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Medicine
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Machine learning algorithms that are both interpretable and accurate are essential in applications 
such as medicine where errors can have a dire consequence. Unfortunately, there is currently a 
tradeoff between accuracy and interpretability among state-of-the-art methods. Decision trees 
are interpretable and are therefore used extensively throughout medicine for stratifying patients. 
Current decision tree algorithms, however, are consistently outperformed in accuracy by other, less-
interpretable machine learning models, such as ensemble methods. We present MediBoost, a novel 
framework for constructing decision trees that retain interpretability while having accuracy similar 
to ensemble methods, and compare MediBoost’s performance to that of conventional decision trees 
and ensemble methods on 13 medical classification problems. MediBoost significantly outperformed 
current decision tree algorithms in 11 out of 13 problems, giving accuracy comparable to ensemble 
methods. The resulting trees are of the same type as decision trees used throughout clinical practice but 
have the advantage of improved accuracy. Our algorithm thus gives the best of both worlds: it grows a 
single, highly interpretable tree that has the high accuracy of ensemble methods.

�e strati�cation of patients into subpopulations is at the core of clinical decision-making and clinical trial design 
in medicine1–3. With the increased focus on precision medicine, the strati�cation of patients into subpopulations 
is essential for increased diagnostic and treatment e�cacy, including targeted gene therapies, diverse disease 
presentations, and accurate prognosis. Better patient strati�cation is also needed to improve the unacceptably 
low success rates of some clinical trials1,2,4. If clinical trials are performed in a poorly strati�ed cohort of patients, 
e�ective targeted therapies will only be discovered when the incidence of the responsive subpopulation and the 
e�ect size within this group is su�ciently high4. �is scenario increases the size of clinical trials to una�ordable 
levels and currently results in frequent failure.

Patient strati�cation involves the integration of complex data structures that include gene-expression patterns, 
individual proteins, proteomics patterns, metabolomics, histology or imaging2, all of which machine learning 
algorithms can correctly analyze. Other sources of information, however, such as those from electronic medi-
cal records, scienti�c literature, and physician experience and intuition, are more di�cult to integrate. For this 
reason, interpretability is a core requirement for machine learned models used in medicine. Moreover, all such 
learned models have some degree of inaccuracy, which leaves healthcare providers with the question of what 
to do when their intuition and experience disagree with the prediction of a model. Most human experts will 
override the model in these cases, since misclassi�cation in medicine can have adverse consequences. In fact, 
the most widely used medical scoring and classi�cation systems are highly interpretable but are not optimized 
for accuracy5–8. Both patients and physicians need to understand the reasons behind a prediction, in order to 
take an appropriate course of treatment that goes beyond predicted outcome and incorporates the expectation 
of patients3.
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�e requirements of strati�cation and interpretability are the reason why decision trees produced by machine 
learning algorithms such as C4.5, ID3, and CART, are so widely used in medicine9–16. Decision trees simulate 
the way physicians think by stratifying a patient population into subpopulations based on few conditional state-
ments (i.e., if-then rules) about the patient5–16. In a decision tree, these rules are represented by nodes organized 
in a tree-based structure, leading to a prediction (Fig. 1). �e interpretability of decision trees allows physicians 
to understand why a prediction or strati�cation is being made, providing an account of the reasons behind the 
decision to subsequently accept or override the model’s output. �is interaction between humans and algorithms 
can provide more accurate and reliable diagnostics and personalized therapeutics, and greatly improve clinical 
trial design, as compared with either method alone. �e historical challenge to machine learning applications, 
however, is the tradeo� between accuracy and interpretability3,17–19. Decision trees are consistently outperformed 
by ensemble learning methods, such as AdaBoost, gradient boosting, and random forests20–23, which combine 
multiple classi�ers into a highly accurate but less interpretable model. In this more complex models, interpreta-
bility is sought by assigning unbiased estimation of the variable importance20–23. Within the medical community, 
however, a classi�er is considered to be interpretable if one can explain its classi�cation by a conjunction of 
conditional statements, i.e., if-then rules, about the collected data, in our case, data used for patient strati�cation. 
Under this de�nition, standard decision trees, such as those learned by ID3 or CART, are considered interpretable 
but ensemble methods are not.

In this article, we present a framework for constructing decision trees that have equivalent accuracy to ensem-
ble methods while maintaining high interpretability. �is unique combination of model accuracy and interpret-
ability addresses a long-standing challenge in machine learning that is essential for medical applications. �is 
framework is referred to as MediBoost for its application to medicine. �e resulting trees can directly replace the 
existing decision trees used throughout clinical practice, signi�cantly increasing their accuracy while providing 
equivalent interpretability. Additionally, the applications of our algorithm are not limited to the medical �eld; it 
could be used in any other application that employs decision trees.

Figure 1. An example decision tree on a toy data set, showing (a) the induced decision surface (shaded regions) 
and the set of 2D training data, where the color of each data instance represents its class label, and (b) the 
corresponding decision tree, composed of three decision nodes to partition the data into the four subregions.
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Methods
MediBoost Framework. MediBoost is new framework to build accurate decision trees based on boost-
ing21–23. We �rst discuss a classic boosting method, the AdaBoost algorithm21, and then show how boosting can 
be used to derive the MediBoost framework. AdaBoost combines weak learners, which are classi�ers whose pre-
diction is only required to be slightly better than random guessing, via a weighted sum to produce a strong classi-
�er21. AdaBoost takes as input a set of labeled data and iteratively trains a set of T decision stumps (single node 
decision trees) as the weak learners {h1, …,hT} in a stage-wise approach, where each subsequent learner favors 
correct classi�cation of those data instances that are misclassi�ed by previous learners. Each decision stump ht 
splits the data via a predicate at that focuses on a particular attribute of each data instance x ( . . ≡ >e g a x, 2t j ), 
yielding a prediction ∈ − +xh a( , ) { 1, 1}t t . Given a new data instance characterized by an observation vector x, 
AdaBoost predicts the class label ∈ − +xF ( ) { 1, 1} for that instance as:

∑β=











=

x xF h a( ) sign ( , ) ,
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1

where the weight β ∈t  of each decision stump ht depends upon its weighted classi�cation error on the training 
data21. Decision stumps are ideal weak learners due to their ability to incorporate categorical or continuous vari-
ables and missing data, because they are robust to outliers, and because they perform internal feature selection24.

�e crucial idea behind MediBoost is simple: an ensemble of decision stumps (one-node decision trees), such 
as that produced by AdaBoost, can be rewritten as a decision tree by considering all possible combinations of 
predictions made by each ensemble member (Fig. S1). MediBoost builds an interpretable tree, rather than a 
weighted sum of many weak learners, by constructing a tree where each path from the root to a terminal node 
contains T nodes and represents a particular combination of the prediction of the ensemble members. �e tree is 
constructed by recursively adding branches such that at each branch, from the root to a terminal node, the stumps 
h1, …,hT from the AdaBoost ensemble are assigned (Fig. S1), pairing each node of the decision tree with a particu-
lar attribute of the data and corresponding threshold. �e �nal classi�cation at each terminal node is then given 
by Equation 1. See Algorithms I and II in the Supplementary Materials for details. �e resulting tree has depth T, 

and hence 2T branches. In practice, these trees can be severely pruned; all branches that do not change the sign of 
the classi�cation of its parent nodes can be pruned without loss of accuracy. Because MediBoost at its core is a 
boosting framework, di�erent boosting methods including gradient boosting, and additive logistic regression 
with di�erent loss functions21–23 can be used to construct speci�c MediBoost decision tree induction algorithms. 
In the Supplementary Materials, we include the derivation of the general Mediboost algorithm, Gradient 
Mediboost (GMB), as well as two speci�c MediBoost algorithms: (1) MediAdaBoost (MAB) using additive logis-
tic regression and (2) LikelihoodMediBoost (LMB) using gradient boosting. MAB is attractive due to its simplic-
ity and similarity to the original boosting algorithm, AdaBoost, whereas LMB is expected to result in trees that are 
more accurate than MAB. Similar to AdaBoost, MAB, can be obtained by minimizing an exponential loss func-
tion using additive logistic regression22 with the addition of a membership function that describes the degree of 
belonging of a certain observation to a given node. MAB thus, �nds each node of the decision tree by focusing on 
instances with higher probability of belonging to that node, as in fuzzy logic25, rather than only on the data 
instances that previous nodes have misclassi�ed, as in AdaBoost21. LMB is obtained using gradient boosting23 by 
�nding the split that minimizes the quadratic error of the �rst derivative of the binomial log-likelihood loss func-
tion and determining the coe�cients according to the same framework.

Reinterpreting MediBoost using gradient boosting not only allows di�erent loss functions, but provides the 
necessary mechanisms to add regularization beyond penalizing for the size of the tree (as is sometimes done in 
regular decision trees10,24) in order to obtain better generalization accuracy. A detailed mathematical derivation 
of these algorithms and their pseudocodes are included in the Supplementary Materials.

Implementations of the MAB and LMB algorithms are available at www.mediboostml.com.

Experiments. �e MAB and LMB MediBoost algorithms were compared to standard decision tree induction 
(ID3, CART) and ensemble methods (LogitBoost and Random Forests) on 13 data sets, corresponding to all 
binary classi�cation problems in the �eld of Life Sciences within the UCI Repository (http://archive.ics.uci.edu/
ml/ - Table S1). For each data set, any missing values were imputed with either the mean or the mode of the corre-
sponding feature, depending on whether the features were continuous or categorical. We added additional binary 
features, one per each original feature, to encode whether or not the corresponding value was missing. Results 
were averaged over 5 trials of 5-fold cross-validation on each data set, recording the balanced cross validation 
error on the held-out test fold. Additionally, the area under the curve (AUC) was also determined in a similar 
fashion for each algorithm. Moreover, a permutation test was performed were the labels were randomly muted 
100 times and the probability of obtaining a better AUC calculated. Each algorithm has a number of hyperparam-
eters, which were tuned using an additional 5-fold cross-validation on the training data in each case. �erefore, 
the model was constructed using all available training folds and evaluated on the test fold. �e hyperparameters 
adjusted for each algorithm are:

•	 MediBoost (MAD and LMB): tree depth and acceleration parameter.
•	 ID3: tree depth.
•	 CART: tree depth.
•	 LogitBoost: Number of stump trees on the ensemble.
•	 Random Forests: Number of variables selected in each random sub-sampling.

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
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In addition, LogitBoost used decision stumps as the weak learners with a learning rate of 0.1, and Random 
Forests used 300 decision trees in the ensemble. �e MediBoost algorithms were run with learning rates of 

∈ .LR {0 1, 1} and λ  =  0.

 LMB vs ID3 CART LogitBoost Random Forests

wins 12 11 7 4

losses 1 2 4 8

ties 0 0 2 1

MAB vs ID3 CART LogitBoost Random Forests

wins 11 10 5 4

losses 1 2 6 8

ties 1 1 2 1

Table 1.  Comparing algorithms using the balanced cross-validation error. Results of LMB and MAB 
MediBoost algorithms vs di�erent decision tree (ID3 & CART) and ensemble learning (LogitBoost & Random 
Forests) algorithms on 13 medical data sets. showing the number of data sets where the MediBoost had better, 
worse, or equivalent accuracy.

LMB vs  ID3  CART LogitBoost Random Forests

wins 12 11 5 1

losses 1 1 6 10

ties 0 1 2 2

Table 2.  Comparing algorithms using the AUC. Results of LMB vs di�erent decision tree (ID3 & CART) and 
ensemble learning (LogitBoost & Random Forests) algorithms on 13 medical data sets, showing the number of 
data sets where the MediBoost had better, worse, or equivalent accuracy.

Figure 2. Comparison of LMB using balanced classi�cation error vs (a) di�erent tree algorithms (ID3 and 
CART) and (b) di�erent ensemble methods (LogitBoost and Random Forests) on 13 medical datasets. Points 
above the black line indicate results where LMB was better. LMB is signi�cantly better than the decision tree 
algorithms and indistinguishable from ensemble methods.
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Results
�e performance of LMB and MAB were compared with CART, LogitBoost, Random Forests as implemented 
in Matlab® R2015a, and our own implementation of ID3. All results were averaged over 5-fold cross-validation 
on the data sets, with hyper-parameters chosen in an additional 5-fold cross-validation on the training folds as 
explained in the Methods section.

As shown in Table 1, LMB, with its default settings, performs better than its decision tree cousins (ID3 and 
CART) when the balanced classi�cation error is compared in 11 out of the 13 medical problems. If the AUC 
is compared, then MediBoost performs better than current decision tree algorithms in 12 out of 13 problems, 
Table 2. A graphical comparison of the balanced cross-validation error values and AUC is also shown in Fig. 2 and 
Fig. 3. �ese results are statistically signi�cant in a two-way sign-to-sign test26,27. In one of the problems where 
the default LMB was not superior, the standard decision trees also outperformed the ensemble methods. In a 
three-way ANOVA comparison of the balanced cross-validation errors between LMB, ID3 and CART across all 
problems, LMB was signi�cantly better than ID3 (p =  10−8) and CART (p =  0.014). In comparison to the ensem-
ble methods, LMB was indistinguishable from LogitBoost (p =  0.44) and worse than random forests (p =  0.0004). 
In a three-way Friedman test28, more robust than ANOVA when comparing algorithms, LMB was signi�cantly 
better than ID3 (p =  0.006) and CART (p =  0.09) at the 90% con�dence interval, but not signi�cantly di�erent 
from either LogitBoost (p =  0.97) or random forests (p =  0.30). Similar results were obtained when LMB was 
run with a learning rate of 0.1 (Fig. S2). Additionally, MAB gave slightly but not statistically signi�cantly poorer 
results to those obtained using LMB (Table 1 and Fig. S3.). If the AUC are compared using the Wilcoxon sign 
rank test with the Bonferroni adjustment for multiple comparison, then MediBoost is signi�cantly better than 
ID3 (p =  8.69 ×  10−10 ) and CART (p =  8.89 ×  10−9) but not signi�cantly di�erent from LogitBoost (p =  0.85). 
Random forests was indeed signi�cantly better than MediBoost (p =  1.5 ×  10−6) when AUC were compared and 
the clear winner.

Further, MediBoost retains the interpretability of regular decision trees (Fig. 4). �is interpretability is not 
only the result of it producing a tree-based model, but also in the signi�cant shrinkage obtained compared to 
boosting. �is shrinkage is due to the introduction of the membership function controlled by an acceleration 
parameter, elimination of impossible paths during the learning process, and a post-training pruning approach 
that does not change the accuracy of the model (as described in the Supplementary Materials). Once a deep 
MediBoost tree is grown (e.g., with a depth of 15 nodes at each branch), all branches that do not change the sign 
of the classi�cation of its parent nodes can be pruned without loss of accuracy. �is pruning approach has been 
used to represent the MediBoost tree in Fig. 4.

Figure 3. Comparison of LMB using AUC error vs (a) di�erent tree algorithms (ID3 and CART) and (b) di�erent 
ensemble methods (LogitBoost and Random Forests) on 13 medical datasets. Points above the black line indicate 
results where LMB was better.
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Additionally, the e�ect of varying the acceleration parameter for both LMB and MAB in di�erent data sets 
was evaluated (Fig. 5). In all cases, our results show that the training errors decrease as the acceleration parameter 
increases, while the test error remains the same or decreases. �ese results demonstrate that the performance of 
the resulting MediBoost tree is relatively insensitive to small changes in the acceleration parameter, allowing it 
to be e�ectively tuned to reduce the size of the tree for better interpretability with a minimal impact on accuracy. 
Finally, in order to show MediBoost robustness a permutation test was performed where labels were randomly 
permuted 100 times and the probability of obtaining a better AUC than in the original analysis calculated for all 
algorithms together with the mean value and standard deviation of the permuted AUC. �is data in shown on 
Table S6. As it can be observed all algorithms show similar robustness. �e estimated probability of obtaining 
an AUC in the random permutation experiment bigger than the obtained through the analysis of the data using 
MediBoost was <  0.01 for all data sets except for the Fertility dataset when this value was 0.1.

Discussion
Traditional decision trees perform recursive partitioning in order to arrive at a prediction. At each node of the 
tree, the observed data are further subdivided so that as one goes farther down the tree, each branch has fewer 
and fewer observations, as illustrated in Fig. 1. �is strongly limits the possible depth of the tree as the number 
of available observations typically shrinks exponentially with tree depth. In this ‘greedy search’ over data par-
titions, assigning an observation on the �rst few nodes of the tree to incorrect branches can greatly reduce the 
accuracy of the resulting model24. MediBoost trees are constructed using a di�erent mathematical framework, 
called boosting, in which each node focuses on observations that previous nodes have not separated correctly21–23. 
Additionally, in order to obtain a smaller tree, which is a key issue in maintaining interpretability, MediBoost 
penalizes the weights of observations assigned to di�erent branches through the novel introduction of a member-
ship function, forming a relative “so�” recursive partition similar to decision trees grown using fuzzy logic25. In 
MediBoost, no hard partitioning is performed, and all observations contribute to all decision nodes. �e special-
ized reader will identify that each path through a MediBoost tree represents a di�erent ensemble, similar to those 
generated by AdaBoost or gradient boosting, as illustrated in Fig. S121–23. �is is fundamentally di�erent from 
previous decision tree learning algorithms29 and is the primary reason for the improved accuracy of MediBoost 
with respect to current decision tree algorithms. We conclude that MediBoost in its various forms is signi�cantly 
better than standard decision tree induction algorithms and has comparable accuracy to ensemble methods, 

Figure 4. MediBoost decision tree obtained using LMB on the Wisconsin Breast Cancer data set a�er 
pruning. “Attribute” has been changed to “A” in deeper nodes for simplicity.
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based on the two way sign-to-sign, three-way ANOVA, Friedman and Wilcoxon tests shown above. In two of 
the statistical tests for both balanced cross-validation error and AUC, our decision tree algorithm, in its current 
form was inferior to random forests. �is is consistent with the observations of Caruana et al.30, who showed that 
boosted stumps, the structure currently used in MediBoost nodes, are inferior to random forests. Although we 
present MediBoost algorithms with only two branches per node in this paper (stumps) for simplicity, it could 
easily be extended to multi-branch nodes, where each node will represent a tree similar to those used in boosted 
trees with the corresponding improvement in accuracy as shown by Caruana et al.30. When only stumps are used, 
MediBoost only takes into account additive e�ects but random forests is taking into account both additive and 
interaction e�ects. If multi-branch nodes are used, however, interaction e�ects will be taken in to account by 
MediBoost. In this case, it is expected that MediBoost will be on average equally or more accurate than random 
forests30. Additionally, the magnitude of the di�erence was bigger than 0.03 in only 4 problems out of 13 which 
might indicate that MediBoost might still be the prefer option in most cases, Table S5.

Moreover, MediBoost has been generalized to any loss functions, it can also be easily extended to regres-
sion, multi-class or survival analysis. �is is one of the advantages over other methods like Bayesian Rule Lists, 
though MediBoost rules could be larger and more complex in this case31. Finally, healthcare providers, patients, 
and biomedical researchers should not be discouraged by the mathematical complexity of the underlying our 
method-while the mathematical framework of MediBoost is complex, its output, a single tree for any given prob-
lem, can be understood with little mathematical knowledge. In fact, MediBoost produces decision trees that can 
immediately replace those used in current clinical practice/research, a sub-sample of which are referenced in this 
paper. If MAB and LMB are applied to these previously published medical problems, we predict that more accu-
rate decision trees will be obtained in the majority of problems, with a corresponding positive impact on clinical 
practice/research. MediBoost thus gives the best of both worlds: it grows a single, highly interpretable tree that 
has the high accuracy of ensemble methods.

Conclusion
MediBoost results in trees that perform highly interpretable patient strati�cation while obtaining excellent accu-
racy that is similar to ensemble methods. In the era of precision medicine, MediBoost can empower doctors, 
patients, and researchers alike to make accurate and interpretable data-driven clinical decisions, and to improve 
the design and success rates of clinical trials.
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