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1 Introduction

The problem of providing computational support for medical diagnosis has
been approached from many directions including logical reasoning, fuzzy logic,
set theory, rough set theory, if-then rules, Bayesian networks, classical para-
metric and non-parametric statistics, artificial neural networks, case-based
reasoning, support vector machines, perceptrons, possibility theory, and more,
as well as various aggregations or combinations of methods [14].

This paper describes a novel approach to diagnosis based on the SP theory
of computing and cognition (described below). The main attractions of this
approach are:

• A format for representing diseases that is simple and intuitive.
• An ability to cope with errors and uncertainties in diagnostic information.
• The simplicity of storing statistical information as frequencies rather than

conditional probabilities.
• A method for evaluating alternative diagnostic hypotheses that yields true

probabilities.
• A framework that should facilitate unsupervised learning of medical knowl-

edge and the integration of medical diagnosis with other AI applications.

It must be stressed that the primary purpose of this paper is conceptual: to
describe an approach to medical diagnosis that is significantly different from
the main alternatives and with potential advantages compared with those
alternatives. Although a prototype of the proposed new system exists, it is not
yet a shrink-wrapped software system that is ready for immediate application.
Like any other diagnostic system, the SP system must be equipped with a
body of relevant knowledge and the creation of such a body of knowledge
(by automatic learning or by ‘knowledge elicitation’ from experts) is a major
undertaking in its own right.

Key elements of the SP theory are first described, just sufficient for present
purposes. Section 3 describes how the theory may be applied to medical diag-
nosis, viewed as a process of pattern recognition. This section also discusses
how the SP system relates to several aspects of the diagnostic process, includ-
ing causal reasoning and the process of acquiring the knowledge that is needed
for accurate diagnosis. Section 4 compares this new approach to medical di-
agnosis with some of the alternatives. The paper concludes with an outline of
what still needs to be done in this programme of research and with a review
of the main points that have been made.
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2 The SP theory

The SP theory grew out of a long tradition in psychology that many aspects
of brain function may be understood as information compression (see, for
example, [2,3,24,7]). It is based on principles of minimum length encoding 1

pioneered by Solomonoff [21], Wallace and Boulton [23], Rissanen [17] and
others (see also [13]). An overview of the theory is presented in [31] and more
detail may be found in other papers cited there (see also [28]).

The SP theory has been developed as an abstract model of any system for
processing information, either natural or artificial. In broad terms, the system
receives ‘New’ information from its environment and transfers it to a repository
of ‘Old’ information. At the same time, it tries to compress the information
as much as possible by finding patterns that match each other and merging
or ‘unifying’ patterns that are the same. 2 An important part of this process
is the building of ‘multiple alignments’ as described below.

The SP framework is Turing-equivalent in the sense that it can model a uni-
versal Turing machine [25] but it has much more to say about the nature of
‘intelligence’ than the Turing model of computing (or equivalent models such
as lamda calculus [9] or the Post canonical system [16]).

To date, the main areas in which the SP framework has been applied are prob-
abilistic reasoning, pattern recognition and information retrieval [26], parsing
and production of natural language [27], modelling concepts in logic and math-
ematics [29], and unsupervised learning [32,30].

2.1 Computer models

Two computer models of the SP system have been developed:

• SP62 is a partial realisation of the theory that does not transfer any infor-
mation from New to Old. This model tries to compress the New information
in terms of the Old information by building multiple alignments of the kind
that will be seen below. SP62 also contains procedures for calculating the
probabilities of inferences that may be drawn from alignments. A slightly
earlier version of this model (SP61) is described quite fully in [27]. Both

1 An umbrella term for ‘minimum message length encoding’ and ‘minimum descrip-
tion length encoding’.
2 The term ‘unification’ in the SP theory means a simple merging of two or more
identical patterns to make one. This meaning is different from but related to the
meaning of the term in logic.
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versions are relatively robust and mature.
• SP70 realises all the main elements of the theory, including the transfer of

information from New to Old. In addition to building multiple alignments
like SP62, the model compiles one or more alternative ‘grammars’ for the
information in New, using principles of minimum length encoding. This
model, and its application to unsupervised learning, is described quite fully
in [32,30]. More work is required to realise the full potential of this model.

2.2 Representation of knowledge

In the SP system, all kinds of knowledge are stored as arrays of atomic symbols
in one or two dimensions called patterns. In work to date, the main focus
has been on one-dimensional patterns (i.e., sequences of symbols) but it is
envisaged that, at some stage, the concepts will be generalised to patterns in
two dimensions.

For present purposes, we may define patterns and symbols as follows:

• A pattern is a sequence of symbols bounded by end-of-pattern characters
such as ‘(’ and ‘)’, not shown in the examples in this paper.

• A symbol is a string of non-space characters bounded by white space (space
characters, line-feed characters and the like).

• Any symbol can be matched with any other symbol and, for any one pair
of symbols, the two symbols are either ‘the same’ or ‘different’. No other
result is permitted.

• Symbols have no intrinsic meaning such as ‘add’ for the symbol ‘+’ in arith-
metic or ‘multiply’ for the symbol ‘×’. Any meaning attaching to an SP sym-
bol takes the form of one or more other symbols with which it is associated
in a given set of patterns.

• Each pattern has an associated integer value representing the absolute or
relative frequency of occurrence of that pattern in some domain.

Despite the extraordinary simplicity of this format for representing knowledge,
the way in which SP patterns are processed within the system means that they
can model a wide variety of established representational schemes, including
context-free and context-sensitive grammars, class-inclusion hierarchies, part-
whole hierarchies, discrimination networks and trees, if-then rules, and others.

2.3 Processing knowledge

A key part of the process of matching patterns is the building of ‘multiple
alignments’, described and illustrated here. The process of building multiple
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alignments in the SP system provides a unified model for a variety of com-
putational effects including fuzzy pattern recognition, best-match information
retrieval, probabilistic and exact styles of reasoning, unsupervised learning,
planning, problem solving and others, as described in [31].

2.3.1 Multiple alignments

This subsection and the ones that follow describe the main elements of the
multiple alignment concept as it has been developed in the SP theory and
explains how multiple alignments are created and evaluated in the SP system.

In bioinformatics, a multiple alignment is an arrangement of two or more DNA
sequences or sequences of amino acid residues so that matching symbols are
aligned. Fig. 1 shows a typical example. The general idea is that, by judicious
‘stretching’ of sequences, as many symbols as possible are aligned with each
other. A variety of measures of the ‘goodness’ of alignments are used but they
all tend to favour alignments where the number of aligned symbols is high and
the gaps between them are relatively few and relatively small.

G G A G C A G G G A G G A T G G G G A
| | | | | | | | | | | | | | | | | | |
G G | G G C C C A G G G A G G A | G G C G G G A
| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A
| | | | | | | | | | | | | | | | | |
G G A A | A G G G A G G A | A G G G G A
| | | | | | | | | | | | | | | | |
G G C A C A G G G A G G C G G G G A

Fig. 1. A ‘good’ alignment amongst five DNA sequences.

In the SP framework, the concept of multiple alignment has been modified as
follows:

• One or more of the sequences (termed patterns, as described in Section 2.2)
are classified as ‘New’ and the rest are ‘Old’.

• A ‘good’ alignment is one where the New patterns can be encoded econom-
ically in terms of the Old patterns in the alignment, as will be explained.

• Any one pattern may appear more than once in one alignment, not as two
or more copies but as two or more appearances of a single pattern. This has
implications for the way alignments are formed and for the representation
of recursive structures. These aspects of the multiple alignment concept are
not relevant to the main proposals here and will not be considered further
in this paper. Readers who wish to know more may consult the sources cited
earlier.

Normally, the SP62 model is run with relatively few New patterns and a
relatively large ‘database’ or ‘dictionary’ of Old patterns. The system typically
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forms a set of alternative alignments, each one of which represents a possible
encoding of the New pattern or patterns in terms of one or more of the Old
patterns.

Fig. 2 shows a simple example, with one New pattern (in row 0, representing
a badly-spelled version of the word ‘experimentation’) and one Old pattern
(in row 1, representing the correctly-spelled version of the word). 3 This is
the best alignment produced by SP62 with the New pattern as shown and
a dictionary of Old patterns, each one of which represents one word in its
correctly-spelled form.

0 e p e r i m a n t a t x p i u n 0
| | | | | | | | | | | |

1 < E3 e x p e r i m e n t a t i o n > 1

Fig. 2. The best alignment formed by SP62 when it is supplied with one New pattern
(‘e p e r i m a n t a t x p i u n’) and a dictionary of Old patterns, each one of which
represents a correctly-spelled word.

Fig. 3 is a slightly more complicated example, the best alignment produced by
SP62 when it is supplied with one New pattern (‘j o h n r u n s’) and a set of
Old patterns, each one of which represents a grammatical rule. This alignment
shows how the sentence ‘j o h n r u n s’ (in row 0) may be analysed (‘parsed’)
into its parts. The Old patterns in rows 1 to 3 represent grammatical rules: ‘<
S < N > < V > >’ in row 3 means that a (simple) sentence is composed of a
noun (‘N’) followed by a verb (‘V’), ‘< N 0 j o h n >’ in row 2 means that ‘j
o h n’ is a noun, and ‘< V 1 r u n s >’ in row 1 means that ‘r u n s’ is a verb.

0 j o h n r u n s 0
| | | | | | | |

1 | | | | < V 1 r u n s > 1
| | | | | | |

2 < N 0 j o h n > | | | 2
| | | | | |

3 < S < N > < V > > 3

Fig. 3. The best alignment formed by SP62 when it is supplied with one New
pattern (‘j o h n r u n s’) and a set of Old patterns, each one of which represents a
grammatical rule.

3 By convention, the New pattern or patterns are always shown in row 0 of align-
ments like those shown in Figs. 2 and 3, and the Old patterns are shown in the
other rows, one pattern per row and in an order that is entirely arbitrary, without
special significance. As we shall see, alignments can sometimes fit better on the page
if they are rotated by 90o and in this case the New pattern or patterns are shown
in column 0 with the Old patterns in the other columns, one pattern per column.
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2.3.2 Evaluation of alignments

As previously mentioned, a ‘good’ multiple alignment is one where the New
pattern or patterns can be encoded economically in terms of the Old patterns
in the alignment. How is this evaluation done?

Every symbol has an associated ‘weight’ which is the number of bits needed
to encode that symbol. And the weight is derived from the frequency of occur-
rence of the symbol using the Shannon-Fano-Elias method (see [10]) (a method
that is similar to the well-known Huffman method). The frequency value for
any symbol is derived from the frequency value of the pattern (or patterns)
in which that symbol appears (as described in Section 2.2). In the context
of medical diagnoses, the frequency associated with any given pattern is the
frequency of occurrence of the disease that is represented by that pattern (see
Section 3.1, below).

A few of the symbols (normally one or two) near the beginning of each Old
pattern are classified as identification symbols or ‘ID-symbols’. For example,
the ID-symbol in the pattern ‘< E3 e x p e r i m e n t a t i o n >’ in Fig. 2
is ‘E3’, and the ID-symbols in the pattern ‘< N 0 j o h n >’ in Fig. 3 are ‘N’
and ‘0’.

A ‘code’ for any alignment may be derived quite simply by scanning the align-
ment from left to right looking for columns in the alignment that contain one
code symbol, not matched with any other identical symbol. The code for the
alignment is the sequence of symbols that have been found, in the given order.
For example, the code derived in this way from the alignment in Fig. 2 is ‘E3’
and the code derived from the alignment in Fig. 3 is ‘S 0 1’.

The next step in the evaluation of a given alignment is the calculation of a
‘compression score’ or ‘compression difference’ as:

CD = Bn −Be, (1)

where Bn is the total size (in bits) of those symbols within the New pattern
that have been matched to Old symbols within the alignment, and Be is the
total size (in bits) of the symbols in the code that has been derived as just
explained. Adjustments to this score are made to take account of gaps in
the alignment like those that may be seen in Fig. 2. The details of these
calculations and adjustments are explained in [27].
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2.3.3 The building of multiple alignments

In bioinformatics, it is generally understood that the abstract ‘space’ of al-
ternative possible alignments between two or more sequences is, with few
exceptions, astronomically large—which means that it cannot be searched ex-
haustively. All practical methods for finding ‘good’ alignments amongst two
or more sequences use heuristic methods such as ‘hill climbing (or ‘descent’),
‘beam search’, ‘genetic algorithms’ or the like that search selectively and ex-
clude large parts of the search space. With methods like these, one can find
good approximate solutions in a reasonable time but one can never be sure
of finding the best possible solution (unless the sequences are very short and
very few). Finding good multiple alignments in the SP system is no different.

At the heart of the SP system for building multiple alignments is an improved
version of ‘dynamic programming’ for finding full matches and good partial
matches between two patterns (see, for example, [18]). Unlike standard ver-
sions of dynamic programming, the procedure used in the SP models:

• Can find good matches between patterns without restrictions on the lengths
of the patterns.

• Can normally find several alternative alignments between two patterns, not
just one.

• It allows the ‘depth’ or thoroughness of searching to be varied according to
need.

Given one New pattern and a database of Old patterns, SP62 first builds a
set of alignments, each one of which is between the New pattern and one
of the Old patterns. From this set, it selects the best few alignments, using
the measure described in Section 2.3.2. Each of these alignments can itself be
treated as if it was a single pattern. So, in the next stage, SP62 builds larger
alignments, each one of which is between one of the selected alignments and
one of the Old patterns or between one of the selected alignments and another
of those alignments. As before, the program selects the best of the alignments
that have been formed.

The process is repeated in this way until no more alignments can be found.
The process for building alignments containing two or more New patterns is
a generalisation of what has been described here.

2.3.4 Unsupervised learning

At its most abstract level (Section 2), the SP model is conceived as a system
that learns by transferring New information to its repository of Old informa-
tion and compressing it at the same time. This abstract conception has now
been realised more concretely in the form of the SP70 computer model [32,30]
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that is capable of learning simple grammars from raw data. However, further
development of the model is needed to realise its full potential.

The current model has two stages:

(1) From partial alignments between patterns, the model creates new pat-
terns that are added to the repository of Old patterns as explained below.

(2) Amongst the patterns that are generated in this way, some are ‘good’ in
terms the principles of minimum length encoding and others are ‘bad’. In
the second stage of processing, the model measures the frequency with
which each pattern may be recognised in the raw data and then it uses
this information in a hill-climbing search amongst subsets of the Old
patterns to find one or more sets of patterns that are good in terms of
the principles of minimum length encoding. The remaining patterns may
be discarded.

It is envisaged that, when the model is more fully developed, these two stages
will be repeated so that the system can progressively bootstrap a set of pat-
terns that are good in terms of the principles of minimum length encoding,
and thus represent a distillation of the patterns of redundancy in the original
data.

SP70 is currently targeted at the learning of syntax in natural languages.
Given a partial alignment like this:

0 t h e g i r l r u n s 0

| | | | | | |

1 < %1 t h e b o y r u n s > 1

the program creates patterns like these:

< %2 t h e >

< %3 r u n s >

< %4 0 b o y >

< %4 1 g i r l >

< %5 < %2 > < %4 > < %3 > >

The first four are derived from coherent sequences of matched symbols and co-
herent sequences of unmatched symbols in the alignment and they correspond
to what we would normally recognise as words. Each one has a grammatical
category represented by ID-symbols such as ‘%2’, ‘%3’ and ‘%4’. Notice that
‘b o y’ and ‘g i r l’ belong to the same disjunctive category {‘b o y’, ‘g i r
l’} because they are alternatives at the same point in the original alignment
and they both share the ID-symbol ‘%4’. The ID-symbols ‘0’ and ‘1’ serve to
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distinguish the two alternatives in that category.

The last pattern in this example ties everything together by listing the se-
quence of categories in the original alignment. It is an ‘abstract’ pattern de-
scribing the overall structure of the two original sentences.

For an application like medical diagnosis, the style of learning just described is
probably not entirely appropriate. Section 3.11.2 describes how similar prin-
ciples may be applied to medical data. If the potential of these ideas can
be realised, the SP system should facilitate the automatic or semi-automatic
construction of knowledge bases from raw medical data.

2.3.5 Computational complexity

The time complexity of the SP62 model in a serial processing environment is
approximately O(log2n× nm), where n is the size of the New pattern or pat-
terns (in bits) and m is the total size of the patterns in Old (in bits). In a par-
allel processing environment, the time complexity may approach O(log2 n×n),
depending on how well the parallel processing is applied. The space complex-
ity in serial or parallel environments is O(m). Further details may be found
in [27].

In medical diagnosis, it seems reasonable to suppose that there will normally
be a fairly small maximum for the number of signs and symptoms (abbreviated
hereinafter as ‘symptoms’) exhibited by any one patient. Correspondingly,
there should be a maximum size for the size of the set of New patterns that
are used to represent the patient’s symptoms. If we take this to be a constant
value for n, then in a serial processing environment the time complexity is
approximately O(m) and in a parallel processing environment it may approach
O(1).

3 Application of the SP system to medical diagnosis

To a large extent, medical diagnosis may be viewed as a problem of (fuzzy)
pattern recognition: finding the best fit between a given set of symptoms for
an individual patient and the symptoms associated with one or more diseases.
However, causal reasoning also has a part to play when, for example, it is
understood that a given disease is caused by a bacterial or virus infection.

This section presents an example showing how the SP system may be ap-
plied to medical diagnosis, viewed as a process of pattern recognition. The
system may also support causal reasoning about medical problems and this is
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discussed briefly in Section 3.9, below.

Other aspects of the proposals are discussed in other subsections.

3.1 Describing diseases using SP patterns

In the SP scheme, knowledge about diseases may be stored as patterns in a
repository of Old information, and the symptoms for an individual patient
may be represented as a set of one or more New patterns.

A pattern in the store of Old information may represent one disease and its
associated symptoms, or a combination of diseases (see Section 3.7.2, below),
or it may represent a cluster of symptoms that tend to occur together in two or
more different diseases (see Section 3.5, below). In addition, Old may include
patterns that play supporting rôles (see Section 3.6, below).

The frequency value of each pattern may be used to represent the absolute or
relative frequency with which a given disease or cluster of symptoms is found in
a given population. These figures may be derived from epidemiological surveys
or they may be estimated by medical experts.

By way of illustration, Fig. 4 shows five examples of such patterns, one de-
scribing the symptoms of chicken pox, another describing the symptoms of
smallpox, the third describing the cluster of symptoms which is described as
‘fever’ and two more describing the class of ‘high’ temperatures (38–39oC and
40+oC). The number in brackets after each pattern is a very rough estimate
of the relative frequencies of occurrence of the corresponding disease or con-
dition. 4

Each of the first three patterns begins and ends with a pair of symbols
‘<disease> ... </disease>’ which indicate that the pattern describes a dis-
ease or a cluster of disease symptoms. Within each pattern, there are sim-
ilar pairs of symbols, each one marking the beginning and end of a ‘field’
which describes some aspect of the disease or cluster. For example, ‘<dname>
Chicken Pox </dname>’ provides the name of the chicken pox disease,
‘<skin> rash </skin>’ describes one of its symptoms, ‘<causative agent>
chicken pox virus </causative agent>’ describes what causes the disease, and
‘<treatment> chicken pox treatment </treatment>’ is a remarkably unhelp-
ful description of how to treat the disease which would, of course, be much
more detailed in a fully developed knowledge base.

4 The figure for smallpox is clearly too high in the world today but it will serve for
the purpose of illustration.
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<disease> chicken_pox :

<dname> Chicken_Pox </dname>

<R2> fever </R2>

<appetite> normal </appetite>

<chest> normal </chest>

<chills> no </chills>

<cough> no </cough>

<diarrhoea> no </diarrhoea>

<fatigue> no </fatigue>

<lymph_nodes> normal </lymph_nodes>

<malaise> yes </malaise>

<muscles> normal </muscles>

<nose> normal </nose>

<skin> rash </skin>

<throat> normal </throat>

<weight_change> no </weight_change>

<causative_agent> chicken_pox_virus </causative_agent>

<treatment> chicken_pox_treatment </treatment>

</disease> (2500)

<disease> smpx :

<dname> Smallpox </dname>

<R1> flu_symptoms </R1>

<appetite> normal </appetite>

<chest> normal </chest>

<diarrhoea> no </diarrhoea>

<fatigue> no </fatigue>

<lymph_nodes> normal </lymph_nodes>

<malaise> no </malaise>

<skin> rash with blisters </skin>

<weight_change> no </weight_change>

<causative_agent> smallpox_virus </causative_agent>

<treatment> smallpox_treatment </treatment>

</disease> (5)

<disease> fever

<breathing> rapid </breathing>

<face> flushed </face>

<temperature> <t1> </t1> </temperature>

</disease> (15000)

<t1> 38-39 </t1> (14705)

<t1> 40+ </t1> (147)

Fig. 4. Five SP patterns, one describing the symptoms of chicken pox, another
describing the symptoms of smallpox, the third describing the symptoms of fever
and two more describing the class of ‘high’ temperatures.

Within the pattern for chicken pox, the field ‘<R2> fever </R2>’ indicates
that ‘fever’ is one of the symptoms of the disease. However, by contrast with
other fields like those just mentioned, the symbol ‘fever’ is, in effect, a reference
or pointer to a cluster of symptoms such as rapid breathing, flushed face and
high temperature described in the third pattern in the same figure. In a similar
way, ‘<R1> flu symptoms </R1>’ in the pattern for smallpox is a reference
or pointer to another pattern, not shown in the figure, that describes a cluster
of symptoms associated with influenza and flu-like diseases. The way in which
pointers like these are dereferenced in the SP system will be seen in the next
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section.

Readers who are familiar with XML [6] will notice that pairs of symbols like
‘<disease> ... </disease>’ or ‘<dname> ... </dname>’ are rather like the
start and end tags used to mark the elements of an XML document. However,
by contrast with XML and related languages such as HTML, symbols of that
kind have no formal status in the SP system and the styles of symbols are
not defined within the system. Any convenient style may be used such as
‘disease ... #disease’ or ‘disease ... %disease’ and in some applications it is not
necessary to provide any distinctive markers for the beginnings and ends of
patterns or fields. The concept of ‘field’ has no formal status in the SP system
either.

3.2 Multiple alignment and medical diagnosis

The process of diagnosis may be modelled by the building of one or more
multiple alignments. Fig. 6 shows the best alignment created by SP62 with
a set of New patterns shown in Fig. 5 that describe ‘John Smith’ and his
symptoms and a set of Old patterns like those shown in Fig. 4 that represent
diseases or aspects of diseases. 5

<patient> John_Smith </patient>

<face> flushed </face>

<appetite> poor </appetite>

<breathing> rapid </breathing>

<muscles> aching </muscles>

<chills> yes </chills>

<fatigue> yes </fatigue>

<lymph_nodes> normal </lymph_nodes>

<malaise> no </malaise>

<nose> runny </nose>

<temperature> 38-39 </temperature>

<throat> sore </throat>

Fig. 5. The set of New patterns supplied to SP62 for the example discussed in the
text. These patterns represent the patient ‘John Smith’ and his symptoms.

An alignment like this may be interpreted as the result of a process of recog-
nition. In this case, the symptoms that have been recognised are those of
influenza, as shown in column 2. The following subsections discuss aspects of
the alignment and of this interpretation.

5 Compared with the alignments shown in Figs. 2 and 3, the alignment in Fig. 6 has
been rotated by 90o to allow the alignment to fit better on the page. As previously
noted, the New patterns are shown in column 0 and the Old patterns are shown in
the other columns, one pattern per column in an order that is arbitrary and without
special significance.
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0 1 2 3 4 5

<disease> ---------- <disease> ---------- <disease> ---- <disease>

flu

: ------------------ :

<patient> ------ <patient>

John_Smith

</patient> ----- </patient>

<dname> ------------ <dname>

Influenza

</dname> ----------- </dname>

<R1> --------------- <R1>

flu_symptoms ------- flu_symptoms

</R1> -------------- </R1>

<R2> ------------------------------------ <R2>

fever -------- fever

</R2> ----------------------------------- </R2>

<appetite> ----- <appetite> --------- <appetite>

poor normal

</appetite> ---- </appetite> -------- </appetite>

<breathing> ---- <breathing> -------------------------------------------- <breathing>

rapid ------------------------------------------------------------------- rapid

</breathing> --- </breathing> ------------------------------------------- </breathing>

<chest> ------------ <chest>

normal

</chest> ----------- </chest>

<chills> ------- <chills> -------------------------------- <chills>

yes ------------------------------------------------------ yes

</chills> ------ </chills> ------------------------------- </chills>

<cough> --------------------------------- <cough>

yes

</cough> -------------------------------- </cough>

<diarrhoea> -------- <diarrhoea>

no

</diarrhoea> ------- </diarrhoea>

<face> --------- <face> ------------------------------------------------- <face>

flushed ----------------------------------------------------------------- flushed

</face> -------- </face> ------------------------------------------------ </face>

<fatigue> ------ <fatigue> ---------- <fatigue>

yes no

</fatigue> ----- </fatigue> --------- </fatigue>

<headache> ------------------------------ <headache>

yes

</headache> ----------------------------- </headache>

<lymph_nodes> -- <lymph_nodes> ------ <lymph_nodes>

normal ------------------------------ normal

</lymph_nodes> - </lymph_nodes> ----- </lymph_nodes>

<malaise> ------ <malaise> ---------- <malaise>

no ---------------------------------- no

</malaise> ----- </malaise> --------- </malaise>

<muscles> ------ <muscles> ------------------------------- <muscles>

aching --------------------------------------------------- aching

</muscles> ----- </muscles> ------------------------------ </muscles>

<nose> --------- <nose> ---------------------------------- <nose>

runny ---------------------------------------------------- runny

</nose> -------- </nose> --------------------------------- </nose>

<skin> ------------- <skin>

normal

</skin> ------------ </skin>

<temperature> -- <temperature> ------------------------------------------ <temperature>

<t1> ----------- <t1>

38-39 ------------------------------------------------------------------------------------ 38-39

</t1> ---------- </t1>

</temperature> - </temperature> ----------------------------------------- </temperature>

<throat> ------- <throat> -------------------------------- <throat>

sore ----------------------------------------------------- sore

</throat> ------ </throat> ------------------------------- </throat>

<weight_change> ---- <weight_change>

no

</weight_change> --- </weight_change>

<causative_agent> -- <causative_agent>

flu_virus

</causative_agent> - </causative_agent>

<treatment> -------- <treatment>

flu_treatment

</treatment> ------- </treatment>

</disease> --------- </disease> --------- </disease> --- </disease>

0 1 2 3 4 5

Fig. 6. The best alignment found by SP62 with the set of patterns from Fig. 5 in
New (describing the symptoms of the patient ‘John Smith’) and a set of patterns
in Old describing a range of different diseases and named clusters of symptoms,
together with the ‘framework’ pattern shown in column 1.
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3.3 A ‘framework’ pattern

In an application like this, it is convenient but not essential to include amongst
the Old patterns a ‘framework’ pattern like the one shown in column 1. This
is a generalised pattern for diseases of all kinds that lists the main categories
associated with diseases such as ‘<dname> </dname>’ (the name of the
disease), ‘<breathing> </breathing>’ (the state of the patient’s breathing)
and ‘<temperature> </temperature>’ (the patient’s temperature), but it
does not specify specific values for any category.

This framework pattern serves as an anchor point for symbols in other patterns
and facilitates the formation of multiple alignments in accordance with the
rules described in [31] and earlier publications.

3.4 The ordering of descriptors

In an application like medical diagnosis, it is not obvious that there is any
intrinsic order to the symptoms of a disease or associated descriptors such as
the name of the patient. In describing a patient’s symptoms, it should make
no difference whether ‘high temperature’ is mentioned before ‘runny nose’ or
the other way round.

In the SP framework, each pattern that describes a disease or a cluster of
symptoms necessarily imposes an order in which categories of descriptors are
specified. However, users of the system may specify the patient’s symptoms in
any order that is convenient. This is because symptoms are described using a
set of New patterns and there is no intrinsic order amongst the New patterns
supplied to the system. In our example, New patterns were supplied to the
SP62 model in the order shown in Fig. 5 but in the alignment shown in Fig.
6 they appear in a completely different order.

Notice that this freedom in the ordering of descriptors only applies to whole
patterns. When two or more symbols in one pattern are matched to two or
more symbols in another, the order of the symbols in one pattern must be the
same as the order of the matching symbols in the other pattern.

3.5 Dereferencing of pointers

As already noted, a symbol like ‘fever’ or ‘flu symptoms’ in one pattern may
serve as a reference or pointer to another pattern that describes a cluster of
symptoms that may be found in two or more different diseases.
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In Fig. 6, we can see how such pointers are ‘de-referenced’ in the SP system.
The symbol ‘flu symptoms’ in column 2 is matched to the same symbol in
column 3 where flu-like symptoms are listed. Likewise, the symbol ‘fever’ in
column 3 is matched to the same symbol in column 4 where the symptoms of
fever or listed. Fever is itself part of the cluster of flu-like symptoms.

The provision of named clusters like these saves the need to specify the cor-
responding symptoms redundantly in each of the diseases where such clusters
appear.

3.6 Uncertainties in diagnosis

Diagnosis is not an exact process:

• Most diseases are ‘family resemblance’ or ‘polythetic’ concepts because the
majority of symptoms associated with any given disease are neither neces-
sary nor sufficient for the diagnosis of the disease: they are ‘characteristic’
of the disease in the sense that any one such symptom need not be present
in every case and any of them may be associated with other diseases.

• There may be and frequently are errors in the observation or recording of
symptoms.

SP62 can accommodate these kinds of uncertainty in diagnosis in two distinct
ways:

• Because it looks for a global best match amongst patterns, it does not de-
pend on the presence or absence of any particular symptom. Notice how
SP62 has succeeded in constructing the alignment shown in Fig. 6 de-
spite there being no match for ‘poor’ in the New pattern ‘<appetite> poor
</appetite>’ and ‘yes’ in the New pattern ‘<fatigue> yes </fatigue>’ and
no match for many of the symbols in the Old patterns.

Although the system does not depend on the presence or absence of any
one symptom, particular symptoms can have a major impact on diagnosis,
as described in Section 3.7.1, below.

• Within the SP framework, it is not necessary for every symptom of a disease
to be recorded as a specific value. For example, in column 4 of the alignment
in Fig. 6, the pair of symbols ‘<t1> </t1>’ represents a set of alternative
values for the temperature associated with fever. In this case, there are just
two values, represented in Old by the patterns ‘<t1> 38-39 </t1>’ (high
temperature) and ‘<t1> 40+ </t1>’ (very high temperature), as shown at
the bottom of Fig. 4. The first of these patterns is shown in column 5 of the
alignment, matched to the temperature of the patient shown in column 0.

Being able to specify symptoms as sets of alternative values allows the
system to accommodate the kind of variability which is so prominent in

16



many diseases.

3.7 Weighing alternative hypotheses and the calculation of probabilities

In medical diagnosis, it is quite usual for the physician to consider alternative
hypotheses about what disease or diseases the patient may be suffering from.
The SP framework provides a model for this process in the way the system
builds alternative alignments for any given pattern or set of patterns in New.
Alignments—and the corresponding diagnoses—may be evaluated as follows.

As previously noted (Section 2.3.2), a ‘compression difference’ is calculated
for each alignment as shown in Equation 1. The value Be that is used in
that equation may be translated into an absolute probability for the given
alignment:

P = 2−Be . (2)

For any one alignment (the jth alignment) in a set of alternative alignments,
a1...an, that encode the same symbols from New, a relative probability may
be calculated as:

pj = Pj/
i=n∑

i=1

Pi. (3)

A fuller account of the way probabilities are calculated may be found in [26].

Given that the New patterns represent the symptoms of one patient at a
particular time and given that each pattern in Old describes a single disease
or a single cluster of symptoms that may form part of the description of one or
more diseases, then each alignment formed by SP62 represents an hypothesis
about any one disease that the patient may have.

Where alternative alignments encode different subsets of the symbols in New,
it is possible that the patient may be suffering from two or more diseases at
the same time. This possibility is discussed in Section 3.7.2, below. However,
where two or more of the best alignments encode exactly the same symbols
from New, then they represent alternative diagnostic hypotheses and they may
be compared using values for relative probability (p).

When SP62 formed the alignment shown in Fig. 6, it also formed a similar
alignment, matching exactly the same symbols in New, in which column 2
contained a pattern representing the symptoms of smallpox, instead of the
pattern for influenza. The relative probability values calculated in this case
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were 0.99950 for influenza and 0.00049 for smallpox, reflecting the prevalence
of those two diseases in the world today. 6

3.7.1 ‘Explaining away’

The symptoms of influenza and smallpox are quite similar, except for the very
distinctive rash and blisters that occur in smallpox. The example shown in
Fig. 6 is silent about whether John Smith had a rash and blisters or not. If a
rash and blisters had been seen to be absent, this would have been represented
as ‘<skin> normal </skin>’. Given this lack of information about the state
of the patient’s skin, he may have either influenza or smallpox but he is very
much more likely to have the former than the latter, as indicated by the
calculated probabilities.

If ‘<skin> rash with blisters </skin>’ is added to the symptoms recorded
in New, and if SP62 is run again with the augmented set of symptoms, the
best alignment found by the system is similar to that shown in Fig. 6 but
with the pattern for smallpox (the second pattern in Fig. 4) instead of the
pattern for influenza in column 2 and with a match shown between ‘<skin>
rash with blisters </skin>’ in the set of New patterns and the same symbols
in the pattern that describes smallpox. However, in this case there is no other
alignment that matches the same symbols in New. Consequently, the relative
probability of the best alignment is 1.0. In short, the addition of one distinc-
tive symptom to the list of symptoms has a dramatic effect on the relative
probabilities calculated by the system. Instead of a vanishingly small proba-
bility for smallpox (0.00049), the system now assigns it a probability of 1.0,
in accordance with our intuitions.

From this result, we may conclude that the patient certainly has smallpox and
that his aching muscles and runny nose are due to smallpox, not influenza.
This is the phenomenon of ‘explaining away’: “If A implies B, C implies B, and
B is true, then finding that C is true makes A less credible. In other words,
finding a second explanation for an item of data makes the first explanation
less credible.” ([15, p. 7], with the emphasis as in the original).

3.7.2 A patient may suffer from two or more diseases at the same time

As noted above, it is possible for a patient to suffer from two or more diseases
at the same time. Given that the Old patterns in the system describe single

6 There are, of course, other factors that may be relevant—such as the possibility
that someone might release the smallpox virus deliberately—but in this example,
knowledge of such other factors has been excluded.
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diseases, then the system would create two or more ‘good’ alignments, each
one corresponding to one of the diseases that the patient is suffering from.

If we want the system to calculate probabilities for combinations of diseases,
then the repository of Old patterns must contain patterns that represent com-
binations of that kind. Each such pattern may be constructed economically
using references to the component diseases, in much the same way that clusters
of symptoms may be referenced, as described in Section 3.5.

As with single diseases, frequency values for a combinations of diseases may
be obtained from population surveys or by the judgement of medical experts.
In the absence of any direct evidence of a statistical association between two
or more diseases, it seems reasonable to assume that they are statistically in-
dependent. In such cases, frequency values may be derived straightforwardly
via normalised values for the frequencies of occurrence of individual diseases.
Whether the frequency values for combinations of diseases are measured, es-
timated or derived, they can be used for the calculation of CD values and
probabilities in exactly the same way as for single diseases.

Of course, there are so many possible combinations of diseases that it would be
impossible to store information about them all. A more practical option may
be to store information in Old about individual diseases and combinations of
diseases that are known to have a statistical association with each other. One
may assume that all other combinations of diseases are statistically indepen-
dent.

3.8 Inferences and the diagnostic cycle

In a multiple alignment like the one shown in Fig. 6, any symbol within an Old
pattern that is not matched to a symbol in New represents an inference that
may be drawn from the alignment. In this example, we may infer from the
alignment inter alia that the patient is likely to have a cough and a headache
and that the standard treatment for influenza is required. Probabilities of
these inferences can be calculated as described in [26].

If a ‘good’ alignment makes a prediction about some marker that may be
found in the patient’s blood or something that may be observed in an X-
ray, this may be interpreted as a suggestion to the physician that he or she
should order an appropriate blood test or X-ray. If tests of that kind or other
kinds of investigation are instigated as a result of the inferences drawn from
preliminary alignments, the results of those investigations, together with the
original symptoms, may be fed back into the system as New information.
The system may then be run again and the alignments that are created may
suggest a final diagnosis or the need for further investigation—and so on.
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3.9 Causal reasoning

Apart from the kinds of inference just described, medical diagnosis often seems
to involve a ‘deeper’ kind of reasoning about the causes of symptoms and
diseases, using knowledge of bacteria, viruses, anatomy, physiology and so on.

The SP framework supports a variety of styles of reasoning, including prob-
abilistic ‘deductive’ reasoning, abductive reasoning, nonmonotonic reasoning
and (as we saw in Section 3.7.1) ‘explaining away’ (see [26]). So there are rea-
sons to believe that, within the SP framework, it may be possible to extend
the pattern recognition analysis described above to incorporate causal styles
of reasoning.

Recent investigation has confirmed this expectation. The input-output rela-
tions of each subsystem within a larger system can be modelled in the SP
framework as a set of patterns, and causal connections can be established by
matching outputs to inputs. As with the analysis described above, a ‘frame-
work’ pattern is also needed to ensure that alignments can be formed in an
appropriate manner. These potential applications of the system need further
exploration and development.

3.10 Classes and subclasses of diseases

One of the attractions of the SP system is that it allows concepts to be rep-
resented at multiple levels of abstraction (e.g., ‘cat’, ‘mammal’, ‘vertebrate’,
‘animal’) in the manner of object-oriented design and, via the building of
multiple alignments, it allows a specific entity (such as “my cat Tibs”) to be
recognised at several different levels of abstraction [31,26].

To some extent, this idea is already illustrated by the example shown in Fig.
6. The concept of ‘fever’, represented by the pattern in column 4 of the figure,
may be seen as a superclass comprising all the diseases where the patient may
be feverish. Likewise, the pattern for flu symptoms (column 3 in the figure)
may be seen as a superclass of the diseases in which such symptoms may be
seen.

By contrast with the classification of animals and plants, the hierarchy of
diseases tends to be relatively flat. However, there is scope for the recognition
of classes and subclasses in the variants of diseases such as influenza and
diabetes. With the SP system, each variant of a given disease may be recorded
as a pattern that specifies the symptoms that are characteristic of the variant.
Provided that pattern contains a symbolic link to another pattern describing
the main symptoms of the disease, there is no need to repeat those symptoms
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redundantly in each of the variants.

3.11 Acquisition of knowledge

Broadly speaking, the knowledge that is required in any artificial system for
medical diagnosis can be obtained ‘manually’ from experts or written sources,
or it may be obtained by the automatic or semi-automatic abstraction of
knowledge from raw medical data, or some combination of the two. The SP
system has potential to facilitate any or all of these processes.

3.11.1 Elicitation of expert knowledge

It should be apparent from the example described above that the SP system
provides a means of representing medical knowledge in a form that is sim-
ple and intuitive. The simplicity of representing all knowledge as patterns is,
perhaps, less important than the fact that this system allows computer-based
knowledge to be expressed in a form that apparently reflects the natural struc-
ture of the original concepts.

This feature of the system should facilitate traditional kinds of knowledge
elicitation from experts or written sources. Medical experts should have little
difficulty in expressing their knowledge directly in the form of SP patterns.
Given that such experts are often busy and their time is, in any case, expensive,
there are advantages if at least some of the process of building computer-
based knowledge bases can be undertaken by knowledge engineers without
specialised medical training. It should be possible for such people to derive
a good deal of the necessary knowledge from medical text books and other
written sources.

3.11.2 Automatic or semi-automatic learning

Section 2.3.4 presented an outline description of how the SP70 model learns the
kinds of structures found in the syntax of natural languages. As was indicated
in that section, that style of learning is probably not entirely appropriate for
medical data but the same general principles should apply. This subsection
describes in outline how the SP system may be applied to the learning of
medical knowledge.

The simplest kind of ‘learning’ is simply to keep a record of the symptoms
of each specific patient and the corresponding diagnosis. This is the princi-
ple of ‘case-based learning’ and, in conjunction with a system that kind find
good partial matches between the description of a new patient and stored
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knowledge of old patients, it can be quite practical and useful in making new
diagnoses. Since the SP system is capable of finding good partial matches be-
tween patterns, it could well be used in this way, as suggested in Section 4.5,
below.

However, medical practitioners normally recognise a degree of abstraction in
medical knowledge as described in Section 3.10: a concept like ‘fever’ describes
a cluster of symptoms that is found in two or more different diseases; diseases
like influenza often come in several variants or subclasses; and symptoms may
be described in terms of ranges rather than specific values as in our example
of temperature (Section 3.6).

As an illustration of the way in which the SP system may create these kinds of
abstraction, consider two imaginary patients with two different diseases and
symptoms represented by the patterns ‘X A B Y C D E Z F’ and ‘A P Q B
C R D S E F T’. With these two patterns, the SP system would create an
alignment like this:

0 X A B Y C D E Z F 0

| | | | | |

1 A P Q B C R D S E F T 1,

and from the matched symbols in this alignment it may derive the pattern ‘A
B C D E F’. With the addition of some appropriate ID-symbols, this pattern
may serve like the pattern for ‘fever’ in Figs. 4 and 6: it represents a cluster of
symptoms that appears in two or more different diseases. Alternatively, this
pattern may represent the symptoms of a general class of diseases with two
variants represented by the two original patterns, modified so that the shared
cluster of symptoms are replaced by a pointer to the general class.

With regard to categories like the set of two alternative temperatures repre-
sented by the patterns ‘<t1> 38-39 </t1>’ and ‘<t1> 40+ </t1>’ in Fig. 4,
the SP system may derive this kind of disjunctive category in much the same
manner as the disjunctive class {‘b o y’, ‘g i r l’} in the example in Section
2.3.4.

3.12 Integration

The very simple format for representing knowledge described in Section 2.2 is
intended to be as nearly ‘universal’ as possible in the sense that it is designed
to represent a wide range of different kinds of knowledge. This should be
much more nearly true when the concept of pattern has been generalised to
two dimensions.
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In a similar way, the concept of multiple alignment described in Section 2.3 is
intended to be a ‘universal’ model for a wide range of different kinds of pro-
cessing: pattern recognition, information retrieval, various kinds of reasoning,
and so on.

To the extent that these two objectives can be realised, they should facilitate
the seamless integration of different kinds of application, including medical
diagnosis. It should, for example, be relatively easy to apply a natural language
interface to an SP system for medical diagnosis or to integrate the kind of
visual pattern recognition needed in the diagnosis of different kinds of skin
cancer with other kinds of medical expertise.

4 Comparison with alternatives

As mentioned in the introduction, a wide variety of philosophies and systems
have been applied to the problem of medical diagnosis. In this section, I briefly
review some of the more prominent of these approaches and compare them
with the SP approach, as described in this paper.

4.1 Rule-based systems

Rule-based systems (like the well-known MYCIN system [20]) contain if-then
rules where the ‘if’ side of any rule is a collection of one or more conditions for
the rule to fire connected by logical operators such as ‘AND’, ‘OR’ (which may
be inclusive or exclusive) and ‘NOT’. By contrast, the SP system expresses
all knowledge in the form of patterns.

At first sight, SP patterns lack the expressive power of if-then rules. But the
effect of such rules can be modelled within the SP system if that is required
[25,29]. And if medical diagnosis is viewed as a process of pattern recognition
(as in this paper), then SP patterns and the SP framework are, arguably, a
more natural and flexible medium for the representation and processing of
knowledge than are if-then rules.

To illustrate this last point, we can express the distinctive features of influenza
by a rule such as:

IF chills AND cough AND headache AND aching muscles AND runny nose AND sore throat

THEN influenza (probability = 0.9)

Although there may be a probability associated with the rule (as shown), the
rule has an intrinsic logic which, if strictly applied, means that the rule will

23



only fire if all the conditions are satisfied. By contrast, a pattern like the one
shown in column 3 of Fig. 6 may appear in the best alignment when any
reasonably large subset of its symbols have been matched.

If one attempted to achieve this kind of flexibility with an if-then rule using
combinations of AND, OR and NOT, the rule would become very complex.
Alternatively, one might split up the rule into a number of smaller rules, one
for each symptom or combination of two or three symptoms—but again the
result would be relatively complex.

4.1.1 Probabilities

In systems like MYCIN and some of its successors, the ‘probabilities’ that the
system calculates are really measures of confidence without the theoretical
underpinnings of probability theory. In other systems, “... formal approaches
based on probability theory are precise but can be awkward and non-intuitive
to use.” [11, p. 272]. By contrast, the SP framework allows true probabilities to
be calculated quite simply (see Section 3.7 and [26]) and strictly in accordance
with established theory (as described in sources such as [10]).

4.2 Neural networks

One of the attractions of artificial neural networks for the support of medical
diagnosis is that they can be trained with appropriate data, thus by-passing
the need for the manual compilation of knowledge by medical experts or knowl-
edge engineers. However, “A major drawback is that ‘knowledge’ embedded
[in the neural network] is cryptically coded as a large number of weights and
activation values. As a consequence, the lack of neural network validation
tools is often one of the reasons limiting their use in practice, especially in the
context of medical diagnosis where physicians cannot trust a system without
explanation of its decisions.” [5, pp. 141–142].

While there may be scope for extracting rules from a trained neural network
(ibid.), this adds complexity and uncertainty to the technology and defeats
the other main attraction of a neural network: as a classifier of specific cases
in terms of the learned knowledge.

As a system for unsupervised learning of knowledge structures from raw data,
the SP system is not yet a rival to existing neural network systems. However,
the system has clear potential for unsupervised learning and, if that potential
can be realised, the system has the advantage that its knowledge is stored in a
form that can be read and understood by people. Meanwhile, if it is supplied
with knowledge about diseases derived from experts or text books, it can be
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used for diagnostic classification of individual patients.

4.3 Fuzzy logic and fuzzy set theory

Given the variability of diseases and other uncertainties associated with med-
ical diagnosis (Section 3.6), the field of fuzzy logic (and fuzzy set theory) has
the obvious attraction that it has been designed with the explicit intention of
providing a model for ‘fuzzy’ concepts and ‘fuzzy’ operations on them (see,
for example, [12,8]).

In purely theoretical terms, the field of fuzzy logic may be criticised because
it introduces a fairly elaborate conceptual framework to accommodate the un-
doubtedly fuzzy nature of many human concepts but this conceptual frame-
work is poorly integrated with other ideas about the nature of human cog-
nition. By contrast, the SP theory grew out of research in psychology and it
provides a unified model for several aspects of human perception and cognition
[31].

Considerations of that kind may be discounted as not relevant to the practical-
ities of medical diagnosis. But in that connection fuzzy logic has the drawback
that it introduces another layer of complexity to the already difficult process of
eliciting knowledge from medical experts [4]. There seems to be some scope for
ameliorating this problem by the provision of appropriate tools (ibid.) but the
basic problem remains. By contrast, the SP system allows concepts to be ex-
pressed in a simple, intuitive manner and, at the same time, it accommodates
much, perhaps all, of the fuzziness of medical diagnosis.

4.4 Bayesian networks

Two of the main differences between Bayesian networks (see, for example,
[15]) and the SP system are:

• Bayesian networks focus on the binary relationship between any given node
in the network and each of its parent nodes (if any). In this respect, they
inherit some of the thinking behind if-then rules. By contrast, the SP sys-
tem is oriented towards the representation and processing of associations
(expressed as patterns) that may contain arbitrarily many elements.

• Correspondingly, any given Bayesian network stores its statistical knowledge
in the form of tables of conditional probabilities, one for each node in the
network. By contrast, the SP system stores its statistical knowledge in the
form of integers, one for each pattern, representing the absolute or relative
frequency of that pattern in some domain.
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These and related differences seem to underlie some of the apparent drawbacks
of Bayesian networks compared with the SP framework:

• The directional nature of Bayesian networks does not sit easily with the
non-directional nature of medical syndromes.

• The process of calculating probabilities of inferences in a Bayesian network
is substantially more complicated than the calculation of probabilities for
alignments and inferences in the SP framework.

• The tables of conditional probabilities required for Bayesian networks are
significantly more complex than simple measures of frequency that are used
in the SP system. Notwithstanding the development of special methods for
eliciting conditional probabilities from experts [22], the process of build-
ing up the necessary tables of conditional probabilities is likely to be much
harder than measuring or estimating an integer value for each disease, re-
flecting its absolute or relative frequency in a given domain.

4.5 Case-based reasoning

A major attraction of case-based reasoning in medical diagnosis (see, for exam-
ple, [19,1]) is that, compared with many of the alternatives, it can considerably
simplify the process of acquiring the necessary knowledge. In its simplest form,
a case-based system merely requires a description of one or more specific ex-
amples of each disease and a search algorithm that can find exact matches
or good partial matches between the symptoms of a given patient and one or
more of the stored records.

In some respects, the SP system is like a case-based system and it could
indeed be used like a case-based system. To use it in this way, each of the Old
patterns should represent a specific case (including its diagnosis) and the New
pattern or patterns should represent the symptoms of a patient for whom a
diagnosis is required. The capabilities of the system for finding exact matches
and good partial matches between patterns will allow it to retrieve patterns
for previously-diagnosed cases that are similar to any given current case.

The main advantages of the SP system compared with the case-based approach
to diagnosis are:

• It facilitates the description of diseases in generalised terms without the need
to specify exact values for every category of symptom. In our main example,
we saw how the temperature of a patient with a disease like influenza may be
specified as a range of alternative values (Section 3.6). Any other category
of symptom may be treated in the same way.

• It allows one to specify clusters of symptoms that are found in two or
more different diseases and it allows one to describe diseases at two or
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more levels of abstraction (Section 3.10). Both of these things facilitate the
description of diseases without the need to repeat information unnecessarily
where similar patterns are found in different diseases or varieties of disease.

5 Conclusion

As we have seen, the SP system accommodates the main elements of medical
diagnosis, viewed as a problem of pattern recognition, and there are reasons
to believe that it may also provide support for causal reasoning in medical
diagnosis. However, the SP62 model is only a prototype that serves for research
and demonstration. It is not yet a system with ‘industrial strength’. The main
developments that are needed to reach that goal are:

• The provision of a well-designed graphical user interface.
• There is probably scope for improvements in the search methods that are

used within the system.
• There is scope for the application of parallel processing both to improve

the scaling properties of the system (Section 2.3.5) and to increase absolute
speeds of processing.

• Naturally, the system needs to be provided with appropriate knowledge.
For each area of application, a set of patterns needs to be developed that
describes the diseases and symptom clusters in that domain.

• At some stage after the development of a realistic knowledge base, the per-
formance of the system must be validated against the judgement of human
medical experts.

The potential payoff from these developments is a system that allows knowl-
edge about diseases to be expressed in a simple, intuitive manner, that can
cope with errors and uncertainties in knowledge about diseases and knowledge
about individual patients, that simplifies the acquisition and storage of statis-
tical information, that calculates true probabilities of diagnoses, that smooths
the path to the automatic or semi-automatic abstraction of medical knowledge
in the future, and should facilitate the integration of medical diagnosis with
other kinds of application.
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