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Hemodynamic factors, induced by pulsatile blood flow, play a crucial role in vascular health
and diseases, such as the initiation and progression of atherosclerosis. Computational fluid
dynamics, finite element analysis, and fluid-structure interaction simulations have been
widely used to quantify detailed hemodynamic forces based on vascular images
commonly obtained from computed tomography angiography, magnetic resonance
imaging, ultrasound, and optical coherence tomography. In this review, we focus on
methods for obtaining accurate hemodynamic factors that regulate the structure and
function of vascular endothelial and smooth muscle cells. We describe the multiple steps
and recent advances in a typical patient-specific simulation pipeline, including medical
imaging, image processing, spatial discretization to generate computational mesh, setting
up boundary conditions and solver parameters, visualization and extraction of
hemodynamic factors, and statistical analysis. These steps have not been
standardized and thus have unavoidable uncertainties that should be thoroughly
evaluated. We also discuss the recent development of combining patient-specific
models with machine-learning methods to obtain hemodynamic factors faster and
cheaper than conventional methods. These critical advances widen the use of
biomechanical simulation tools in the research and potential personalized care of
vascular diseases.

Keywords: computational fluid dynamics (CFD), finite element analysis, fluid-structure interaction (FSI), patient-
specific analysis, image-based simulation

INTRODUCTION

Hemodynamic factors, the stress and strain induced by pulsatile blood flow at the surface and body of
a blood vessel, play a crucial role in vascular health and diseases mainly by altering the structure and
functions of endothelial and smooth muscle cells. Among the hemodynamic factors, wall shear stress
(WSS), the viscous shear applied to the endothelial cells due to blood flow, has been studied the most.
Endothelial cells respond toWSS via a variety of mechanotransduction pathways (Davies, 1995; Chiu
and Chien, 2011; Ando and Yamamoto, 2022; Tanaka et al., 2021). Cell-culture and animal studies
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have shown that different flow patterns trigger different
endothelial responses. Generally, unidirectional flow is
protective against atherosclerosis and neointimal formation,
while complex, multidirectional flow is atherogenic and turns
endothelial cells to become pro-inflammatory (Chiu and
Chien, 2011). Complex, disturbed flow generates temporal
and spatial gradients in luminal and wall hemodynamic
parameters due to pulsatility in a cardiac cycle and the
curvature, branches, and other geometric irregularities of
the vasculature.

To understand the effects and mechanisms of hemodynamic
factors on vascular structure and function, we first need to
delineate the detailed in vivo three-dimensional (3D) blood
flow characteristics and quantify the values of the
hemodynamic forces. These data, however, cannot be obtained
from analytical solutions of governing equations due to the
irregular, complex geometry of the vasculature. Fortunately,
with the rapid advancement of medical imaging and
computational methods and power, computational fluid
dynamics (CFD), finite element analysis (FEA), and fluid-
structure interaction (FSI) simulations can be readily adopted
and have been widely used to obtain a detailed flow field using
vascular images obtained from computed tomography
angiography (CTA), magnetic resonance imaging (MRI),
ultrasound, intravascular ultrasound (IVUS), optical coherence
tomography (OCT), and other imaging modalities. Values of the
hemodynamic forces can then be derived using the detailed
flow field.

Biomechanical simulations using patient-specific anatomical
and physiological data have been applied to study atherosclerosis
in coronary (Abbasian et al., 2020; Guvenir Torun et al., 2021),
carotid (Bennati et al., 2021), cerebral (Tanoue et al., 2011), and
femoral (Wood et al., 2006) arteries; thoracic (Boccadifuoco et al.,
2018a) and abdominal (Taylor et al., 1998) aortas; aortic
aneurysms (Mariotti et al., 2021) and dissections (Cheng et al.,
2014); cerebral aneurysms (Bazilevs et al., 2010); pulmonary
arterial hypertension (Zambrano et al., 2018); bypass grafts
(Sankaran et al., 2012), and arteriovenous fistulas for
hemodialysis (He et al., 2013). In addition to research, CFD
simulations have also been used clinically to derive the coronary
fractional flow reserve values in stenotic coronary arteries from
CTA images, avoiding invasive coronary angiography (Min et al.,
2015). We will review the multiple steps that are generally
followed in these simulations (Figure 1). Despite the great
progress in the last 2 decades, some challenges still exist, and
verification and validation must be performed to assess the
simulation results (Tang et al., 2014). The emerging and
exciting application of machine-learning techniques to
biomechanics simulations will also be reviewed. Image-based
biomechanical simulations have also been used to investigate
the responses of vascular tissues to and predict the outcomes of
the endovascular procedures, such as stenting of stenotic arteries
and stent-grafting of aortic aneurysms and dissections (Auricchio
et al., 2011; Hemmler et al., 2019; Raptis et al., 2019). Simulations
of the interactions of these implants with blood vessels are further
complicated by the implants and not reviewed here. Our current

FIGURE 1 | Pipeline of a typical image-based vascular CFD/FEA simulation. CFD, computational fluid dynamics, FEA, finite element analysis, PC MRI, phase-
contrast magnetic resonance imaging, WSS, wall shear stress.
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review can be complemented by other reviews of image-based
computational cardiovascular biomechanics (Thondapu et al.,
2017; Zhong et al., 2018; Liang et al., 2019; Cameron et al., 2020;
Carpenter et al., 2020; Lipp et al., 2020; Lopes et al., 2020; Ong
et al., 2020; Thiyagarajah et al., 2022).

PIPELINE OF IMAGE-BASED
COMPUTATIONAL BIOMECHANICAL
SIMULATIONS
Imaging the Lumen
Imaging is performed to obtain the anatomical (lumen and wall)
and physiological (flow) data of blood vessels that are needed for
patient-specific biomechanical simulations. CTA and MRI have
been the most popular modalities for vascular lumen imaging.
During a spiral CTA scan, a narrow beam of x-rays is aimed at a
patient and quickly rotates around the patient when the table on
which a patient lies moves, producing signals that are collected by
detectors opposite to the x-ray source and processed by a
computer to generate cross-sectional images or slices of the
body. These slices can then be digitally stacked together to
form a 3D image of the patient. Multi-detector CTA uses
iodinated contrast agents to enhance the vascular lumen for a
quick, high-resolution scanning of the vasculature’s 3D geometry.
For example, the spatial and temporal resolutions of the GE CT
scanner can be 0.28 mm and 0.24 s, respectively. However,
exposure to ionizing X-ray radiation, the risk of acute kidney
injury from using contrast agents, and artifacts from nearby bone
and metal implants are the main downside of CTA (Kim et al.,
2010).

MRI uses a very strong magnetic field (typically, 1.5–3.0 T for
clinical scanners) and radio frequency waves to create detailed
images of the organs and tissues. The main magnetic field
polarizes the magnetic spins of hydrogen nuclei. The radio
frequency system excites the sample and detects the resulting
MR signal, whose location is determined from the gradient coil
system. The contrast between different tissues is determined by
the rate at which excited hydrogen nuclei return to the
equilibrium state. MRI allows for non-invasive tissue
characterization because of its dependence on a variety of

physical and chemical characteristics of the tissue, such as
physical state, molecular motion, diffusion, chemical
composition and concentration, and water content (Pooley,
2005). Through the technique of time-of-flight or double
inversion recovery, the 3D lumen geometry can be obtained
from MRI without using a contrast agent. For vasculature with
complex blood flow, such as an arteriovenous fistula, the dark-
blood images obtained by the double inversion recovery
technique have a better quality than the white-blood images
obtained by the time-of-flight technique, which is more
susceptible to complex recirculating flows (Figure 2). Similar
to CTA, MR angiography (MRA) can be enhanced using contrast
agents, but without the risk of ionizing radiation.

Imaging the Wall
The anatomical and compositional data of blood vessel walls and
atherosclerotic plaques are also crucial components for studying
vascular diseases and biomechanical simulations. Even though
CT does not have an adequate contrast to differentiate vascular
wall from adjacent perivascular tissues, it is commonly used for
vascular calcification imaging because of the intrinsically higher
signal intensity of calcium in CT. MRI is more versatile than CT.
A variety of MRI techniques have been developed to non-
invasively characterize vascular morphology and composition
of atherosclerotic plaques, such as lipid core, fibrous cap,
calcification, normal media, hemorrhage, and adventitia (Gold
et al., 1993; Martin et al., 1995; Toussaint et al., 1996; Hatsukami
et al., 2000). However, the spatial resolution of current clinical
MRI scanners is limited (approximately 0.3 mm in-plane
resolution with zero-filling interpolation at best) (He et al.,
2013), and the thin fibrous cap (<65 μm), which is a crucial
characteristic for the high-risk atherosclerotic plaque, cannot be
clearly identified.

IVUS and OCT have been used to identify the components of
the vascular wall at a higher spatial resolution, but they are
invasive (Mantella et al., 2021). IVUS is a catheter-based
procedure used to visualize the inside of a blood vessel in real
time. Radiofrequency ultrasound waves, usually in the
30–60 MHz range, are emitted from the transducer at the
catheter tip, and the return echo is also received by the
transducer and conducted to an external computerized

FIGURE 2 |Magnetic resonance imaging of an arteriovenous fistula. (A)Maximal intensity projection of white-blood time-of-flight (TOF) images. At the anastomosis
(the gray region pointed by a yellow arrow), the signal is void due to complex flow. (B) An example of the TOF slice close to the anastomosis (enclosed by the red ellipse)
where the lumen is not clearly defined. (C) The black-blood image shows the lumen of the fistula vein and artery clearly (the black regions pointed by yellow arrows).
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equipment to construct and display ultrasound images of a thin
cross-sectional slice of the blood vessel. Virtual histology-IVUS,
through spectral analysis of IVUS backscatter signals, can reveal
the fibrous, fibro-fatty, necrotic-core, and dense-calcium regions
of a plaque (Nair et al., 2002; Nair et al., 2007; Campos et al.,
2015). However, even with a higher resolution (65–150 μm) than
MRI, IVUS still cannot adequately measure the thickness of a thin
fibrous cap.

Intravascular OCT has a higher resolution than IVUS. It
utilizes back-scattered infrared light to generate high-speed
and high-spatial-resolution (10–20 μm) images of blood
vessels after using a contrast flush to clear the intraluminal
blood (Shimamura et al., 2021). It can measure the thickness of
a thin fibrous cap more accurately and identify the plaque
composition (Brezinski et al., 1996; Roleder et al., 2015).
However, OCT has a limited penetration depth through
blood vessels, so the overall plaque burden cannot be
measured. Taking the advantages of both IVUS (deep
penetration) and OCT (high spatial resolution) by
combining the two imaging modalities seems favorable and
has been increasingly used (Li et al., 2014; Guo et al., 2018; Guo
et al., 2021; Lv et al., 2021). The development of other hybrid
intravascular imaging modalities, such as near infrared
spectroscopy-intravascular ultrasound (NIRS-IVUS), further
improves vascular wall imaging. NIRS can detect lipid
composition by analyzing the near-infrared absorption
properties of atherosclerotic plaques. A thorough discussion
of hybrid intravascular imaging modalities can be found in
Bourantas et al. (2017) and Kubo et al. (2022).

Imaging the Flow
Compared to CTA, MRI also has the advantage of obtaining
blood flow data using a phase-contrast sequence in either two
dimensions (2D) or 3D. In 2D single-directional phase-contrast
MRI, the through-plane velocity is measured by aligning the
imaging plane perpendicular to the axis of the imaged blood

vessel, assuming that the blood velocity is along the axial
direction. The maximum intensity projection of time-of-
flight images can be used to place the imaging plane. The
velocity is encoded in the phase images using a velocity
encoding value, which is the maximum velocity that can be
measured without a phase-wrap artifact. When the phase-wrap
artifact appears (Figure 3), the velocity encoding value needs
to be increased. The flow rate can then be extracted from the
phase and magnitude images using the free package Segment
(Medviso AB, Lund, Sweden) (Bidhult et al., 2019) or other
software. The magnitude images are used to define the lumen
of imaged vessel. If the phase-wrap artifact is not severe, it can
be corrected conveniently in Segment by unwrapping the
affected pixels. When flow rates at several locations are
needed, the scan must be repeated at each location, which is
time consuming and burdensome to the patient and increases
the possibility of patient-movement artifacts.

In the case of multi-directional flow measurement, four
dimensional (4D, which is 3D in space plus time) phase-
contrast MRI has been increasingly used to obtain time-
resolved complex pulsatile blood flow velocities in three
orthogonal directions within an acquired 3D volume (Markl
et al., 2014; Azarine et al., 2019). Although a contrast agent is
not required for phase-contrast MRI, the use of a contrast agent
enhances the signal-to-noise ratio in the magnitude images and
reduces noise in phase images, compared to scans without a
contrast agent (Bock et al., 2010). Streamlines and velocity vectors
can be used to visualize changes in blood flow pathways directly
from the image data. In addition to visual flow analysis, one
advantage of 4D flow MRI is that by post-processing the original
data, flow rate through any plane across the volume can be
obtained retrospectively. Therefore, when choosing the
imaging plane orthogonal to the vessel axis is challenging, the
number of measurement sites is large, and geometry of the
vasculature is complex, 4D flow MRI is more accurate in flow
rate quantification than 2D phase-contrast MRI by placing the

FIGURE 3 | Phase-contrast magnetic resonance images of an arteriovenous fistula. The magnitude image (A) is used to draw a region of interest (ROI-1) for the
proximal artery (enclosed by the blue circle), which may have very high flow velocity. In this case, the velocity encoding value, 250 cm/s, was not big enough, causing a
phase-wrap artifact shown by the white pixels within the ROI-1 in the phase image (B).
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measurement plane at the locations where helical or vortical flow
does not exist or is mild.

In addition to MRI, duplex Doppler ultrasonography (DUS)
is also commonly used to obtain blood flow data in peripheral
vasculature. In DUS, an imaging sample volume (gate) is usually
placed at the middle of the vessel to obtain the maximal velocity
spectrum. In commercial ultrasound scanners, to derive the flow
rate from the maximal DUS velocity spectrum, a parabolic
velocity profile across the lumen is assumed, resulting in the
mean velocity being half of the maximal velocity across the
lumen based on the Poiseuille flow theory, which is only
applicable to steady laminar flow in an infinitely long
straight circular tube. However, arterial blood flow is
pulsatile, and the velocity profile across the lumen depends
on the Womersley number α (α � R

����
ρω/μ

√
, where R is the

lumen radius of the blood vessel, ρ is the blood density, ω is the
angular frequency of blood flow pulsation, and µ is the blood
dynamic viscosity) (Womersley, 1955). Consequently, a more
accurate algorithm than that assuming a parabolic velocity
profile has been developed by using the Womersley number
to adjust the relationship between the mean and maximal
velocities across the lumen (Ponzini et al., 2006). Of note,
the Womersley velocity profile also depends on the
assumption of a straight circular vessel. Therefore, an effort
should be taken to choose a relatively straight circular segment
of the blood vessel to measure flow rate. A more accurate lumen
diameter measurement using a perpendicular cross-sectional
view may also improve the flow rate measurement (He et al.,
2018).

Lumen and Wall Geometry Reconstruction
Image segmentation, i.e., extracting lumen and wall configuration
from medical images, is one of the key steps for image-based
computational biomechanics. The methods of segmentation
depend on the imaging modality and image quality and can
be manual, semi-automatic, or automatic. For images obtained by
CTA and MRA using contrast agents, the image quality of the
lumen is generally high, and implicit deformable models and level
set methods can be used to extract the lumen quickly by
specifying a few seed points in the images to define the region
of interest (Antiga et al., 2008a). This family of methods uses
spatial variation in image intensity, rather than absolute intensity,
and is more robust than image intensity threshold-based
methods. However, for time-of-flight and black-blood MRI,
the image quality of the lumen also depends on the flow
characteristics and is lower at the region with disturbed flow.
In this case, manual delineation of blood vessels may be needed,
even though this process is time consuming and the results are
user dependent. Furthermore, the slice thickness of MR images
may be ≥2 mm, which causes the reconstructed surface to become
non-smooth at the region with a high curvature or large diameter
changes along the length of the vessel. In the Amira software
(Thermo Fisher Scientific, Waltham, MA), interpolation of
segmented original slices to decrease the slice thickness may
improve surface quality without increasing the workload of
segmentation. Other software tools also may be considered,
and users should find a tool that best suits their projects.

Because of the many options of MRI sequences and complex
atherosclerotic plaque compositions, segmentation and image
analysis of MRI data can be complicated and require special
training (Kerwin et al., 2017). The vascular wall as a whole can be
semi-automatically segmented from black-blood images with an
adequate quality using deformable contour based on the initial
inner and outer outlines manually drawn (Ladak et al., 2001).
Different plaque components based on multi-contrast MRI can
also be semi-automatically (Liu et al., 2012) or automatically
(Adame et al., 2004) identified.

Virtual histology-IVUS offers automatic component
identification and segmentation. Automatic or computer-aided
plaque component identification, segmentation, and
quantification have also been developed for OCT images
(Athanasiou et al., 2014; Athanasiou et al., 2018; Guo et al.,
2019; Lee et al., 2020). The impact of automated characterization
of mixed plaque components in complex atherosclerotic lesions
has also been evaluated recently (Olender et al., 2022).
Reconstruction of a 3D vascular model from 2D IVUS and
OCT slices need special consideration because of the 2D
nature of these images. Reconstruction by fusing IVUS or
OCT and biplane angiography or CTA images has been
developed and used in clinical studies (Slager et al., 2000;
Bourantas et al., 2005; van der Giessen et al., 2010; Samady
et al., 2011; Wang et al., 2015b; Guo et al., 2018). Anatomical
landmarks visible in both IVUS or OCT and angiography or CTA
images are commonly used to estimate the orientation of the
IVUS or OCT slices to facilitate the generation of the 3Dmodel. A
comprehensive review of the image data fusion methodologies
has been published recently (Kilic et al., 2020).

Meshing
The volumes of reconstructed lumen and wall need to be divided
into small discrete elements, within which governing differential
equations are solved. A high-quality mesh is a prerequisite for
accurate simulation results. When creating a mesh, there are two
main concerns, namely, the computational cost and the accuracy
of simulation. A finer mesh gives more accurate results but
requires more computational resources and time. Therefore, a
common goal of meshing is to use less elements while achieving
an acceptable accuracy. Due to the irregular and often
complicated geometry of the vascular lumen reconstructed
from medical images, an unstructured mesh is commonly
used. When WSS is the target, which is often the case, a finer
mesh at the blood-wall boundary, prismatic inflation layers, is
required. To fill the rest of the lumen, hexahedral elements at the
core can be created to reduce the number of elements if possible.
Otherwise, tetrahedral elements in the core are generated. Since
blood flow is more complex at the curved region and thus requires
a finer mesh, a meshing algorithm using the local curvature to
refine the mesh is advantageous if available. In Ansys Meshing,
this is realized by adjusting the settings of the Curvature Size
Function. Other software tools also may be considered, and users
should find the details of the methods. In addition to more
conventional tetrahedral and hexahedral mesh, polyhedral
mesh has been demonstrated to be better than tetrahedral
mesh in reducing the number of elements, reaching
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convergence faster, and achieving WSS patterns that have less
artifacts and thus are more homogeneous (Spiegel et al., 2011). To
ensure an adequate mesh is created, a mesh-independence
analysis should be performed based on the most important
parameters in question, which are WSS parameters in most
cases. The grid convergence index is recommended for the
uniform reporting of grid refinement studies (Roache, 1994).

Meshing of the wall with advanced atherosclerotic plaques
may be challenging due to the complex and irregular geometries
of the different components. A component-fitting technique has
been developed to generate mesh that can overcome this
challenge (Yang et al., 2009). Using this technique, the 3D
plaque components are divided into multiple small volumes to
cover the irregular plaque geometry; a mesh for each volume is
then generated. This approach is, however, labor intensive. More
sophisticated and automatic mesh generation techniques have
also been developed using an octree-based isocontouring method
(Zhang et al., 2010).

Mechanical Properties
CFD/FSI simulations of blood flow require blood viscosity. The
viscosity of whole blood varies with the hematocrit, leukocyte and
platelet counts, plasma protein composition and concentration,
as well as the shear rate. At least 15 non-Newtonian blood
rheological models have been proposed to take into account
the shear-thinning property (Abbasian et al., 2020). These
models have different popularity; the Casson, Carreau,
Carreau-Yasuda, power-law, and Quemada models are mostly
used. When the shear rate is above 100 s−1, blood behaves
similarly to a Newtonian flood.

FSI simulations of blood flow require mechanical properties of
blood vessel wall. Since blood vessels have complex, nearly
incompressible, non-homogeneous, anisotropic, non-linear,
and viscoelastic (creep, stress relaxation, and hysteresis)
material behaviors, it is very difficult, if not impossible, to
obtain the in vivo material parameters describing these
behaviors. In vivo, ex vivo, in vitro, and in silico methods have
been used to characterize these behaviors and derive purely
phenomenological or structure-motivated constitutive models
that hold only under specific conditions of interest (Holzapfel
and Ogden, 2010).

Pulse wave velocity has been measured by tonometry,
Doppler, or oscillometry to quantify arterial stiffness in vivo
by many studies because its measurement is minimally
invasive and inexpensive, but it only offers a single average
value for the artery segment between the measuring sites,
neglecting any regional variation and perivascular tethering
effects (Hodis and Zamir, 2011). Medical imaging techniques
have been used to obtain vascular mechanical properties. But
since the in vivo clinical images only represent the physiologically
loaded states, inverse FEA approaches, which could be used to
obtain the unloaded configuration, are needed for in vivomaterial
parameter identification. Therefore, medical images obtained
from various imaging modalities have been combined with
inverse FEA to derive in vivo vascular mechanical properties.
For example, the in vivo aortic elastic properties of ascending
thoracic aortic aneurysm have been identified from gated CT

scans using an inverse approach (Liu et al., 2019a). An iterative
procedure has also been developed to identify coronary artery
mechanical properties by matching both maximum and
minimum in vivo Cine IVUS lumen circumferences (Guo
et al., 2017; Wang et al., 2021). Also using inverse FEA, the
mechanical properties of infrarenal abdominal aorta and its peri-
aortic structure have been assessed using displacement encoding
with stimulated echoes (DENSE) MRI (Bracamonte et al., 2020).
However, some assumptions were made when using inverse FEA.
For example, the diastolic configuration was treated as the zero-
strain reference, and the aortic wall was commonly assumed to be
homogeneous (Bracamonte et al., 2020). Inverse FEA methods
with more realistic conditions are needed. Recently, to overcome
the previous limitation of homogenized or simplified material
representations, an inverse FEA approach was developed to
derive non-linear material properties of heterogeneous
coronary plaque components using OCT imaging data
acquired at differing pressures by incorporating interfaces
between various intra-plaque components into the objective
function (Narayanan et al., 2021). The importance of
including multi-material plaque components has also been
demonstrated by the greatly varied lesion mechanical
responses (Kadry et al., 2021).

Due to their large size and a propensity for aneurysm
formation and wall dissection, aortic tissues have been most
extensively studied ex vivo (Di Martino et al., 2006; Vande
Geest et al., 2006; Cebull et al., 2020; Jadidi et al., 2020).
Uniaxial and biaxial tensile tests of explanted tissue strips
from patients demonstrate that aortic tissues are stronger and
stiffer in the circumferential than axial direction (Sokolis et al.,
2012; Pichamuthu et al., 2013; Jadidi et al., 2021a). This behavior
is due to preferential alignment of collagen fibers in the
circumferential direction. Since a single elastic modulus value
is inadequate to describe the non-linear behavior in the whole
range of deformation, various forms of strain energy density
functions based on deformation invariants are used to describe
arterial hyperelastic behaviors under large deformation.
Exponential and polynomial strain energy density functions
are the most popular. Some constitutive models have also been
developed to reflect the microstructural data, especially the
directions of collagen fibers obtained from various optical
microscopic imaging techniques (Holzapfel et al., 2000; Gasser
et al., 2012; Jadidi et al., 2021b).

Boundary Conditions
Appropriate boundary conditions define the effect of the
truncated vasculature and perivascular tissues within the
simulated domain and are the key to obtaining accurate
simulation results (Campbell et al., 2012; Gallo et al., 2012; Xu
et al., 2018). Boundary conditions are needed at all the inlets and
outlets. Ideally, patient-specific simulations require known
velocity and blood pressure profiles at all nodes of the inlets,
outlets, and wall. The velocity and flow rate can be acquired by
MRI and ultrasound non-invasively. Accurate blood pressure
measurement at specific locations, however, requires
intravascular access by a pressure transducer and is usually
unavailable. Except 4D flow MRI measurement, the 3D
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velocity profiles at the inlets are unknown using other modalities.
Therefore, it is common to apply the average velocity (plug flow)
obtained by dividing the flow rate with the cross-sectional area at
the added, extended straight inlet to achieve a fully developed
flow at the location of the original inlet, but this approach may be
problematic as actual flow may be skewed at the inlets that have a
significant curvature and geometric irregularity. When 4D MRI
velocity data are available, it is better to specify the velocity
component at each direction at the inlet directly than to assume
idealized velocity profiles derived from the measured flow rate
(Morbiducci et al., 2013).

When patient-specific data are not available, several strategies
have been devised to achieve reasonable results. Setting a zero
pressure at multiple outlets has been used, but it is not a good
practice because it may fail to reproduce physiologically relevant
flow and pressure features (Pirola et al., 2017; Chnafa et al., 2018).
Using typical or population-averaged flow rates and waveforms is
common, but still not ideal because of the heterogeneity among
patients. Alternatively, since lumen area or diameter data are
more readily available from non-invasive clinical images, the inlet
flow rate and flow split through branches can be estimated using
lumen area or diameter data and various scaling laws, such as
Murray’s law based on minimum energy theory (Murray, 1926),
or developed from measured data (Cebral et al., 2008; van der
Giessen et al., 2011; Tricarico et al., 2020). In CFD simulations
assuming a rigid wall, the velocity boundary condition at the wall
is generally set as no-slip or zero-velocity.

In FSI simulations, blood pressure is important for accurate
wall stress and strain results. When blood pressure is not
available, lumped-parameter Windkessel models representing
the impedance of truncated downstream vasculature can
provide reasonable pressure values when the flow and
parameters of the Windkessel models are appropriate
(Westerhof et al., 2009; Pirola et al., 2017). However, patient-
specific Windkessel parameters require patient-specific pressure
and flow waveforms, which are not available in this case.
Assumptions must be made to use Windkessel parameters
obtained from other sources. As a way of considering the
compliance, resistance, and especially wave reflection of the
downstream truncated vasculature, an elastic tube terminated
with a rigid contraction has been added to the outlet as a part of
the computational domain (Pahlevan et al., 2011).

For structural analysis, the constraints at the nodes of the inlets
and outlets differ among studies. In some studies, the
translational motion was fixed while rotational motion was
unconstrained for the nodes at the inlet and outlets (Nathan
et al., 2011; Gomez et al., 2021), but the end nodes did not have
any moving freedom (Pasta et al., 2013). In another study, nodes
at the proximal end were allowed to deform only in the radial
direction, while the distal ends were fixed in all directions (Martin
et al., 2015).

Blood vessels are constrained radially by the surrounding
perivascular tissues, and this constraint reduces the
distensibility and intramural stress of an artery (Vonavkova
and Horny, 2020), but it is a challenge to prescribe the in vivo
perivascular boundary conditions. Although many studies simply
ignore the perivascular constraint, some studies have attempted

to model it. In one study, the radial constraint was quantified as
an effective perivascular pressure applied to the outer surface of
adventitia, which could be ≥50% of the intravascular pressure
(Liu et al., 2007). In another study, the effect of the perivascular
tissue was applied as an effective pressure waveform at the
external wall of carotid arteries (Soleimani et al., 2021) or
modeled as a heterogeneous elastic foundation boundary
condition, which was implemented as a collection of
unidimensional springs attached to the adventitial surface
(Bracamonte et al., 2020).

Solution Strategies
Depending on the study objectives, a few software packages can
be chosen to solve the governing differential equations of blood
flow and vessel wall deformation. The common packages use
finite volume (Ansys Fluent and CFX, Siemens STAR CCM+,
OpenFoam) or finite element (COMSOL, SimVascular, Crimson)
methods for CFD; FEA (Ansys Mechanical, Simulia Abacus,
SimVascular) for structural wall stress analysis; Arbitrary
Lagrangian-Eulerian (ALE) formulation (Adina, SimVascular,
Simulia Abacus) or coupling the CFD and FEA solvers (Ansys
Workbench) for FSI. If the focus is on hemodynamics, not
detailed structural stress and strain distributions, the coupled
momentummethod is an efficient alternative to ALE formulation
(Figueroa et al., 2006). In this method, wall deformation is
assumed to be small; therefore, the fluid mesh is not updated.
The vessel wall is based on a membrane model. This simplified
method yields valid results in cases where the assumptions of
small deformation and thin walls are indeed valid.

Several choices need to be made to balance the computational
effort and accuracy. High-order numerical schemes and
appropriate time-step size and residual errors should be used
in addition to an appropriate mesh size (Khan et al., 2015; Dennis
et al., 2017). Laminar flow is commonly assumed for most blood
flow under physiological conditions, but transition to turbulence
may occur in normal aorta (Ha et al., 2018), aorta with aortic
valve stenosis (Manchester et al., 2021), stenotic arteries (George
et al., 2008; Lantz et al., 2013; Andersson et al., 2017), intracranial
aneurysms (Valen-Sendstad et al., 2011), and arteriovenous grafts
(Lee et al., 2007) or fistulas (Stella et al., 2019). It has been
demonstrated that flow instability can only be revealed under
high spatial and time resolutions (Baek et al., 2010; Valen-
Sendstad and Steinman, 2014). In the studies of turbulent
blood flow, traditional Reynolds-averaged Navier–Stokes
(RANS) equations-based turbulence models (k–ε and k–ω)
(George et al., 2008; Perinajová et al., 2021), large eddy
simulation (LES) (Lantz et al., 2013; Andersson et al., 2017;
Stella et al., 2019; Manchester et al., 2021) and direct
numerical simulation (DNS) (Lee et al., 2007; Valen-Sendstad
et al., 2011; Arzani et al., 2012) have been used. LES directly
resolves large-scale, at the size of mesh grid, velocity fluctuations.
It incorporates the dissipative energy loss induced by turbulent
eddies at the sub-grid level and can therefore model laminar,
transitional, and turbulent features, which may all be exhibited in
the different phases of the pulsatile blood flow during a cardiac
cycle. Because DNS directly solves Navier–Stokes equations
numerically for the scales of all turbulent eddies without using
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any turbulence model, it requires much more number of mesh
elements and computational resources and time than LES and is
thus seldom used for complex blood flow simulations.

Image-based FEA wall stress analysis of blood vessels needs
special treatment of the vascular geometry because the geometry
obtained from medical images has a deformed configuration by
intraluminal pressure and axial stretch. Blood vessels are
stretched circumferentially, radially, and axially at the in vivo
loaded state. In addition, there are residual stresses and strains
even under the unloaded state (Chuong and Fung, 1986).
However, the ideal reference configuration for FEA requires
zero stresses and strains everywhere within blood vessels.
Therefore, the in vivo vessel geometry needs to be shrunk
circumferentially or radially and axially to obtain its unloaded
state, which then needs to be numerically cut open radially to
release the residual stresses and strains to obtain the ideal
reference configuration. The ex vivo images of carotid arteries
at a unloaded state have been stretched axially and
circumferentially to match the in vivo MRI images in FSI
simulations (Huang et al., 2009). However, the ex vivo
unloaded state is unavailable in most patient-specific
simulations. Therefore, various methods have been developed
to drive the unloaded or stress-free configuration from the
geometry obtained from in vivo clinical images. Assuming
known material properties, these methods either 1) estimate
the pre-stress field on the in vivo configuration, then
depressurize the FE model to obtain the unloaded geometry
(Gee et al., 2010; Weisbecker et al., 2014; Maas et al., 2016); 2)
estimate the unloaded configuration by adjusting an initial
geometry and running forward FE simulations (Raghavan
et al., 2006; Bols et al., 2013; Riveros et al., 2013); or 3) use an
inverse FE formulation (Lu et al., 2007). These methods require
many FE iterations to converge and are therefore time
consuming.

Biomechanical Parameter Extraction and
Statistical Analysis
To quantify WSS’s magnitude, multi-directionality, and
pulsatility, the parameters that are most commonly
extracted to characterize the local flow conditions
experienced by endothelial cells at the vessel wall include
time-averaged WSS magnitude over a cardiac cycle
(TAWSS), maximum WSS within a cardiac cycle
(WSSmax), oscillatory shear index (OSI) (He and Ku,
1996), relative residence time (RRT) (Himburg et al., 2004),
WSS spatial and temporal gradients, axial WSS (WSSax), the
secondary component of WSS (WSSsc), ratio of WSSsc to
WSSax, transverse WSS (TAWSStrans), and cross-flow index
(CFI) (Colombo et al., 2021). WSSax is the WSS component
aligned with the tangent to the vessel centerline, while WSSsc
is the other component of WSS in addition to WSSax
(Morbiducci et al., 2015). TAWSStrans is the average over
the cardiac cycle of WSS components perpendicular to the
temporal mean WSS vector (Peiffer et al., 2013b). CFI is the
normalized TAWSStrans by the WSS magnitude (Mohamied
et al., 2017). Note that depending on the geometry, the

temporal mean WSS vector at a location does not
necessarily align with the direction tangent to the vessel
centerline.

A recent promising advance is the development and
application of an Eulerian method for obtaining WSS vector
field topological skeleton that has a strong link with features of
disturbed flow, such as flow separation, stagnation, impingement,
and reversal (Mazzi et al., 2020; Mazzi et al., 2021). Based on the
dynamical system theory, the WSS topological skeleton consists
of fixed points where the WSS value is zero and manifolds that
link the fixed points. In the blood flow field, the stable or unstable
manifolds identify regions where the WSS vector exerts an
expansion or contraction action on the endothelial cells that
are potentially important for developing vascular diseases. The
cycle-averaged WSS topological skeleton also relates to the fluid-
phase mass transport of solutes near the wall (Arzani and
Shadden, 2018). Clinically, high temporal variation of WSS
contraction or expansion and high fixed-point residence times
weighted by WSS contraction or expansion strength at 1 month
after endarterectomy have been found to predict long-term
carotid bifurcation intima-media thickness, independently
from the exposure to low WSS (Morbiducci et al., 2020). The
associations of WSS topological skeleton features with vascular
pathophysiology need further studies.

The common biomechanical parameters of the vessel wall
extracted from FEA are maximum principal stress for studying
the sites of plaque rupture (Tang et al., 2009; Costopoulos et al.,
2019) and aortic aneurysms (Martin et al., 2015), peak
longitudinal and circumferential wall stresses for aortic
aneurysms (Gomez et al., 2021) as well as Von Mises stress in
normal aortas (Nathan et al., 2011) and aortic aneurysms
(Rissland et al., 2009). Using FEA-derived peak stress, a
multifactorial stress equation of peak stress that is based on
the analysis of plaque morphological parameters has also been
developed recently (Hartman et al., 2021). These plaque
morphological parameters include fibrous cap thickness,
necrotic core angle, necrotic core thickness, lumen area, and
necrotic core calcium and plaque areas. This methodology has the
potential of obtaining the peak stress within a plaque rapidly
because the detailed FEA is not required.

The high spatial resolution of the data obtained from CFD or
FEA simulations bring challenges in statistical analysis that
investigates the relation between the focal nature of vascular
diseases and biomechanical factors because these data are
spatially autocorrelated (i.e., the data are more like each other
when they are closer in space). Treating all the data points as
independent violates the assumption of standard statistical tests
and will artificially augment the sample size and obtain extremely
small p values even for a very small effect size. Several methods
with different mathematical complexities have been proposed to
consider the spatial correlation (Peiffer et al., 2013a; Rowland
et al., 2015). These methods are decorrelation length-based
sampling, Dutilleul’s modified t-test, iterative amplitude
adjusted Fourier transform, dual-tree complex wavelet
transform, and a bootstrap approach.

Linear mixed-effects regression models have also been used to
accommodate the clustering of the multiple slices within a blood
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vessel. A mixed-effects regression model incorporates both fixed
and random effects. The random effect considers correlations
among the data points due to clustering within a vessel (He et al.,
2020; Hoogendoorn et al., 2020), within a plaque (Costopoulos
et al., 2019) or within the slices (Wang et al., 2015a). The spatial
covariance structure can also be specified in a mixed-effects
model. In a study of vein bypass graft remodeling, a one-
dimensional exponential spatial covariance structure was used
for the strong autocorrelation among lumen diameters along the
sections in each graft (He et al., 2020). Another concern is the
correlation between data obtained at multiple time points from
the same patient in a longitudinal study. Linear mixed-effects
models can also be used in this case with the patient as a random
factor (Colombo et al., 2021).

Human studies have been performed to assess the predictive
power of different biomechanical parameters on the initiation,
development, and rupture of atherosclerotic plaques. Low and
oscillatory WSS has been widely recognized to be the key
hemodynamic factor in the initiation and development of
atherosclerosis. TAWSS had a higher sensitivity of predicting
plaque location in both right and left coronary arteries than
average WSS gradient, OSI, and RRT (Knight et al., 2010;
Rikhtegar et al., 2012). However, a systematic review found
that the evidence for the low/oscillatory shear theory is less
robust than commonly assumed (Peiffer et al., 2013c). The
definition of low WSS is important and may affect the
conclusion (Hartman et al., 2021).

VERIFICATION, VALIDATION, AND
UNCERTAINTY QUANTIFICATION

All image-based simulations involve uncertainties and potential
errors related to every input needed in the modeling pipeline,
including geometry, boundary conditions, mechanical properties,
unavailable input parameters that are difficult or unethical to obtain
from study subjects, solver settings, and necessary modeling
assumptions (Steinman and Migliavacca, 2018; Valen-Sendstad
et al., 2018; Steinman and Pereira, 2019). The sizes of these
variations and their impact on predicted biomechanical factors
need to be assessed through VVUQ. In the context of vascular
biomechanical simulations, verification is performed to assess if the
numerical simulations solve the simplified mathematical description
of the vascular system correctly, and validation is implemented to
determine if the model accurately represents the in vivo conditions.
Uncertainty quantification evaluates how variations in the physical
and numerical parameters affect biomechanical factors obtained
from simulations. Many VVUQ studies in vascular biomechanical
simulations have been performed (Steinman andMigliavacca, 2018).
However, since the in vivo true values are usually unknown, most of
these studies can only evaluate the relative differences compared to
the results obtained from other methods.

Geometry (Imaging and Segmentation)
The imaging uncertainties depend on the imaging hardware,
image acquisition protocols, techniques of image
reconstruction from raw data, and specific characteristics of

the patient. The composite effects of obliqueness, in-plane
resolution, and voxel anisotropy on the accuracy of black-
blood MRI-derived wall thickness measurements at the carotid
bulb have been studied (Antiga et al., 2008b). Thick-slice axial
acquisitions can result in artificial wall thickening due to its
obliqueness to the imaging plane. Reduction of in-plane
resolution can also exaggerate wall thicknesses by up to 50%.

The variation of lumen segmentation algorithms of five
intracranial aneurysms from 3D digital subtraction
angiography (DSA) images among the 26 participating groups
has been assessed (Berg et al., 2018). Although qualitative
similarity of the aneurysm representations was obtained, the
inter-group differences of the aneurysm volumes, ostium
surface areas, and morphology parameters (undulation and
non-sphericity) were up to 20%, 30%, and 25%, respectively.
These morphological variations led to 28%–51% variation in
TAWSS, which may lead to an inappropriate interpretation of
the simulation results (Voß et al., 2019). In another study using
high-resolution OCT-derived geometry as the ground truth, the
segmentation of coronary CTA images showed that the
measurement uncertainty in minimum lumen diameter had
the largest impact on CFD simulation-derived fractional flow
reserve (FFR) (Sankaran et al., 2016). The CFD simulations based
on coronary CTA images were found to overestimate the absolute
TAWSS values than those based on IVUS/OCT images, although
the WSS patterns were similar and the correlation and
concordance were high (Eslami et al., 2021). Polynomial chaos
expansion is another method for a global sensitivity analysis. It
uses a stochastic approach to obtain continuous response surfaces
of the hemodynamic parameters starting from a few deterministic
simulations and is computationally more efficient than a Monte
Carlo approach. Furthermore, using the method of polynomial
chaos expansion for a global sensitivity analysis, it has been found
that the sensitivity to geometry may be different during different
instants of the heartbeat and in different vascular regions (Xu
et al., 2021).

Blood Properties
Patient-specific blood properties are almost never available for
biomechanical simulations, even though blood viscosity can vary
up to 20% among individuals (Box et al., 2005). The commonly
used viscosity values for the Newtonian model may vary by 10%
among different patient groups (Valen-Sendstad et al., 2018). The
effects of different blood rheological models on hemodynamics
have been evaluated in stenotic carotid (Mendieta et al., 2020) and
coronary (Abbasian et al., 2020) arteries and intracranial
aneurysms (Oliveira et al., 2021). It has been found that the
effects of different blood rheology models on simulation results
depend on the specific hemodynamic parameters, and the
difference in hemodynamic parameters can be more than 50%
compared to the Newtonian model. Using a non-Newtonian
blood viscosity model in a simulation requires to update
viscosity after each iteration, so it takes longer to finish
simulations, and it is common to use a constant blood
viscosity value if the blood flow velocity and shear rate are
expected to be high. Using a Newtonian model also is more
appropriate when the overall flow pattern or the mean WSS
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parameters are investigated; the non-Newtonian model is
necessary when the low WSS region is the focus, especially for
arteries with severe stenosis. When there is stenosis, the region
with high velocity and WSS will not be affected significantly by
the use of non-Newtonian models.

Wall Properties
In FEA, it is common to assume a constant wall thickness along
the length of a blood vessel, but this assumption may be
problematic. For example, this led to a significantly different
wall stress distribution from that of a patient-specific model using
micro-CT-measured wall thickness of an intracranial aneurysm,
although the average wall stresses may be similar (Voß et al.,
2016). Therefore, use of patient-specific regionally varying wall
thickness is recommended for estimating peak biomechanical
parameters, especially when the wall thickness is expected to be
non-uniform, such as with atherosclerosis, aneurysm, and
stenosis (Raut et al., 2013). Additionally, using an anisotropic
material model may estimate much higher wall stresses compared
to the isotropic and uniform-thickness mode (Mesri et al., 2017).
Using a more general non-symmetric collagen fiber dispersion
model in arterial walls (Holzapfel et al., 2015) or considering
intima heterogeneity (Akyildiz et al., 2018) is needed for better
describing the arterial mechanical behavior. As such, the above
studies demonstrate the importance of using more realistic wall
properties.

In CFD simulations, a rigid wall is most commonly assumed,
but the variability in vessel lumen diameter during a cardiac cycle
is approximately 5%–10% in most major normal arteries (Taylor
et al., 1998). If not specifically cardiac-gated at systole, the images
are more likely to be taken at diastole because systole is shorter
than diastole. Therefore, the lumen size in simulations using a
compliant wall is larger than that using a rigid wall, resulting in
smaller velocity and WSS in simulations using a compliant wall
than those using a rigid wall, although the distribution patterns of
WSS parameters are similar (Kim et al., 2008). On average, the
TAWSS of the compliant-wall simulation has been found to be
21.5% lower than that of a rigid-wall simulation for a
hemodialysis arteriovenous fistula (McGah et al., 2014). Other
studies reported a similar magnitude of difference (to be 25%) in
WSS in an idealized carotid bifurcation model (Perktold and
Rappitsch, 1995) or smaller (13%) in aortas reconstructed from
MR images (Stokes et al., 2021). Furthermore, the effects of
assuming a rigid wall on hemodynamic factors may not be
uniform across different regions. At the anastomosis of an
arteriovenous fistula with a more disturbed flow, the WSS
difference between the compliant and rigid walls can be up
to 58% (McGah et al., 2014). As expected, decreasing the
Young’s modulus of the aortic wall causes a more significant
underestimation of the peak flow rate (Boccadifuoco et al.,
2018a). Nevertheless, previous data suggest that the effect of
using a rigid wall in image-based simulations may be less than
that due to uncertainties in geometry and boundary conditions
(Lee and Steinman, 2007). The validity of the qualitative and
quantitative relations between WSS parameters and vascular
diseases obtained from a rigid-wall simulations needs to be
assessed.

Boundary Conditions
Using a statistical model of blood flow in internal carotid artery in
CFD simulations, it has been observed that flow waveform
variations at the inlet of internal carotid artery have a limited
influence on the TAWSS on the saccular intracranial aneurysm
surface, but the internal carotid artery flow waveform strongly
affects WSS directionality in regions where the flow is highly
multidirectional (Sarrami-Foroushani et al., 2016). The impact of
uncertainties in the values of Windkessel model parameters at the
outlets on the simulation results of an ascending thoracic aortic
aneurysm has been quantified using generalized polynomial
chaos expansion (Boccadifuoco et al., 2018b). Again, the
results show that the uncertainties in the selected outflow
parameters have only a moderate effect on TAWSS but may
lead to significant variability of the instantaneous WSS in regions
with complex flow. Using a similar method, it has been found that
the uncertainty of the Windkessel resistance parameters at the
outlets of a thoracic aorta with a coarctation induces a remarkable
variability on the flow rate waveform at the peak systole but has a
slighter effect on the pressure gradient across the coarctation
(Antonuccio et al., 2021).

Validation of Computational Fluid Dynamics
Simulations
Some in vitro phantom-based experiments and in vivo
measurements by MRI have been performed to validate the
results obtained from CFD simulations. Using a compliant
silicone phantom aneurysm model and 3D rotational
angiogram, the reliability of the CFD simulation was
confirmed by comparing the actual and virtual angiograms
obtained from CFD simulations of the contrast concentration
(Sun et al., 2010). Another study using a rigid, patient-specific
phantom of a complex abdominal aortic aneurysm showed a high
degree of agreement between numerically simulated and
experimentally measured velocity fields at selected slices by
MRI (Kung et al., 2011). Furthermore, the pressure waveforms
also had an excellent agreement with only a 3.8% difference
between measured and predicted root-mean-square pressures at
the light exercise condition (Kung et al., 2011). An in vivo 4D-
flowMRI study showed the necessity of using turbulent models in
simulating thoracic aortic flow (Miyazaki et al., 2017). Also based
on 4D-flow MRI, it has been demonstrated that a compliant-wall
computational model is needed to show the time lag at the outlets
of thoracic aorta with respect to the inlet flow waveform found in
MRI data (Boccadifuoco et al., 2018a). However, MRI data may
not be ideal for validating CFD results. For example, theWSS and
energy loss calculated from MRI data were less than those
obtained from CFD simulations around the aortic arch due to
the limitation of MRI spatial resolution (Boccadifuoco et al.,
2018a).

MACHINE LEARNING

Promising artificial intelligence (AI) and machine learning (ML)
methods have been increasingly used in various aspects of
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vascular biomechanics research. These methods include imaging
(Henglin et al., 2017; Rutkowski et al., 2021); segmentation of
images obtained from different imaging modalities (Nasr-
Esfahani et al., 2018; Guo et al., 2019; Livne et al., 2019; Zhao
et al., 2019; Bajaj et al., 2021; Comelli et al., 2021; Tian et al.,
2021); estimation of constitutive parameters in vivo (Liu et al.,
2019b) or for harvested vascular tissues (González et al., 2020; Liu
et al., 2020); estimation of the zero-pressure geometry of human
thoracic aorta from two pressurized geometries of the same aorta
at two different blood pressure levels (Liang et al., 2018);
prediction of hemodynamics in human thoracic aorta trained
on CFD data (Liang et al., 2020) or stresses within atherosclerotic
walls trained on FEA data (Madani et al., 2019); computation of a
probabilistic and anisotropic failure metric of the aortic wall (Liu
et al., 2021); and prediction of plaque vulnerability (Cilla et al.,
2012; Guo et al., 2021).

Deep learning in medical image analysis is a branch of ML
mainly based on convolutional neural network (CNN)
methodology (Litjens et al., 2017). When a neural network
contains multiple layers between the input and output, it is
considered a deep neural network (DNN). Vascular
segmentation using well-validated deep learning methods can
automatically extract the vascular structure quickly and without
operator bias. To develop the deep learning model using a
supervised learning approach, a large training dataset that is
usually segmented manually or semi-automatically by experts is
required. The most popular deep CNN used in medical image
segmentation is U-Net (Ronneberger et al., 2015). U-Net has
accurately segmented the images of ascending thoracic aortic
aneurysm (Comelli et al., 2021) and arteries in the brain (Livne
et al., 2019). Other tools, E-Net and V-Net, have also been applied
successfully to ascending thoracic aortic aneurysm and coronary
artery, respectively (Comelli et al., 2021; Tian et al., 2021).

Conventional image-based CFD, FEA, and FSI simulations are
time consuming, limiting their potential clinical applications.
Training ML algorithms using CFD and FEA simulations to
combine the two methods can help generate results much faster
without considerably affecting the performance. As an example, a
DNN model could predict the steady velocity magnitude and
pressure fields in a thoracic aorta with an average error of 2.0 and
1.4%, respectively, in one second (Liang et al., 2020) or calculate
the FFR values with an excellent correlation to CFD predictions in
a few seconds (Itu et al., 2016; Coenen et al., 2018). Also using
DNN, the predicted peak von Mises stress magnitude in

atherosclerotic artery has had an average error less than 10%
(Madani et al., 2019). However, the great variations in geometry
and boundary conditions among patients make data-driven
models difficult to be trained in high-dimensional feature
spaces. Further development of fast and real-time CFD and
FEA simulations accelerated by ML algorithms may help
realize clinical application potential of these biomechanical
tools (Phellan et al., 2021).

CONCLUSION

Image-based simulation of the vasculature biomechanics is an
active research area. From the perspective of biomechanics and
mechanotransduction, it aims to partially reveal the mechanisms
of the heterogeneity in the initiation, progression, and treatment
response of vascular diseases in different patients. However, a
completely personalized simulation, including specific, high-
fidelity lumen and wall geometry, flow and pressure boundary
conditions at the inlets and outlets, blood and wall properties, and
interaction with perivascular tissues, is very challenging and not
practical even with recent great advances in imaging and
computational algorithms and power. The use of simplified
models is necessary, but the validity of these simplified models
needs to be thoroughly evaluated. The development and
application of novel ML algorithms to all aspects of the CFD,
FEA, and FSI pipelines have the potential to accelerate the
application of the biomechanical analysis tools to the research
and perhaps the treatment of vascular diseases. The future clinical
applications may include prediction of the sites with future
cardiovascular events, such as formation or rupture of
atherosclerotic plaques or aneurysms, and thrombosis
formation. In combination with technical advancements, large,
prospective, image-based clinical studies are needed to evaluate
the capability of biomechanical parameters in predicting hard-
defined clinical endpoints (Gijsen et al., 2019).
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