury-induced neuroinflammation. It
may fulfill this function in the spinal cord where it promotes a
desensitized phenotype ofmicroglia (282). Some lines of evidence
implicate IL-15, IL-17, and IL-18 as primary mediators in the
generation of neuropathic pain (Table 1).

Wnt3a also increases sensory neuron excitability via
upregulation of P2X3 and TRPA1 receptor channels and
stimulates production of inflammatory cytokines such as
TNF-α and IL-18. Intraplantar injection promotes mechanical
hypersensitivity and thermal hyperalgesia. These effects are
prevented by inhibition of disheveled; one of the downstream
effectors of Wnt3a action (133). Nerve injury also provokes
the release of Wnt5a from Schwann cells and since its cognate
receptors are upregulated in DRG neurons (135), it, like Wnt3a,
may serve as a primarymediator in the onset of neuropathic pain.

Appearance of ectopic excitatory α-adrenoceptors and
sprouting of perivascular sympathetic axons both within DRG
and on nerve terminals at the site of injury is yet another means
by which primary afferent excitability is increased (283–287),
leading to signs of neuropathic pain in animal models (288).
Sympathetic-sensory interaction is a characteristic feature of
complex regional pain syndromes in humans (289). This may
reflect a neurotrophic action of LIF or NGF on noradrenergic
perivascular axons (76–78) and/or may be a consequence of
spontaneous afferent activity (290).

Changes in Expression of Cytokines, Wnt
Ligands, and Neuropeptides in Primary
Afferent Neurons; Primary Mediators
Promote Production of Secondary
Mediators
Neuropeptides
Nerve injury alters expression of neuropeptides and their cognate
receptors in DRG cell bodies (291–293). Studies have focussed
on galanin, NPY, calcitonin gene related peptide (CGRP) and
substance P. Since there is evidence for a role of a diffusible
substance in soma—soma interactions (294), neuropeptides may
play a role in controlling DRG excitability (295). For example,
substance P is released in a Ca2+ dependent manner from DRG
cell bodies (296) and its expression is increased after nerve injury
(106, 297). Because large DRG neurons start to express excitatory
substance P receptors after nerve injury, it may well play a role in
pain etiology (298). This is because alterations in the properties
of large DRG neurons and their associated low threshold Aβ fiber
axons play major role in neuropathic pain (249, 299–303).
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CGRP is also released in DRGwhere it may fulfill an excitatory
autocrine and/or paracrine function in a similar fashion to
substance P (122, 295, 304, 305).

Chemokines, Cytokines, and Wnt Ligands
Nerve injury upregulates mRNA and/or protein for a variety
of secreted proteins, including chemokines, Wnt ligands, and
cytokines and/or their receptors in primary afferent neurons.
This includes IL-6 and its receptor (209, 278), MCP-1/CCL2
and CC chemokine receptor 2 (CCR2) (270, 306–308), TNF-α
(309), IL-1β and IL-10 (306, 310), CCL-21 (146), and Wnt5a
(134). As will be discussed below, several of these substances
are released from primary afferent nerve terminals and serve
as secondary mediators in the dorsal horn; conveying altered
peripheral activity to microglia and/or to dorsal horn neurons.
The weight of the evidence supports a secondary mediator role
for CSF-1 and for the chemokine CCL-21 (Table 2).

SECONDARY MEDIATORS FROM
PRIMARY AFFERENT TERMINALS ALTER
FUNCTION OF SPINAL MICROGLIA

Signaling Between Injured Peripheral
Nerve and Spinal Microglia
Following nerve injury, several substances generated in and
released from primary afferents serve as secondary mediators

that influence the properties of spinal microglia (238). In this
way microglia can detect and mount a response to peripheral
nerve injury.

Secondary Mediator Role of CSF-1
Injury-induced release of inflammatory mediators such as
interleukin 1β from satellite glial cells and invading macrophages
in DRG induces Csf1 in the cell bodies of primary afferent
neurons (136, 137, 141, 142). mRNA for colony stimulating factor
(CSF-1) is also upregulated by nerve injury as is mRNA for the
CSF-1 receptor in spinal microglia (138). Intrathecal injection
of recombinant CSF-1 induces microglial proliferation and
renewal as well as mechanical allodynia in naïve animals (138–
140). When Csf1 gene expression is selectively depleted from
sensory neurons, nerve injury-induced CSF-1 expression and the
development of mechanical hypersensitivity are prevented as is
the injury-induced microglial activation and proliferation (141).

Release of CSF-1 from primary afferent terminals transforms
the phenotype of resting microglia such that they expresses the
ionotropic ATP receptor, P2X4R (138, 139, 143). The membrane
adaptor protein DAP12 is required for nerve injury-induced
upregulation of P2X4R but not formicroglial proliferation. Taken
together, with the observation that long term exposure of dorsal
horn neurons to CSF-1 increases their excitability (143), these
data support its role as a secondary mediator signaling between
injured primary afferents and microglia which then release
tertiary mediators such as BDNF and IL-1β (150, 157, 311).

ATP derived from dorsal horn neurons activates P2X4
receptors onmicroglia, promoting Ca2+ influx and BDNF release
(151, 312–318). As will be discussed below, this mechanism

is crucial to glial signaling and the development of central
sensitization in males (313, 319) but not in females (27, 320).

MCP-1/CCL2 Plays a Neuromodulatory Role Within

Injured DRG but Is Unlikely to Function as a

Secondary Mediator Between Nerves and Microglia
Mice lacking the CCR2 receptor for the chemokine MCP-1/CCL-
2 fail to develop signs of neuropathic pain following nerve
injury (118, 321), a MCP-1/CCL2 antagonist blocks paclitaxel-
induced neuropathic pain (52) and over expression of CCR2
enhances nociceptive responses (322). MCP-1/CCL2 is not found
in undamaged peripheral nerves but is strongly upregulated
following injury (221, 323). This may be a consequence of
the action of TNF-α and spontaneous neural activity (118,
324). MCP-1/CCL2 is expressed in vesicles in DRG soma
(117, 270) and is released from DRG cell bodies in a Ca2+

dependent manner (270). This evoked release is increased
under neuropathic conditions (115, 325). Injury has also been
reported to increase immunoreactivity for CCR2 in dorsal horn
microglia (326) and spinal administration of CCL2 promotes
microglial activation (325, 327). Although these findings might
be expected if MCP-1/CCL2 serves as a secondary mediator
between primary afferents and spinal microglia, recent work casts
doubt on this conclusion. For example, Jung et al. (117) did
not detect MCP-1/CCL2 in primary afferent terminals and other
studies of microglia in vivo failed to confirm the presence of
CCR2 either before or after nerve injury (117, 146, 328). Now
that more specific biomarkers for cell types are available, one
possible explanation for this discrepancy is that CCR2 may be
expressed on infiltrating monocytes or on astrocytes rather than
on microglia (221, 329, 330).

Rather than functioning as a secondary mediator between
primary afferents and spinal microglia, MCP-1/CCL2 may fulfill
an autocrine or paracrine function within DRG (118, 270).
This possibility is supported by the aforementioned observation
that MCP-1/CCL2 is released from DRG cell bodies in a
Ca2+ dependent manner (270). It has also been shown to
excite injured DRG neurons by transactivation of TRPA1 and
TRPV1 channels (115, 118). MCP-1/CCL2 may thus stimulate
first order neurons in the pain cascade and/or carry out
its classical chemokine function to attract CCR2-expressing
peripheral monocytes/macrophages to the spinal cord (117, 146).
MCP-1/CCL2 may also promote the release of the excitatory
neuropeptide CGRP within DRG (122).

Secondary Mediator Role for CCL-21
Intrathecal administration of chemokine (C-C motif) ligand
21 (CCL21) rapidly induces pain-like behavior in naive mice
whereas CCL21 neutralizing antibodies or blockade of its cognate
CXCR3 receptors with (+/–)-NBI-74330 diminishes pain-related
behavior in nerve injured animals (147). The failure of CCL21
deficient mice to display tactile allodynia following nerve injury
(148) has been ascribed to the failure of microglia to upregulate
the P2X4 receptor for ATP (144, 146). CCL21 is upregulated
in DRG following nerve injury, vesicles containing CCL21
are preferentially transported into axons (145), CCL21 affects
microglial function (148) and it can be released from terminals
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of injured or “endangered” neurons (149, 331). Taken together,
these findings suggest that CCL21 is more likely than MCP-
1/CCL2 to function as a secondary mediator between primary
afferents and microglia following injury (146, 221). CCL21 has
also been reported to signal to astrocytes (332).

What Is the Role of Stromal Cell-Derived Factor-l

Alpha (CXCL-12/SDF-lα)?
Stromal cell-derived factor-l alpha (SDF-lα) also known as C-
X-C motif chemokine 12 (CXCL12), and its cognate receptor
CXCR4, are constitutively present in DRG neurons and satellite
glia, spinal astrocytes and microglia (333, 334). Peripheral nerve
injury upregulates both CXCL12 and CXCR4 in DRG and/or
spinal cord (123, 221, 333, 335, 336) as a possible consequence
of the action of TNF-α (336). The functional significance of
these changes is demonstrated by the observation that CXCL12-
induced Ca2+ response in DRG neurons is enhanced in nerve
injured animals (123). Intrathecal administration of CXCL12
induces hypersensitivity in naive rats in a CXCR4 dependent
manner (333, 333). In addition intrathecal injection of CXCL12
neutralizing antibody or the CXCL12 antagonist, AMD3100
transiently reverses allodynia after peripheral nerve injury (123,
336).

CXCL12 has been implicated in pain signaling following
spinal cord injury (337) and may be involved in hyperalgesic
priming (338). In view of this and the findings presented above,
it is clear that the CXCL12–CXCR4 system has an important
role in modulation of neuropathic pain. It may be particularly
involved in astrocyte signaling and long term pain maintenance
(333). Despite this, we could find no reports that CXCL12 is
released from injured primary afferents to affect microglia. It thus
remains to be determined whether CXCL12 functions as a bona
fide secondary mediator.

What Is the Role of Fractalkine (CX3CL1)?
Fractalkine (CX3CL1) is produced constitutively by spinal cord
neurons (339, 340) and its receptors (CX3CR1) are primarily
expressed by dorsal horn microglia (340, 341). These are
upregulated after nerve injury via an IL-6 dependent mechanism
(342). Intrathecal injection of fractalkine produces mechanical
allodynia and thermal hyperalgesia whereas injection of a
neutralizing antibody raised against CX3CR1 delays the onset
of mechanical allodynia and/or thermal hyperalgesia in two
different neuropathic pain models (341). This is consistent
with the observation that mice lacking CX3CR1 do not display
allodynia following peripheral nerve injury (343).

Fractalkine exists in both a membrane tethered form and
as a soluble protein (344). Nerve injury increases the level of
soluble fractalkine in cerebrospinal fluid (345) and this release by
cathepsin S appears obligatory for the expression of neuropathic
pain (221, 346). Soluble fractalkine promotes microglia activation
and the generation of tertiarymediators including IL-1β and TNF
(167, 341).

Cathepsin S is itself released from microglia by an ATP-P2X7
dependent mechanism (347). Since fractalkine immunoreactivity
does not localize with CGRP, IB4 or NF200 in the dorsal
horn, it has been suggested that under neuropathic conditions,

stimulation of primary afferent fibers induces release of cathepsin
S from microglia, which liberates soluble fractalkine from dorsal
horn neurons, thereby contributing to the amplification and
maintenance of chronic pain (345). Since production of soluble
fractalkine requires prior release of cathepsin S from already
activated microglia, it cannot be regarded as a straightforward
secondary mediator, signaling between neurons and microglia in
the same way as CCL21 or CSF-1.

Because antibodies raised against CX3CR1 reduce nociceptive
responses when administered 5–7 days after CCI, the prolonged
release of fractalkine may contribute to the maintenance as
opposed to the onset of neuropathic pain. This may relate to
the observation that nerve injury provokes de novo expression of
CX3CL1 in dorsal horn astrocytes (340).

Fractalkine signaling has also been implicated in synaptic
degeneration seen in HIV patients who experience painful
neuropathy (8). This can be modeled in mice by intrathecal
injection of the viral coat protein gp120. This upregulates
fractalkine and knockout of its cognate receptor CX3CR1
protects synapses from gp120-induced toxicity. Inhibition of the
Wnt/β-catenin signaling blocks both gp120-induced fractalkine
upregulation and synaptic degeneration. Injection of gp120
stimulates Wnt/beta-catenin-regulated fractalkine expression via
NMDA receptors and the NMDA antagonist APV, Wnt/beta-
catenin signaling suppressor DKK1, or knockout of CX3CR1
alleviate gp120-inducedmechanical allodynia. Taken together the
results suggest that HIV-1 gp120 provokes synaptic degeneration
in dorsal horn by activating microglia via Wnt3a/beta-catenin-
regulated fractalkine expression.

What Is the Role of Interferon Gamma?
Several lines of evidence implicate interferon gamma (IFN-
γ) in the etiology of neuropathic pain. Spinal microglia in
naive animals express the appropriate receptor (IFN-γR) and
stimulation with IFN-γ induces both tactile allodynia and
altered microglia function. Genetic ablation of IFN-γR impairs
nerve injury-evoked activation of ipsilateral microglia and tactile
allodynia (348). The purinergic P2X4 receptor is upregulated in
IFN-γ stimulated—microglia and, as will be discussed below, the
appearance of such receptors plays a crucial role in the onset of
neuropathic pain in males (151, 312, 314, 316, 317). IFN-γ has
also been shown to increase dorsal horn excitability (349, 350)
and to facilitate synaptic transmission between C-fibers and
Lamina 1 neurons via a microglial dependent mechanism (351).
Although the level of IFN-γ is increased in spinal cord following
peripheral nerve injury (352), this may originate from invading
T-lymphocytes. This implies that IFN-γ does not have a major
role as a secondary mediator to effect communication between
injured primary afferents and microglia.

Microglial-Independent Signaling Between
Primary Afferents and Dorsal Horn Neurons
Apart from the role of glutamate and its involvement in long term
potentiation (353), there are several situations where secondary
messengers generated in, and released from primary afferents
exert direct long term effects on dorsal horn neurons. For
example, the primary mediator role of the secreted glycoprotein
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Wnt3a has already been alluded to Simonetti et al. (133). Recent
evidence suggests that Wnt3a promotes the release of another
ligand, Wnt5a from primary afferents which in turn promotes
dendritic retraction of dorsal horn neurons (134). This occurs
without the intervention of microglial signaling.

The secondary mediator CSF-1 decreases excitatory drive to
inhibitory neurons in dorsal horn via a BDNF independent
process (143). Since the presence of CSF-1 receptors on neurons
has been questioned (354), it remains to be determined whether
this reflects a direct effect of CSF-1 on neurons or whether other
microglial derived tertiary mediators are recruited.

RELEASE OF TERTIARY MEDIATORS
FROM MICROGLIAL CELLS

Release of BDNF in the Spinal Dorsal Horn
Initial studies on the release and actions of BDNF were
predominantly done on male rodents in an attempt to avoid
possible complications imposed by the female oestrous cycle.
More recent data strongly suggest major differences in the
mechanism of central sensation in females compared to males;
microglial derived BDNF is probably not involved in females
(24, 26, 27, 313, 320, 355). In males however, numerous lines
of behavioral and cellular data strongly implicate the release of
BDNF from spinal microglia in the etiology of neuropathic pain
(4, 143, 150, 152, 154, 156, 157, 161, 164, 315, 356–359).

As already mentioned, the secondary mediator CSF-1 is
released from injured primary afferents and interacts with its
receptors onmicroglial cells (137). This leads to the up regulation
of several genes that are implicated in the development of
neuropathic pain. This includes Itgam (encoding CD11b),Cx3cr1
(encoding the fractalkine/CX3CL1 receptor, CX3CR1), Bndf
(encoding BDNF), and Ctss (encoding cathepsin S) (139). BDNF
which acts by increasing dorsal horn excitability, is a major
tertiary mediator in the development of central sensitization
(4, 143, 150, 151, 156, 157, 163, 314, 315).

Long-term exposure of dorsal horn neurons to CSF-1 also
increases their excitability and this effect is abrogated by the
BDNF binding protein TrkB-fc (143). These findings underline
the importance of a sensory neuron—CSF-1—microglia—BDNF
signaling process in the onset of neuropathic pain (4, 9, 139, 238,
360).

Role of ATP and P2X4 in BDNF Release
Although stimulation of primary afferents releases ATP and
generates P2X mediated EPSC’s in a subpopulation of lamina
II neurons (361), primary afferent neurons do not appear to be
the main source of ATP following peripheral nerve injury. It
may rather derive from neurons in the superficial dorsal horn
itself (362). BDNF release from microglia is brought about by
ATP activation of upregulated P2X4R (151, 168, 312, 314, 316–
318). This release is biphasic. An early phase occurs within 5min,
whereas a late phase peaks 60min after ATP stimulation. The
late phase of release is associated with an increased level of
BDNF within the microglia. Both phases of BDNF release are
dependent on extracellular Ca2+ but the late phase of release and
accumulation is dependent on transcription and translation. This

suggests that activation of P2X4R initially releases a pre-existing
pool of BDNF and subsequently promotes de novo synthesis of
BDNF. This vesicular release of BDNF is abolished by inhibiting
SNARE (soluble N-ethylmaleimide-sensitive factor attachment
protein receptor)-mediated exocytosis and the P2X4R-evoked
release and synthesis of BDNF are dependent on activation of
p38-mitogen-activated protein kinase (MAPK) (312, 314–317).

Activation of P2X4 on microglia and release of BDNF are
involved in the onset of neuropathic pain in males, but as
already mentioned, not in females. This is congruent with the
observation that spinal microglia from female rodents do not
express P2XR (26).

Role of ATP and Metabotropic P2Y Receptors in

BDNF Release
There is also evidence for a role for metabotropic P2Y receptors
in microglial activation and the onset of neuropathic pain (363–
365). This involves P2Y6, 11, 12, 13, and 14 (366–369). Whilst
P2Y6 signals through Gq/11 and P2Y12, 13, and 14 signal through
Gs, P2Y11 signals through both Gq and Gs (222).

P2Y12 mRNA and protein are increased in microglia
after peripheral nerve injury and intrathecal injection of a
P2Y12 antagonist or antisense knockdown of P2Y12 expression
suppresses the development of injury-induced pain behaviors
and the phosphorylation of microglial p38 MAPK. By contrast,
intrathecal infusion of a P2Y12 agonist into naive rats mimics the
nerve injury-induced activation of microglial p38 and increases
pain behaviors (366). Since phosphorylation of p38MAPK by
P2X4 agonists has been implicated in BDNF release (314) this
may also be affected by P2Y12 activation.

Spared nerve injury also induces a p38MAPK-dependent
increase in P2Y6, 13, and 14 mRNA in microglia. This is
thought to depend on activation of ROCK Rho-associated coiled-
coil-containing protein kinase (370). Since intrathecal injection
of the specific P2Y6 antagonist MRS2578, the specific P2Y13
antagonist MRS2211 or P2Y14 antisense, attenuate mechanical
pain hypersensitivity, these three receptors may function as
downstream effectors that mediate some of the actions of ATP
in microglia (367, 371).

Wnt Signaling and BDNF Release
Wnt signaling can also promote BDNF release (359, 372). This
phenomenon has been examined in models of HIV pain which
involve exposure of sensory neurons to viral coat proteins such
as gp120 (12, 372). Intrathecal injection of gp120 produces
mechanical allodynia and increases expression of Wnt3a, β

catenin andmicroglial BDNF in themurine spinal cord. Blockade
of Wnt or BDNF signaling alleviates mechanical allodynia as
does inhibition of microglial activation with minocycline (12).
Zhang et al. (359) have suggested a mechanism whereby

Wnt signaling provides an important link between increased
neuronal activity and BDNF expression. Increased glutamatergic
neuronal activity activates NMDA receptors and increases the
level of intraneuronal Ca2+ This promotesWnt protein synthesis
and release via MAPK/CREB signaling (373, 374). Activation
of frizzed receptors on microglia promotes Wnt signaling via
β catenin leading to increased BDNF expression and release.
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This is a further illustration of the concept of “neurogenic
neuroinflammation” whereby intense neuronal activity promotes
immune cell activation (212).

BDNF in Inflammatory vs. Neuropathic Pain
Inflammatory pain as induced by formalin or carrageenan
exposure is attenuated using the Cre-loxP system to selectively
delete BDNF from nociceptive sensory neurons. Despite this,
these animals display normal signs of neuropathic pain following
nerve injury (375). Whilst BDNF thus appears to be involved in
both inflammatory and neuropathic pain (376), in the first case
it is derived from peripheral nociceptors whereas in the second
case it is derived from ATP-activated microglia.

Time Course of Microglia Activation and Long-Term

Effect of BDNF
Whereas, early studies of microglia activation in response to
peripheral nerve injury focussed on short term changes (312),
more recent work has shown that microglial activation in rodent
dorsal horn persists for more than 3 months after injury (377).
Activation even persists beyond the known involvement of pro-
inflammatory cytokine signaling. Thus, selective depletion of
spinal microglia with the targeted immunotoxinMac1-saporin or
sequestration of BDNF with the selective binding agent TrkBFc
almost completely reversed thermal and mechanical alloynia in
both the acute (2 week) and chronic (3 month) phase after injury.
By contrast, neutralizing cytokine signaling using intrathecal
injection of a cocktail of antibodies against IL-β, TNF-α, and IL-6
significantly attenuated tactile and cold allodynia at 2 weeks but
not at 3 months after injury. These findings may have therapeutic
relevance as they suggest different mediators should be targeted
in the management of acute vs. chronic neuropathic pain (377).

BDNF, TrkB, and Antidepressants
It has recently been reported that some antidepressants bind
to TrkB and augment BDNF signaling (378). Since the many
lines of evidence outlined above implicate BDNF in central
sensitization, augmentation of TrkB signaling by antidepressants
would be expected to exacerbate pain. Despite this, tricyclic
antidepressants and serotonin-noradrenaline reuptake inhibitors
are first line treatments in neuropathic pain management (379).
The relationship between these disparate observations remains to
be studied and resolved.

Release of IL-β in the Spinal Dorsal Horn
IL-1β plays a modulatory or effector role in nociception in the
periphery, dorsal root ganglia, spinal cord and higher centers.
These effects assume particular importance in the etiology of
neuropathic pain. Corroborative evidence for a role of IL-1β
neuropathic pain comes from the observation that inhibition of
matrix metalloproteases responsible for IL-1β processing leads to
attenuation of pain in a rodent model (170).

Whilst the CSF-1, P2X4-microglia-BDNF pathway is well-
characterized, less is known about the release of IL-1β. In the
spinal cord, it is produced and released from macrophages,
astrocytes and microglia (2, 380, 381). Release from microglia
is a consequence of activation of P2X7 receptors (166, 168,

311, 319) and may be provoked by the action of fractalkine
(167). In agreement with this, it has recently been reported
that the Cav1 channel blocker, cilnidipine blocks microglial
P2X7 receptors, impairs IL-1β release and reverses nerve injury-
induced mechanical hypersensitivity (173). It has also been
suggested that P2X4R interact intracellularly with P2X7R to
augment P2X7R-mediated IL-1β release (168).

Release of IL-1β is unlikely to reflect a SNARE dependent
process as has been suggested for BDNF (314). IL-1β is known
to be processed intracellularly from its inactive pro-form by
caspase-1 into its mature bioactive form (382). Release from
macrophages and dendritic cells and partially from neutrophils,
may be brought about via the formation of gasdermin D pores
in the cell membrane (382–384). One recent report implicates
gasdermin D in IL-1β release from microglia in Toxoplasma
gondii (parasitic protozoan) infections (385) but it remains to
be determined whether a similar mode of release is engaged in
neuropathic pain. In this situation, IL-1β release may involve its
excocytosis via panexin channels (166).

Release of TNF-α in the Spinal Dorsal Horn
The role of TNF-α as a peripheral primary mediator has already
been alluded to and several studies have shown that signs of
neuropathic pain may be alleviated by perturbation of TNF-
α signaling (84, 203, 277, 386). Several lines of evidence also
support a role of TNF-α as a tertiary mediator responsible for
signaling between microglia and dorsal horn neurons.

Nerve injury increases levels of TNF-α mRNA in spinal
microglia and microglia derived cytokine induces COX2 and
PGI2 synthase expression in endothelial cells suggesting that a
TNF-α mediated glia-endothelial cell interaction is involved in
the generation of neuropathic pain (180).

Release of Wnt 5a in the Spinal Dorsal Horn
Wnt proteins are upregulated in the spinal cord of various pain
models (3, 11, 134, 199). In a very consistent manner as seen
in the pathogenesis of HIV-associated pain, Wnt ligands (e.g.,
Wnt5a) are specifically upregulated in the SDH of “pain-positive”
HIV patients (11). By regulating the pathogenesis of gp 120—
induced pain, Wnt5a sensitizes pain-processing SDH neurons
through the JNK/TNF-α signaling pathway.

ACTIONS OF THE TERTIARY MEDIATOR
BDNF IN THE DORSAL HORN

In male rats, intrathecal administration the BDNF binding
protein TrkB-Fc prevents the development of mechanical
allodynia after spared nerve injury (387). Several cellular
mechanisms have been implicated in the excitatory actions of
microglial-derived BDNF that lead to central sensitization.

BDNF Increases Excitatory Drive to
Excitatory Neurons and Decreases That to
Inhibitory Neurons
In rat spinal organotypic cultures, 5–6 d exposure to BDNF
increases excitatory synaptic drive to excitatory lamina II neurons
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whilst decreasing excitatory drive to inhibitory neurons (157,
356). In mice, effects of BDNF are dominated by increased
excitatory drive to excitatory neurons. Whereas, presynaptic
TrkB and p75 neurotrophin receptors are involved, postsynaptic
effects are mediated exclusively by TrkB (143). Whilst the
passive and active properties of lamina II neurons such as
rheobase, resting potential, input resistance and excitability are
little affected (143, 157, 356), the altered synaptic activity is
capable of increasing spontaneous action potential discharge in
excitatory neurons whilst reducing it in inhibitory neurons (356).
Three observations show that these actions of BDNF are relevant
to injury-CSF-1-microglia evoked central sensitization. Firstly
BDNF—induced changes in synaptic transmission and its lack of
effect on the intrinsic excitability of lamina II neurons very much
parallel those invoked by peripheral nerve injury (157, 388, 389).
Secondly, Ca2+ responses evoked by neuronal depolarization
are enhanced by BDNF and also by conditioned medium
from lipopolysaccharide-activated microglia. The effect of this
conditioned medium is attenuated by sequestering BDNF with
TrkBd5 (157). Thirdly, the putative microglial modulator CSF-
1 increases synaptic excitation of excitatory lamina II neurons
in mice and this effect is abrogated by sequestering BDNF with
TrkBfc (143) whereas, as already mentioned, CSF-1 reduces
excitation of putative inhibitory neurons in a BDNF-independent
mechanism, suggesting that injured primary afferents can also
signal directly to dorsal horn neurons without the involvement
of microglia (143).

BDNF and NMDA Receptor Function
Effects of BDNF on Postsynaptic NMDA Receptors
The BDNF effects alluded to above relate primarily to AMPA
receptor mediated transmission as neurons were studied at a
holding potential of −70mV (143, 157, 356, 388, 389). There is
however a considerable body of evidence to support a role for
altered NMDA receptor function in the etiology of pathological
pain. This is supported by the occasional success realized with
NMDA blockers such as ketamine in the clinic (390, 391).
The link between NMDA receptor function and BDNF was
established over 20 years ago by the observation that it enhances
excitatory responses to NMDA in rat spinal cord in vitro (392).
BDNF phosphorylates GluN1 via ERK and PKC (393). It also
acts through TrkB to phosphorylate the GluN2B subunit by
the Src-family kinase Fyn and thereby potentiates excitatory
NMDA receptor-mediated currents (165). Interestingly, this
potentiation appears to require the coincident BDNF mediated
Cl− disinhibition. The exact molecular mechanism of this
interaction remains to be elucidated as it does not appear to
reflect increased NMDA receptor availability as a result of GABA-
induced depolarization (165).

Effects of BDNF on Presynaptic NMDA Receptors
BDNF also acts via TrkB and a Src-family kinase to potentiate
the function of presynaptic NMDA receptors on primary
afferent terminals (394). It has been reported that presynaptic
NMDA receptors only potentiate glutamate release from
primary afferents after nerve injury (395). This further

underlines the presynaptic BDNF effect in the development
of central sensitization.

BDNF Decreases Inhibition by Perturbation
of Chloride Gradients
Peripheral nerve injury reduces expression of the potassium-
chloride exporter (KCC2) in spinal lamina 1 neurons (396, 397).
The resulting accumulation of intracellular Cl− causes normally
outward, inhibitory GABAergic synaptic currents mediated by
Cl− influx to become inward excitatory currents mediated by Cl−

efflux (396–398). Since the knockdown of spinal KCC2 in non-
injured rats reduces pain thresholds and induces neuropathic
pain behaviors, these changes contribute to the pathophysiology
of central sensitization (150, 396).

In male rats, BDNF mediates this downregulation of KCC2
(164). Thus, administration of ATP activated microglia, but not
control microglia, reproduces the shift in anion gradient seen
after nerve injury as does application of BDNF. Also, blocking
TrkB or using interfering RNA against BDNF reverses both
injury induced pain behaviors and the shift in anion gradient
(150). Further analysis of this phenomenon reveals that changes
in KCC2 expression in deep dorsal horn neurons are confined
to nociceptive neurons that project via the spinothalamic tract
whereas wide dynamic range (WDR) neurons that are activated
by a variety of sensory modalities are unaffected (399). It has
also been shown that neurons in lamina I are more susceptible
to changes in Cl− gradient than those in lamina II (397) and
biophysical and modeling analysis shows this loss is especially
effective in promoting increased neuronal firing (400). These
are important observations as lamina I and deep dorsal horn
nociceptive neurons are the most important sites for relay of
nociceptive information to the brain (303, 401, 402). Since loss
of GABAergic inhibition enables non-noxious Aβ fiber-mediated
excitatory transmission to acess the superficial spinal dorsal horn,
this process plays a major role in the establishment of allodynia
(300, 403, 404).

Reversal of the Cl− gradient may rationalize the observation
that BDNF increases GABA release in the dorsal horn (159, 161,
405). Under these conditions GABA produces inward currents
(396) whichwould be enhanced and therefore strongly excitatory.

BDNF and Induction of Long-Term
Potentiation
Long term potentiation (LTP) of synaptic transmission
contributes to central sensitization in the dorsal horn (353, 406–
408). LTP of C-fiber responses can also be augmented by BDNF
(387) and LTP induced by high frequency nerve stimulation
is occluded by BDNF treatment (409). This reflects functional
upregulation GluN2B subunits of NMDA receptors by activation
of the tyrosine phosphatase SHP2 (409) or Fyn kinase-mediated
phosphorylation of GluN2B subunit at tyrosine 1472 (387).
These authors also showed intrathecal administration of BDNF
scavenger TrkB-Fc prior to surgery could prevent the nerve
injury-induced increase of both phosphorylated Fyn and
phosphorylated GluN2B expression and as mentioned above
it also prevented the development of mechanical allodynia
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after spared nerve injury. The importance of these effects was
recently underlined by the observation that spinal LTP induced
by high frequency stimulation as well as microglial activation
and upregulation of BDNF are inhibited by antibodies to CSF-1.
This strongly implicates CSF-1/nerve injury driven microglial
derived BDNF in the generation of spinal LTP (408).

BDNF, Intracellular Ca2+ Oscillation, and
Spontaneous Bursting Activity
Manipulations that increase neuronal excitability can induce
synchronous waves in the level of cytosolic Ca2+ that propagate
across the whole dorsal horn (410–412). Similarly, K+-induced
depolarization invokes oscillatory activity as monitored by
spontaneous field potentials (413). It has also recently been
shown that action potential discharge encodes cytosolic Ca2+

levels in lamina 1 neurons and even a single action potential
can provoke a measurable Ca2+ response (414). This implies that
spontaneous bursting activity and oscillations of cytosolic Ca2+

level may be closely related. Although long term application of
BDNF does not change the resting membrane potential, input
resistance of rat dorsal horn neurons in organotypic culture
(158) it promotes oscillations in the level of intracellular Ca2+

in some neurons whilst depressing it in others (163). There
appear to be several mechanisms whereby oscillations may be
set up, for example those observed by Alles et al. (163) and
Chapman et al. (411) were prevented following blockade of
AMPA glutamate receptors whereas those by Asghar et al. (413)
were merely attenuated. The oscillations recorded by all three
groups were however blocked by TTX, again underlining the
tight assocaition between action potential activity and Ca2+

signalling which in turn may enable Ca2+-dependent gene
expression. Whilst the oscillations appeared to be primarily
originating from neurons the possible contribution of signal
from astrocytes cannot completely be ruled out. Although any
direct relationship between these oscillations and neuropathic
pain mechanisms remains to be established, sciatic nerve injury
has been reported to induce spontaneous bursting activity in a
subgroup of dorsal horn neurons in vivo (415). MRI studies have
also revealed oscillatory activity in the spinal cord of neuropathic
pain patients (416). It may be posited therefore that oscillations
in Ca2+ level and spontaneous bursting activity contribute to the
bouts of spontaneous “electric shock like” pain experienced by
those afflicted with painful neuropathies (163).

BDNF in Injury-Induced Synaptic
Reorganization in Dorsal Horn Neurons
As already mentioned, peripheral nerve injury produces neuron
type specific effects on synaptic transmission in the dorsal horn;
excitation of excitatory neurons is increased whereas excitation
of inhibitory neurons is decreased (143, 156–159, 356, 388, 389).
In addition to altered neurotransmitter release and alterations
in postsynaptic sensitivity, connectivity is lost at some synapses
(8, 417, 418) but new connections and/or reorganization of
dendritic spines occurs at others (408, 419).

Microglia are clearly capable of releasing mediators which
promote neuronal loss in an animal model of multiple sclerosis

(140) and synaptic degeneration in a model of HIV pain (8). This
process of microgliosis is also seen following peripheral nerve
injury (420, 421). As discussed below, these processes are likely
to reflect the action of microglia-derived BDNF and in the case
of HIV pain may reflect phagocytosis of damaged synapses by
activated microglia (8).

Is BDNF Involved in Injury-Induced Loss of Primary

Afferent Terminals Onto Inhibitory Neurons?
Peripheral nerve injury promotes transient loss of glutamatergic
excitatory terminals from non-peptidergic IB-4 positive
nociceptive fibers in the substantia gelatinosa (418, 422).
These fibers form the synaptic terminals of the “type 1”
synaptic glomeruli (423) which contact GABAergic neurons
(402, 424). Morphological changes may therefore contribute
to injury-induced reductions in the amplitude and frequency
of spontaneous and miniature EPSCs in tonic firing, putative
inhibitory neurons (388). This attenuation of excitatory drive to
inhibitory neurons would be expected to contribute to an overall
increase in dorsal horn excitability (158). Since BDNF also
reduces mEPSC amplitude and frequency in putative inhibitory
neurons in rat dorsal horn (356) it is possible that BDNF accounts
for loss of primary afferent terminals (418, 422). This possibility
requires further investigation as BDNF stimulates overall axon
growth and regeneration in the spinal cord (425, 426).

This differs from the situation in mice where BDNF does not
affect excitatory drive to inhibitory neurons (143). It remains to
be determined whether this simply reflects a species difference
or whether it is a consequence of the more rigorous criteria to
define inhibitory neurons in mice (143, 412) compared to rats
(157, 356).

BDNF is not involved in injury-induced loss of GABA
terminals. Nerve injury also promotes loss of GABAergic
inhibitory terminals in laminae I and II of the dorsal horn
(422, 427). Because BDNF enhances GABAergic transmission
at various synaptic loci in the dorsal horn (158, 159, 161), the
nerve injury-induced loss of inhibitory terminals is unlikely to
involve BDNF.

BDNF May Increase Primary Afferent Terminals on

Excitatory Neurons
In rats, both nerve injury and BDNF increase excitatory synaptic
drive to putative excitatory neurons (157, 356, 388, 389, 428)
and a similar effect of BDNF is seen in mice. CSF-1 also
increases synaptic drive in a BDNF dependent fashion (143).
These observations parallel the observation that both BDNF
and CSF-1 increase CGRP containing terminals in response to
nocigenic high frequency stimulation (408) as these terminals
primarily innervate excitatory neurons (402).

BDNF and Astrocyte Activation
In addition to its actions on neurons as described above,
BDNF also activates astrocytes such that they release additional
mediators that participate in the establishment of central
sensitization (429).
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ACTIONS OF THE TERTIARY MEDIATOR
INTERLEUKIN 1β IN THE DORSAL HORN

IL-1β levels are increased in the cerebrospinal fluid (CSF) of
patients with complex regional pain syndrome (275) and in spinal
cords obtained post-mortem from patients with painful HIV
related neuropathy (3). Although there are several reports of
the effectiveness of IL-1β antagonists and genetic impairment of
cytokine function in animal models of neuropathic pain (57–
59, 171) studies of the effectiveness of the modified human
interleukin 1 receptor antagonist protein (anakinra) in the clinic
have been limited by the pharmacokinetic issues imposed by the
blood brain barrier (171).

As mentioned above, release of IL-1β from microglia is
primarily affected by activation of P2X7 receptors (166, 173,
311, 319) and/or by the action of fractalkine (167). In a similar
fashion to BDNF, IL-1β increases overall dorsal horn excitability,
glutamate release from primary afferents and excitatory synaptic
transmission between primary afferent C-fibers and lamina 1
neurons (167, 176, 430).

Effects of IL-1β on Synaptic Transmission
in the Spinal Dorsal Horn
Like BDNF, IL-1β does not affect the membrane potential or
rheobase of lamina II neurons, suggesting that most of its effect
on dorsal horn excitability can be ascribed to changes in synaptic
transmission (175, 176). We found that exposing organotypic
cultures of rat spinal cord to 100 pM IL-1β for 6–8 d increased the
amplitude of spontaneous EPSC’s (sEPSC) in putative excitatory
“delay” neurons, and decreased the frequency of spontaneous
IPSC’s (sIPSC). These are somewhat similar to those seen with
peripheral nerve injury (388, 389). IL-1β would therefore be
expected to increase dorsal horn excitability and to facilitate
the transfer of nociceptive information. This was confirmed
by the observation that Ca2+ responses evoked by exposure
of neurons to 20mM K+ were augmented by IL-1β exposure
(176). However, other actions of IL-1β included disinhibition of
putative inhibitory “tonic” neurons and although the frequency
of sIPSC’s in putative excitatory “delay” neurons was decreased,
their amplitude was increased. The latter observations may be
rationalized if GABA assumes an excitatory role in the injury
situation due to perturbation of Cl− gradients by BDNF (150).

We used long-term application of IL-1β to parallel the time
course of injury-induced changes in spinal cytokine levels (48,
176). Our findings are paralleled by the observations that acute
application of IL-1β increases the amplitude of AMPA and
NMDA currents in the spinal dorsal horn (178) and increases
glutamate release via an interaction with presynaptic NMDA
receptors (430). Acute cytokine application also enhances both
the frequency and amplitude of sEPSCs in unidentified lamina
II neurons (175). These authors reported a reduction in the
frequency and amplitude of sIPSCs. The differences between this
work and ours may not only represent the different time course
of cytokine activation as Kawasaki et al. used 600 pM IL-1β in
their work whereas we used a somewhat lower concentration

of 100pM and observed differential actions on excitatory vs.
inhibitory neurons.

Further analysis of fractalkine—microglia—IL-1β signaling
led Clark et al. (167) to propose the following sequence of
events. Soluble fractalkine activates CX3CR1 on microglial
cells leading to the rapid release of IL-1β. IL-1β activates
IL-1r on lamina 1 neurons and modulates function of
postsynaptic NMDA receptors such that Ca2+ influx is increased
when they are activated by glutamate. Elevated levels of
intracellular Ca2+ in lamina I neurons activates phospholipase
A2 leading to the liberation of arachidonic acid and the
generation of prostaglandins. Within a fewminutes of fractalkine
application, prostaglandins increase transmitter release from
primary afferents both directly and indirectly via iNOS activation
and release of NO from microglia.

Presynaptic NMDA receptors have also been implicated in
spinal actions of IL-1βwhere signaling between IL-1r andNMDA
may be affected by the sphingomyelinase/ceramide signaling
pathway to enhance glutamate release from the primary afferents
in neuropathic rats (395, 430). IL-1β enhances endocytosis of
glial glutamate transporters in the dorsal horn astrocytes through
activating protein kinase C (431), the resultant augmentation
of glutamate responses represents a complementary mechanism
where cytokine enhances excitatory synaptic transmission.

ACTIONS OF THE TERTIARY MEDIATOR
TNF-α IN THE DORSAL HORN

Acute activation of TNF receptor 1 by TNF-α inhibits the
excitability of a subset of spinal GABAergic neurons. This
effect involves p38 mitogen-activated protein kinase dependent
suppression hyperpolarization-activated cation current (Ih)
(182). These effects have been reported to diminish with time
suggesting TNF-α may be primarily involved with the induction
rather than the persistence of neuropathic pain (40).

Although fractalkine action on microglia and potentiation
of synaptic transmission in the dorsal horn involves IL-1β
but not TNF-α (167), it does appear to facilitate long term
potentaition (183). This has led to the suggestion that the
differential contributions of TNF-α and IL-1β to fractalkine-
induced enhancement of synaptic transmission may reflect the
well-characterized phenotypic diversity of microglia (432). Thus,
activation of microglia by different secondary mediators may
result in release of specific mixtures of tertiary mediators which
in turn promote diverse effects on synaptic transmission (183).

GENERAL COMMENTS REGARDING
INJURY-INDUCED SIGNALING IN THE
SPINAL DORSAL HORN

Role of Astrocytes; Initiation and
Maintenance of Neuropathic Pain
Astrocytes become rapidly and persistently activated after
peripheral nerve injury, suggesting they play a role in both the
onset and maintenance of central sensitization (3, 433–435).
As mentioned above, recent evidence also implicates microglial
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function in the long-term maintenance of neuropathic pain in
animal models (377) but this may not be the case in all types of
neuropathic pain in the clinic (3).

It is well-established that IL-1β from microglia stimulates
astrocytic production of TNF–α and IL-6 as well as IL-1β itself
(381, 434) thereby amplifying the initial IL-1β signal. Microglial
derived IL-1β reduces the capacity of astrocytes to take up
glutamate (179, 430) as a result of internalization of the astrocytic
glutamate transporter (EAAT2) (179). Loss of EAAT2 function
induces hyperalgesia, augmentation of glutamatergic synaptic
responses and increased sensitivity of dorsal horn neurons to
primary afferent stimulation (436, 437). Activated astrocytes
have also been reported to release the NMDA receptor co-
agonist D-serine (438) thereby augmenting overall dorsal horn
excitability. Evidence for astrocyte involvement in the clinic has
been obtained by post-mortem studies of HIV-patients with
painful neuropathy (3). These authors showed that expression
levels of the microglial markers CD11b and Iba1 were not
elevated whereas the astrocytic markers GFAP and S100 beta
were clearly increased. This was accompanied by increased levels
of TNF-α and IL-1β, as well as components of MAPK signaling
pathway, including pERK, pCREB, and c-Fos.

Since astrocytes are not the primary focus of this review,
readers are directed to the recent review by Ji et al. (435)
which underlines the role of astrocytic gap junctions and
astrocyte derived chemokines in pathological pain. Several other
comprehensive reviews have appeared (439–441) and recent
work has underlined the role of astrocyte derived IL-17 in
paxlitaxel induced pain (21).

Ubiquitous Nature of Mediator Release and
Effect
We have used the term primary mediator to cover substances
released from the site of nerve injury, secondary mediator to
describe substances released from primary afferent terminals and
tertiary mediators to define substances released from microglia
(Figure 1). Whereas, BDNF selectively released from microglia
can be described as a tertiary mediator, production and effect of
cytokines and chemokines is far more widespread. For example,
IL-1β which is a classical macrophage derived signal, can be
released from Schwann cells, microglia, astrocytes, neutrophils,
granulocytes, mast cells and endothelial cells (2, 190, 381, 434,
442, 443) it would thus be classified both as a primary and tertiary
messenger. In general it can be said that cytokines such as IL-1β
can be released from more or less any cell type in response to
an appropriate stimulus. IL-17 appears to be a primary mediator
which is also released from spinal astrocytes in a model of
chemotherapy pain (21).

Opening of the blood brain barrier is a well-known correlate of
nerve injury induced allodynia (50, 444) and this may be initiated
by aberrant afferent nerve activity (445). This enables lymphocyte
and macrophage invasion of neural tissue. In addition, mediators
generated in damaged nerves, microglia, Schwann cells or
astrocytes might be expected to enter the circulation and
exert actions throughout the body. This is supported by the
observation that plasma levels of IL-1β are elevated in rodents

subjected to spared nerve injury (446) or exposure to paclitaxel
which models chemotherapy pain (52).

Mediators generated in the spinal cord would also be expected
to have access to other brain regions via the CSF. IL-1β levels
are increased in the CSF of patients with complex regional
pain syndrome (275) and with thoracic disc herniation (447).
Inflammatory mediators may also be elevated in the CSF of
osteoarthritis patients (15).

Taken together these finding suggest that the diffusion of
spinally and DRG generated mediators may gain access to other
brain regions via both the CSF and systemic circulation. This may
lead to mirror image pain following unilateral nerve injury (448)
and/ormediator actions in higher brain regions that contribute to
the analysis of nociceptive phenomena, the affective components
of pain, sickness syndrome and formation of memory traces (446,
449). For example, microglia activation and BDNF release in the
mesolimbic reward circuitry may contribute to the negative affect
associated with chronic pain (185). With the possible exception
of BDNF, all of the mediators described (cytokines, chemokines
and Wnt ligands) can be released from multiple cell types and
as such may play a role in the initiation or maintenance of
neuropathic pain throughout the nervous system. Discussion of
the actions of mediators in higher brain centers is outside the
scope of this review.

Sex
Neuropathic pain is seen more frequently in women than in
men (29) and it is now recognized that understanding of
divergent pain mechanisms in males vs. females is crucial to the
development of appropriate therapeutic approaches (28, 33, 450,
451).

Investigations over the last 15 years or so have started to
unravel cellular and molecular mechanisms that may contribute
to this difference (29, 31–33, 452, 453). For example, microglia
are not required for mechanical sensitivity to pain in female mice
which require activation of adaptive immune cells such as T-
lymphocytes (27, 320). The difference may result from a lack of
P2X4 receptors in the microglia of females (26, 313). Despite
this, behavioral responses to nerve injury in female rats are
similar to those seen in males and both involve downregulation
of KCC2 and perturbation of Cl- gradients (25). Because BDNF
is not necessary for the development of allodynia in female
rodents (27), the mediator released from adaptive immune cells
remains to be determined. Similar findings have been found in
the Freund’s adjuvant in vivo model of inflammatory pain in
rodents and confirmed in human neurons (33). These authors
also showed that ex vivo BDNF enhanced synaptic NMDA
receptor responses in lamina I neurons from males but not
from females and that ovariectomy eliminated these differences.
Importantly, the findings illustrate how sexual convergence onto
shared cellular and behavioral endpoints, such as allodynia, pain
sensitivity or KCC2 downregulation, may mask sex differences
in underlying molecular and cellular mechanisms (28). Other
recent work has shown that macrophage invasion of DRG
is predominant in males and not in females although both
show similar amounts of allodynia following peripheral nerve
injury (454).
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The realization that different mechanism are engaged to
generate neuropathic pain in males vs. females has obvious
therapeutic implications. For example, blockade of Nav1.8
channels in the peripheral nervous system with A-803467 is
more effective in females than in males in a rodent model
of joint neuropathic pain (455). Might blockers of Nav1.8 be
more effective in women than in men? On the other hand,
restoration of KCC2 function (456)may be effective in bothmales
and females?

Multiplicity of Signaling Processes
Different Injuries Different Mediators?
It is well-known that different types of nerve injury provoke
different types or behavioral or physiological response. Thus,
while mechanical allodynia produced by spared nerve injury
persists for many weeks, that produced by chronic constriction
injury is short-lived and recovery is seen in about 4 weeks
(38, 142). Similarly, changes in synaptic transmission in the
superficial dorsal horn aremore robust after sciatic CCI than after
complete sciatic nerve section (axotomy) (389). These findings
may be consistent with an earlier observation that CCI promotes
stronger and more long lasting upregulation of the primary
mediators TNF-α, IL-1β, IL-10, MCP-1/CCL-2 in nerve stumps
than nerve crush (306). Whilst neuropathic pain associated with
multiple sclerosis is characterized by loss of spinal neurons (140),
this effect is not produced with CCI (457, 458).

Recent work has shown how the nature of peripheral injury
dictates the precise spinal circuitry involved in the generation of
mechanical allodynia (459). Thus, neuropathic injuries generate
allodynia by activation of excitatory protein kinase C gamma
positive (PKCγ) neurons at the lamina II/III interface (460)
whereas mechanical allodynia induced by inflammation involves
excitatory calretinin positive neurons in inner lamina II (461).
Cholecystokinin (CCK) positive neurons in laminae III-IV are
important in both situations. Peirs et al. (459) also distinguished
punctate allodynia (as produced by Von Frey filaments) from
dynamic allodynia (produced by brushing a cotton swab across
the hindpaw skin). This allowed them to identify a subset of CCK
neurons which expressed the musculoaponeurotic fibrosarcoma
oncogene homolog (Maf) and the transient vesicular glutamate
transporter 3 (tVGLUT3), which are primarily involved in
conveying dynamic rather than punctate allodynia.

Other work using knockout mice has shown that deficiency
of CCL19/21 attenuates nerve injury evoked pain but not
the hyperalgesia evoked by the autoimmune encephalomyelitis
model of multiple sclerosis (149).

The above findings point to the possibility that different types
of injury provoke the generation of different sets of mediators
(276). This may be due to differential damage to various subsets
of primary afferent fibers.

A Paradox
The above sections outline the actions of many of the proposed
primary, secondary and tertiary mediators involved in the
development and persistence of neuropathic pain. There are
several pathways by which a peripheral nerve injury can lead
to pain but as shown in Tables 1–3, interruption of the actions
of any single mediator seems to be capable of alleviating pain.
For example, ATP activation of P2X7 receptors on microglia
promotes release of IL-1β and activation of P2X receptors
promotes release of BDNF. This would imply that it would
be necessary to prevent the action of both IL-1β and BDNF
to prevent the development of allodynia but it is known that
inhibition of the actions of either individual mediator is effective.
In other words if BDNF is inhibited why can’t pain be initiated by
IL-1β If IL-1β is inhibited why can’t pain be initiated by BDNF?
Also as mentioned above the actions of inflammatory mediators
are mediated by a limited number of downstream signaling
processes: ERK-MAPK signaling seems particularly important
in this regard. If one signaling cytokine is blocked or knocked
out why aren’t its downstream effector mechanisms activated by
other cytokines?

A better understanding of the interactions between mediators
and their receptors and downstream effectors is clearly required
for a more complete understanding of mechanisms underlying
neuropathic pain in animal models that will lead to a better
understanding of pain etiology in individual patients. This in turn
may enable the application of personalized medicine approaches
to pain management (459, 462).
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