
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18422  | https://doi.org/10.1038/s41598-020-75280-6

www.nature.com/scientificreports

Medical costs of keeping the US 
economy open during COVID‑19
Jiangzhuo Chen1, Anil Vullikanti1,2, Stefan Hoops1, Henning Mortveit1,3, Bryan Lewis1, 
Srinivasan Venkatramanan1, Wen You4, Stephen Eubank1,4, Madhav Marathe1,2, 
Chris Barrett1,2 & Achla Marathe1,4*

We use an individual based model and national level epidemic simulations to estimate the medical 
costs of keeping the US economy open during COVID‑19 pandemic under different counterfactual 
scenarios. We model an unmitigated scenario and 12 mitigation scenarios which differ in compliance 
behavior to social distancing strategies and in the duration of the stay‑home order. Under each 
scenario we estimate the number of people who are likely to get infected and require medical 
attention, hospitalization, and ventilators. Given the per capita medical cost for each of these health 
states, we compute the total medical costs for each scenario and show the tradeoffs between deaths, 
costs, infections, compliance and the duration of stay‑home order. We also consider the hospital bed 
capacity of each Hospital Referral Region (HRR) in the US to estimate the deficit in beds each HRR will 
likely encounter given the demand for hospital beds. We consider a case where HRRs share hospital 
beds among the neighboring HRRs during a surge in demand beyond the available beds and the 
impact it has in controlling additional deaths.

As states push to end social distancing and reopen businesses, it is important to understand the cost of opening 
in terms of lives lost and medical costs incurred. A premature opening will likely cause more deaths and infec-
tions as the healthcare system will likely get overwhelmed, and may wipe out all the gains made in the initial 
shutdown. We use an agent-based model and simulation framework to estimate the immediate medical cost of 
COVID-19 under di�erent mitigation scenarios. �e scenarios consider social distancing with di�erent durations 
and varying compliance levels. �e simulation framework uses a detailed representation of the US population and 
their social interactions to study the spread of COVID-19. An SEIR (susceptible-exposed-infected-recovered) 
model captures the time varying health states of the individuals. �e infected individuals arrive at one of the 
three health states i.e. medically attended, hospitalized, or ventilated before getting to the �nal health state i.e. 
recovered or dead, as shown in Fig. 1.

Medical costs are applied based on the three health states i.e. medically-attended, hospitalized and ventilated. 
In addition, if an infected individual dies, then the “value of statistical life” is used to estimate the cost of death. 
We also estimate the shortage of hospital beds that is likely to occur in each Hospital Referral Region (HRR) 
given the demand for hospital beds and the number of available beds in each HRR in the US. Data on the num-
ber of beds in each HRR is obtained from the American Hospital Association (AHA) and a fraction of them are 
assumed to be available for COVID-19 patients. We consider cases where neighboring HRRs share or do not 
share hospital beds during a surge in demand.

�is information is then used to calculate additional deaths and medical costs for each of the mitigation 
scenarios. Policy makers can apply this kind of analysis to decide where the temporary hospitals may need to 
be built to o�set the de�cit in demand for beds. Our goal is to use this knowledge to provide guidance to public 
health o�cials and policy makers on the trade-o�s between the length of lockdown, compliance to social distanc-
ing, infections, deaths and the medical costs. Our scenario-based analysis estimates the burden of the disease in 
monetary terms, and helps rank-order mitigation strategies.

In related work, authors  in1 consider potential health care costs and resource usage under di�erent attack 
rates which vary from 20 to 80%. However, it does not consider any interventions or mitigation strategies. Our 
research focuses on counterfactual mitigation scenarios and their respective costs. We use recent cost estimates 
for COVID-19 available from the Kaiser Family Foundation (KFF)2 which uses cost of pneumonia cases as a 
proxy. Our detailed network based model, that captures heterogeneous social interactions and contact times 
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among the individuals in the population, is one of the unique features of the analysis. Additionally, no other 
research has provided an estimation of medical costs for such detailed mitigation scenarios for the entire US.

Our results show that (1) Without mitigation, the total medical costs would be a signi�cant fraction (5%) of 
the US GDP; (2) a lockdown of just 2 months, if done early in the epidemic, and with su�cient compliance, could 
have reduced the medical costs by more than 90%; (3) if 90% compliance could be achieved, then even a 45 day 
lockdown period would have been enough to contain the epidemic and the medical costs; (4) if HRRs do not 
share hospital beds with other HRRs, a signi�cant de�cit of beds will cause medical costs to skyrocket, through 
increase in deaths. However, if HRRs shared beds with their neighboring HRRs, the bed-de�cits and additional 
deaths could be reduced to almost zero; and (5) a sensitivity analysis of the parameters shows the costs are most 
sensitive to the duration of the stay-home order.

Data and methodology
We build on our modeling and simulation framework for epidemic  spread3–9 using an individual level synthetic 
social contact  network5,10—which represents each individual in the population along with their demographic 
attributes (e.g., age, gender, income), and their social interactions. �e main steps in the �rst-principles based 
construction of synthetic populations and social contact networks are: (1) construct a synthetic population by 
using US Census and other commercial databases; (2) assign daily activities to individuals within each household 
using activity and time-use surveys (American Time Use Survey data and National Household Travel Survey 
Data); (3) assign a geo-location to each activity of each person based on data from Dun and BradStreet, land-
use, Open Street Maps etc.; and (4) construct a dynamic social co-location based social contact network that is 
induced when people simultaneously visit locations. �ese networks have been validated and used for numerous 
public health analyses before such  as3,5,11–16. For details on the construction of social networks,  see11,12,17.

�e SEIR disease model and parameters used here for COVID-19 have been de�ned in the best guess 2020-04-
14 version of “COVID-19 Pandemic Planning Scenarios” document prepared by the Centers for Disease Control 
and Prevention (CDC) SARS-CoV-2 Modeling  Team18. �e sequence of health-state transitions and possible 
paths are shown in Fig. 1. �ere are many possible health states and paths an individual can move through as it 
transitions from susceptible to its �nal health state. �is model is age strati�ed for the following categories i.e. 
preschool (0–4 years), students (5–17) adults (18–49), older adults (50–64) and seniors (65+) and calibrated for 
each of the age groups separately. Details on the transition probabilities between health states for each age group 
and the length of the stay in each health state are shown in the table in the Appendix. Our models and simulation 
framework have been used in some of our ongoing SARS-CoV-2 response work for the Virginia Department of 
Health and the US Department of  Defense19.

Medical costs. To estimate the medical cost of treating COVID-19 patients, we use the average cost of treat-
ment for pneumonia, paid among “large employer health insurance” plans, as a  proxy2. �e costs for each health 
state are shown in Table 1. Note that each infected individual’s medical cost is counted only once. For example 
if a person is in ventilated state, a�er having gone through “medAttend” and “Hosp” state, costs are cumulative 
to the “vent” state.

Figure 1.  State transitions in the COVID-19 disease model.

Table 1.  Average cost of medical care under di�erent health  states2.

Health state Average medical treatment costs per person

Medically-Attended $9,763 (cost of treating pneumonia without complications)

Hospitalization $13,767 (cost of treating pneumonia with complications or comorbidity)

Ventilator $61,168 (cost of treating pneumonia with ventilator)

Death $2M (value of statistical life)
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Value of life. �e total medical costs can be measured through multiple criteria in terms of number of deaths 
and treatment costs, or a single criterion in dollar terms by converting deaths into dollars using “value of a 
statistical life”. �ere are various ways in which the value of a statistical life has been measured. US federal gov-
ernment uses $10 million dollar per life lost regardless of a person’s age while others have used estimates in the 
range of $160k to $2.4 million based on metrics like average lifetime earnings of a college graduate, 9/11 victim 
compensation, wrongful death claims, insurance policy value etc.20–22. We use an estimate of $2 million dollar as 
the value of life to convert deaths into  costs23.

Interventions. We consider a number of mitigation scenarios that comprise of various social distancing 
strategies, compliance levels and durations of stay-home order. �e following social distancing strategies are 
used: 

1. Voluntary home isolation (VHI): Symptomatic people choose to stay at home (non-home type contacts are 
disabled) for 14 days.

2. School closure (SC): Schools and colleges are closed (school type contacts are disabled).
3. Stay home (SH): People follow public health “stay-home” directive (non-home type contacts are disabled).
  School closure and stay-home interventions start on di�erent days in di�erent states as stated  in24,25. Once 

closed, schools are assumed to remain closed until end of August a�er which they reopen. Other social 
distancing interventions stop at 30, 45 or 60 days from the start date of the intervention, depending on the 
SH duration. Note that this implies all mitigation e�orts end by the end of summer 2020.

Durations of stay-home order vary from 0, 30, 45 to 60 days. Compliance to stay-home and voluntary home 
isolation vary from 60%, 70%, 80% and 90%. Table 2 shows a factorial design with 12 mitigation scenarios and an 
unmitigated case, resulting in a total of 13 cells experiment. For each cell, 25 replicates are run and their averages 
reported. Table 3 shows a complete list of variables and their parameter values.

Hospital bed capacity. We use hospital bed capacity data available for each HRR in the US from AHA, to 
calculate the de�cits that are likely to be encountered by each region. We assume three scenarios regarding the 
use of hospital beds: (1) All COVID-19 patients who need a bed, will have one available i.e. there is no shortage 
of hospital beds, (2) bed capacity in each HRR is limited and beds cannot be shared among hospitals in other 
HRRs to accomodate the surge in demand for beds and (3) bed capacity in each HRR is limited but beds can be 
shared among hospitals in the neighboring HRR regions to accomodate the surge in demand.

Other factors considered in these scenarios are the average length of hospital stay of patients who are hospi-
talized, and the percentage of beds dedicated to COVID-19 patients in each HRR. Length of stay is 7 days or 14 

Table 2.  Factorial design of mitigation scenarios: VHI and SH refer to “voluntary home isolation” and “stay-
home” order respectively. Schools are assumed to remain closed until the end of August 2020 a�er which they 
reopen. VHI and SH interventions expire a�er 30, 45 or 60 days, based on the scenario.

SH duration (in days)

VHI and SH compliance rates

60% 70% 80% 90%

0 None (unmitigated)

30 VHI_60_SH_60_30 VHI_70_SH_70_30 VHI_80_SH_80_30 VHI_90_SH_90_30

45 VHI_60_SH_60_45 VHI_70_SH_70_45 VHI_80_SH_80_45 VHI_90_SH_90_45

60 VHI_60_SH_60_60 VHI_70_SH_70_60 VHI_80_SH_80_60 VHI_90_SH_90_60

Table 3.  List of all the variables and their parameter values.

Variables Parameter Values

Region simulated US

Number of replicates 25

Number of days simulated 365

Duration of stay-home order 0, 30, 45, 60 days

Stay-home compliance rate 60%, 70%, 80%, 90%

Voluntary home isolation compliance rate 60%, 70%, 80%, 90%

Reproductive number ( R0) 2.5

Hospital beds dedicated to covid patients 70%, 80%, 90%, 120%

Length of hospital stay 7 days, 14 days

HRR bed capacity unlimited, limited and sharing allowed, limited no sharing
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days, and the percentage of beds available to COVID-19 patients is 70%, 80%, 90% or 120%. More than 100% 
bed capacity (120%) has been considered since many hospitals are able to temporarily increase their capacity 
beyond normal  levels26.

Each day the demand for the number of beds in each HRR is determined by the simulations. �e simulation 
results provide the counts of individuals who are in “hospitalized” state and depending upon the assumed dura-
tion of the hospital stay (7 days or 14 days), the demand for beds per day is calculated. Note that this includes 
individuals who are in “ventilated” state as well since everyone in “ventilated” state has to be in the “hospitalized” 
state �rst according to our disease model, see Fig. 1. �e di�erence between the bed capacity and the counts of 
patients who need it, determines the de�cit in hospital beds.

We assume that patients who need a hospital bed and cannot get it, will die. �is is a strong assumption and 
hence four di�erent values of dedicated bed capacities have been considered to show its sensitivity. Note that 
only the death counts and overall costs will change in scenarios (2) and (3) when limitations to bed capacity are 
considered. �is assumption of “all bed de�cits result in deaths” provides an upper bound on the medical costs 
resulting from the shortage of beds. If only a fraction of them die then the additional deaths and the costs can 
be appropriately scaled down.

Results
�is section reports the simulation results and the medical costs that are likely to incur under various mitigation 
scenarios. For each of these scenarios we also consider four di�erent possibilities for the availability of dedicated 
hospital beds for COVID-19 patients. Note that the hospital beds are considered as a post-processing step, a�er 
the simulations have been run and infected individuals have arrived at “hospitalized” state.

Figure 2 shows the epidemic curves with daily new infections in the US for all the mitigation scenarios. �e 
four subplots refer to VHI and SH compliance levels of 60%, 70%, 80% and 90%. Each solid line in each subplot 
corresponds to a di�erent stay-home duration. �e shaded area around the solid line shows the stochasticity in 
the simulation results and is marked by one standard error band. �e following observations can be made from 
Fig. 2: (1) a higher SH duration lowers the peak of the epidemic curve; (2) in all cases, a longer SH duration 
either delays the peak and/or �attens it; (3) a large second wave hits in Fall 2020 unless VHI and SH compliance 
rates are at least 80% and SH duration is at least 45 days. Note that by Fall all interventions end including schools 
closures; and (4) if VHI and SH compliance rates are 90% and SH duration is 45 days or longer, the epidemic 
ends by the end of the year.

Medical cost under mitigation: unlimited supply of hospital beds. Figure 3 shows medical costs 
for the 12 mitigation scenarios as well as the unmitigated one. Counts for health states, for each scenario, are 

Figure 2.  Epidemic curves showing daily new cases for the entire US, beginning in January 2020 until 
December 2020. Each subplot corresponds to a di�erent value of VHI (voluntary home isolation) and SH (stay-
home) compliance. Di�erent solid lines refer to di�erent durations of stay-home order. �e shaded area around 
each curve is the standard error band re�ecting the stochasticity in the simulation.
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estimated by our model and the simulations. Costs for categories ventilated, hospitalized and medically-attended 
are calculated by multiplying the per capita costs for each of these health states given in Table 1 by the counts of 
individuals who reach that health state before recovering or dying. If a person dies, then an additional cost of 
death is incurred.

Medical costs: limited availability of hospital beds and no sharing of beds allowed. Figure 4 
shows medical costs that are likely to result under di�erent mitigation scenarios given the assumption that 
hospital-bed capacity is limited in each HRR and is �xed at a level given by AHA. However no sharing of hospital 
beds is allowed outside the HRR if there is a shortage of beds. It further assumes hospital stay on average is for 
14 days and 70% of the beds are dedicated to COVID-19  patients27. If the demand for beds exceeds the supply, 
patients who do not �nd a bed, will die. Each additional death results in extra costs at the rate of $2 millon per 
person. Figure 5 shows the additional deaths that are likely to be caused due to limited bed capacity. We show 
detailed results for the most likely scenario of 14 days of hospital  stay27 and 70% of the bed capacity being avail-
able to COVID-19 hospitalizations. However, sensitivity analysis has been done by varying length of hospital 
stay to 7 days and dedicated beds availability to 80%, 90% and 120%.

Figure 3.  Medical costs under di�erent mitigation scenarios and unlimited bed capacity. Here VHI refers to 
“voluntary home isolation”, SH refers to “stay-home”, and none refers to the unmitigated scenario. �e numbers 
next to VHI and SH refer to their respective compliance levels and the last number represents the duration of 
the “stay-home” order. For example, VHI_60_SH_60_30 implies VHI compliance at 60%, SH compliance at 60% 
and SH duration is 30 days.

Figure 4.  Total medical costs under di�erent mitigation scenarios with limited and unlimited hospital bed 
capacity. “Constrained without sharing” refers to limited bed capacity and no sharing allowed. “Constrained 
with sharing” refers to limited bed capacity with sharing of beds among neighboring HRRs allowed. �e 
constrained cases assume an average of 14 days of hospital stay and 70% of dedicated bed capacity to COVID-19 
patients. X-labels are similar to those in Fig. 3.
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Medical costs: limited availability of hospital beds with sharing of beds allowed across 
regions. An analysis of costs under the assumption that hospital beds can be shared with neighboring HRRs 
shows that the shortage of beds can be completely alleviated by sharing. In almost all mitigation scenarios there 
are no additional deaths due to shortage of beds and hence no additional medical costs, as shown in Figs. 4 and 6. 
�is implies that there are enough beds available locally and the de�cit can be fully mitigated by sharing of beds, 
at least for the scenarios considered.

Sensitivity analysis. We analyze the sensitivity of our results to multiple factors i.e. the reproductive num-
ber ( R0 , i.e. the expected number of cases one infected person generates), compliance to stay-home order, com-
pliance to voluntary home isolation when symptomatic, and the duration of the stay-home order. R0 varies 
from 2.1 to 2.8 in increments of 0.1; VHI compliance and SH compliance vary from 30% to 90% in increments 
of 10% and duration of SH order varies from 30 to 75 days in increments of 15 days. Together these parameter 
values would generate a 1568 cell factorial experiment. To keep the analysis more manageable we use a Latin 
Hypercube Sampling method to generate a random sample of parameter values from this multi-dimensional 
 distribution28,29, to do the sensitivity analysis. We randomly select 30 cells with di�erent combinations of R0 , 
VHI compliance, SH compliance and SH durations and for each cell, run 25 replicates. Medical costs are then 
calculated for each of the replicates for each of the 30 cells based on the health outcomes of the individuals and 
their averages are reported in Fig. 7.

�e six panels in Fig. 7 refer to six di�erent stay-home compliance rates of 40%, 50%, 60%, 70%, 80% and 
90%. �e “type” of the point refers to SH duration of 30, 45, 60 and 75 days and the color refers to the total cost. 
X and Y axes show R0 and VHI compliance, respectively. Results in Fig. 7 show that the medical costs are most 
sensitive to SH duration and the sensitivity of costs to R0 decreases as the SH duration increases. More discussion 
on sensitivity is provided in section 4.

Discussion
�is analysis focuses on estimating the medical costs of COVID-19 pandemic in the US under di�erent mitiga-
tion scenarios. �e results in Fig. 3 show that over 96% of the total medical costs could be eliminated if 90% 
of the people complied with the stay-home (SH) orders for 45 days or more, and followed voluntary-home-
isolation (VHI) for 14 days if symptomatic, and the schools were kept closed. �e unmitigated medical costs 
of the COVID-19 pandemics’ early wave is over one trillion dollars i.e. about 5% of the US economy and could 
be brought down to just $35 billion with social distancing alone. Similar results could be obtained if 80% of the 
individuals complied with SH for 60 days and followed VHI. However if compliance levels dropped to 60%, then 
even with a 60 day duration of SH order, total costs would still be $636 billion. To mitigate costs by at least 50%, 
a compliance level of at least 70% is needed for a 45 day long stay-home order, along with VHI and SC. Figure 3 

Figure 5.  Additional deaths (compared to unmitigated scenario) under di�erent mitigation scenarios with 
limited hospital bed capacity and no sharing of beds among HRRs allowed. �e box plots show results for 
average hospital durations of 7 days or 14 days, and dedicated bed capacity of 70%, 80%, 90% or 120%.
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Figure 6.  Additional deaths under di�erent mitigation scenarios with limited hospital bed capacity and sharing 
of beds among neighboring HRRs allowed. �e box plots shows that there are no additional deaths for average 
hospital durations of 7 days and 14 days, and dedicated bed capacity of 70%, 80%, 90% and 120%.

Figure 7.  Sensitivity of total cost (in billions of dollars) to di�erent parameter values of the reproductive 
number, compliance to voluntary home isolation of the symptomatic cases, compliance to stay home order, and 
the length of stay-home order.
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shows the trade-o�s between costs, compliance levels and length of stay-home order under di�erent mitigation 
strategies. It shows the extent to which gains could be made by an additional two weeks of lockdown and higher 
compliance levels, assuming the disease model remains unchanged. Our calculations show that the rankings of 
these strategies do not change if the value of life is increased from $2 million to $10 million (a number used by 
the US federal government), indicating robust rankings of scenarios.

Note that the analysis in Fig. 3 assumes an unlimited supply of hospital beds. However if there is a limited 
supply of beds available as given by each HRR capacity, and no sharing of beds is allowed between HRR hospitals, 
then the shortage of beds can cause deaths to go up by 200% as shown in Fig. 5. �is kind of analysis can help 
determine the number of temporary hospitals or hospital beds that should be arranged in advance to o�set the 
shortage of beds.

A sensitivity analysis of the length of hospital stay, and dedicated bed capacity available to COVID-19 patients, 
shows that the number of deaths depend signi�cantly on these parameters. In almost all cases, Fig. 5 shows 70% 
of dedicated bed capacity and an average 14 days hospital stay, can still lead to 100-200% increase in deaths, if 
the compliance is below 90% and no sharing of hospital beds is allowed. Even for the 7 days average hospital stay 
case, at least 70% or more compliance is needed to minimize the e�ect of shortage of beds on additional deaths.

Figure 6 shows results for the case when sharing of beds is allowed among hospitals in the neighboring HRR. 
Sharing helps eliminate almost all shortages in all mitigation scenarios. Even a 14 days hospital stay with just 
70% beds available can be enough to handle the demand if sharing among HRRs is allowed. �is establishes the 
importance of sharing medical resources across HRRs during the pandemic.

In Fig. 7, we analyze the sensitivity of medical costs to di�erent values of R0 , SH duration, VHI compliance, 
and SH compliance. We make several observations: (1) costs are most sensitive to SH duration. �is can be seen 
by comparing last two panels with SH compliance rate of 80% and 90%. When R0 is 2.6 and VHI compliance rate 
is 60%, the costs are much higher for a 30 days SH duration (pink circle) compared to 60 days SH duration (blue 
+). Although SH compliance is also slightly higher for this element in the last panel (80% vs. 90%), the costs are 
15 times as much for SH duration of 30 days ($597b) compared to 60 days ($39b); (2) sensitivity of costs to R0 
decreases as the SH duration increases. �is is due to the fact that lockdown cuts o� social contacts and reduces 
the e�ective R0 so as the length of the lockdown increases, role of R0 decreases; (3) costs are not as sensitive to 
VHI compliance when SH duration is high. �is is expected since social connectivity is already low when SH 
duration is high so low VHI compliance does not have as much of an impact.

�ese results have important implications for public health policy makers and regulators. First, it establishes 
the importance of social distancing as a mitigation strategy. In the absence of a vaccine, the only way to contain 
the spread of COVID-19 is through social distancing. �is scenario based analysis informs the impact of duration 
of social distancing, type of social distancing and compliance to it, on infections, deaths and costs.

We show that an unmitigated �rst wave of the pandemic would cost equivalent to 5% of the US GDP in just 
the medical costs. An early lockdown for 2 months with 80% compliance could have dropped the medical costs 
by over 90%, regardless of any limitation on bed capacity. If compliance could be increased to 90%, then even a 
45 day lockdown period would have been enough to contain the epidemic and the medical costs. A sensitivity 
analysis of the simulation parameters show that costs are most sensitive to the duration of the stay-home order. 
�is is an important piece of information for policy makers who may not be able to control the level of compli-
ance to public health directives, but can control the duration of the directive.

We also highlight the importance of sharing medical resources like hospital beds with neighboring regions 
when they are in limited supply. We show that if HRRs share beds with their neighboring HRRs, the bed-de�cits 
and additional deaths could be reduced to almost zero, else costs will skyrocket.

Limitations
�e costs are proxies based on pneumonia cases as available from  KFF2 and are not real COVID-19 speci�c costs. 
�e costs are average costs per capita and do not change by age group. For older individuals, the cases are more 
likely to be severe and given that the distribution of infected is more biased towards older individuals, our costs 
only provide a lower bound on the total medical costs that are likely to occur. �is research only estimates the 
medical treatment costs of COVID-19 and not the costs that arise from loss in productivity from staying home 
while ill, disruptions in supply chain due to lockdown, loss in travel, tourism, and hospitality industries as well 
as other economic activities.

�e value of life estimates vary widely between the US federal government ($10 million) and other private 
organizations such as insurance companies ($160k). We use an estimate of $2 million per person based  on23 which 
is only one-��h of what the US federal govenment uses. Depending upon how the value of life is measured the 
overall medical costs of COVID-19 can be much higher or lower. Public health policy makers need to carefully 
examine these numbers for scenarios under consideration to arrive at the cost-e�ectiveness of infections and 
deaths averted.

Conclusions
�is study estimates the medical costs of COVID-19 in the US under di�erent mitigation scenarios and helps 
understand the tradeo�s between deaths, costs, infections, compliance to social-distancing and the duration of 
stay-home order. Our scenario-based analysis estimates the medical burden of the disease in monetary terms, 
and helps rank-order mitigation strategies.

It shows that costs are most sensitive to the length of the stay home order and then to the level of compliance. 
A stay home order of 60 days with 80% compliance, can drop the medical costs from $1 trillion to a meager 
$35 billion. Stay home duration also mitigates the e�ect of a high R0 , as shown in the sensitivity analysis. As 
stay home duration increases, sensitivity of costs to R0 drops because the lockdown reduces the e�ective R0 by 
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cutting o� contacts. However, to get these results, the social distancing strategies must be applied consistently 
nationwide. Even though policy makers cannot control the level of compliance among people, they can control 
the duration of the lockdowns and can make adjustments to the public health directives based on the level of 
compliance observed on the ground.

We also show that sharing of hospital beds among neighboring “Hospital referral region” during a demand 
surge can reduce the additional number of deaths to almost zero. Cooperation in sharing medical resources 
between neighboring regions can save lives and money. �is kind of analysis can also help decide where addi-
tional bed capacity and temporary hospitals may need to be built to o�set the surge in demand.

Data availability
All the output data reported in the paper is available upon request, but restrictions apply on the commercially 
available data used in the construction of the social contact network and hence the availability of the social 
network data itself.

Code availability
Code developed to analyze the results and support the �ndings in this paper is available upon request, from the 
corresponding author.
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