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Due to the complexity of medical images, traditional medical image classification methods have been unable to meet actual
application needs. In recent years, the rapid development of deep learning theory has provided a technical approach for solving
medical image classification tasks. However, deep learning has the following problems in medical image classification. First, it is
impossible to construct a deep learning model hierarchy for medical image properties; second, the network initialization weights
of deep learning models are not well optimized. ­erefore, this paper starts from the perspective of network optimization and
improves the nonlinear modeling ability of the network through optimization methods. A new network weight initialization
method is proposed, which alleviates the problem that existing deep learning model initialization is limited by the type of the
nonlinear unit adopted and increases the potential of the neural network to handle different visual tasks. Moreover, through an in-
depth study of the multicolumn convolutional neural network framework, this paper finds that the number of features and the
convolution kernel size at different levels of the convolutional neural network are different. In contrast, the proposed method can
construct different convolutional neural network models that adapt better to the characteristics of the medical images of interest
and thus can better train the resulting heterogeneous multicolumn convolutional neural networks. Finally, using the adaptive
sliding window fusion mechanism proposed in this paper, bothmethods jointly complete the classification task of medical images.
Based on the above ideas, this paper proposes a medical classification algorithm based on a weight initialization/sliding window
fusion for multilevel convolutional neural networks.­emethods proposed in this study were applied to breast mass, brain tumor
tissue, and medical image database classification experiments. ­e results show that the proposed method not only achieves a
higher average accuracy than that of traditional machine learning and other deep learning methods but also is more stable and
more robust.

1. Introduction

With the rapid development of computer and medical
imaging, medical imaging techniques, such as computed
tomography (CT) and magnetic resonance imaging
(MRI), can noninvasively reflect the physiological state
of tissues and organs in the human body. ­ese tech-
niques have gradually become indispensable tools in
medical research, clinical diagnosis, and surgical plan-
ning [1–3]. While these new technologies have advanced
medical theory and practice, they have also raised new

issues; for example, doctors now need to classify di-
agnostic results. Automatic image classification tech-
niques can understand the image content to a certain
extent; for example, they can effectively identify lesion
areas in medical images and assist doctors in carrying out
efficient diagnoses [3, 4]. However, many types of
medical images exist, and distinguishing the categorical
information in these medical images often requires
different processing and analysis methods [5–7]. At
present, medical image classification is mostly based on
pattern recognition methods, in which a classification
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model is trained to identify and distinguish medical
images. Medical image classification can generally be
divided into supervised classification methods and un-
supervised classification methods [8–10].

Supervised classification means that the processed
samples are labeled in advance; the classification model is
trained using the labeled image features, and the classifi-
cation categories are usually prespecified. Supervised
classification methods mainly include the K-nearest
neighbor algorithm [11], Bayesian models [12], logistic
regression [13], neural networks [14], and support vector
machines [15]. Among these methods, medical image
classification methods based on neural networks tend to
perform the best [16–19]. Abbass [20] proposed a neural
network based on the Pareto differential evolution algo-
rithm to classify breast cancer on the Wisconsin Breast
Cancer Database (WBCD) that obtained a better classifi-
cation performance than those of traditional neural net-
works. Karabatak and Ince [21] used association rules for
dimension reduction, reducing nine features to four, and
then classified them using an artificial neural network
(ANN). -e accuracy of 2-fold cross-validation on breast
cancer in the WBCD reached 90%. However, this kind of
method cannot adaptively match the characteristic in-
formation in the medical images themselves, which leads to
large classification effect differences on different medical
images.

Unsupervised classification methods automatically
distinguish different categories based on the similarities
between samples without requiring prelabeled samples.
Unsupervised learning is essentially a clustering process.
-e typical unsupervised methods include K-means
clustering [22], fuzzy C-means clustering [23], and
principal component analysis (PCA) [24]. To solve the
problem that lesion contours cannot be accurately found
in MRI images, in 2010, Juan proposed a color con-
version segmentation algorithm with a K-means clus-
tering technique that added a color-based segmentation
operation [22]. -is method achieved a higher accuracy
but with a poorer segmentation effect than the fuzzy
segmentation algorithm for MRI data proposed by Zhang
and Chen in 2004 [23]. In 2012, Singh and Kaur proposed
a PCA-based method to automatically classify MRI and
natural images. -eir experiments showed that the
classification accuracy reached 91% [24]. Although this
method is relatively simple to implement, it has achieved
certain effects in image recognition and classification
applications. However, the classification effect of this
kind of method has great differences when classifying
and recognizing different medical images, and it cannot
adaptively classify and recognize medical images based
on their characteristics.

In recent years, medical image classification research
based on deep learning has once again attracted scholarly
attention. Deep learning [25] is an organic combination of
supervised and unsupervised methods. It primarily relies
on unsupervised learning to train deep neural networks
and then fine tunes them through supervised learning
methods [26–29]. In the early stages of deep neural network

development, medical image recognition focused on un-
supervised pretraining methods, such as stacked autoen-
coders (SAEs) and restricted Boltzmann machines (RBMs).
For example, in 2013, Brosch and Tam [30] used a deep
belief network to classify neuroimages. Plis et al. [31] used a
deep belief network and an SAE to determine whether
brain-based MRI can be used to diagnose whether a patient
has Alzheimer’s disease. Cheng et al. [32] used an SAE for
the intelligent identification of breast ultrasound lesions no
nodules; the performance of this method was significantly
improved, compared with those of conventional methods.
Kallenberg et al. [33] used convolutional SAEs to extract
features from unlabeled breast cancer X-ray images. -e
main difference between convolutional SAEs and con-
volutional neural networks (CNNs) is the use of SAEs for
pretraining [34–37]. For such tasks, it is often necessary to
combine local information about the appearance of the
lesion with global context information about the location of
the lesion to determine a more precise classification
[37, 38]. Such requirements are difficult to achieve through
common deep learning architectures. Other researchers
have tried to solve this problem using multinetwork
branching architecture. For example, in 2015, Shen et al.
[39] constructed three CNNs and connected their outputs
to form the final feature vector. In 2016, Kawahara and
Hamarneh [40] attempted to classify skin lesions using
multibranch CNNs, each of which worked on a different
image resolution. In 2017, Esteva et al. [7] used 129450
clinical image datasets to train CNN models. -e results
showed that the classification level of skin cancer by the
CNNs reached those of dermatologists. In 2018, Bidart et al.
[41] designed a method to perform automatic localization
of breast cancer tissue sections using fully convolutional
neural networks (FCNNs).-e breast cancer tissue sections
were divided into three types: lymphocytes, benign epi-
thelial cells, and malignant epithelial cells, and the clas-
sification accuracy rate reached 94.6%. In summary, deep
learning models have been widely applied to various
medical image classification tasks. However, medical im-
ages are not the same as natural images. -us, constructing
a CNN that achieves a better performance than other in-
telligent classification methods while considering the
specific characteristics of medical images is a difficult
problem. Moreover, because the network depth affects the
nonlinear modeling ability of the CNN, improper initial-
ization will cause the deep network to have difficulty
converging, and no good initialization method exists. To
address this issue, this paper first improves the nonlinear
modeling ability of the network from the network opti-
mization perspective; then, it improves the generalizability
of the solution after the convergence domain has been
improved. Furthermore, a new network weight initializa-
tion method is proposed. -is method alleviates the
problem that the initialization theory of existing deep
learning is limited by the type of nonlinear unit; it provides
more choice for the structural design of deep networks and
increases the potential of neural networks to handle dif-
ferent visual tasks. In addition, to make full use of the
characteristics of medical images, this paper studies the
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framework of multicolumn CNNs and constructs CNN
models with different structures that can better adapt to the
characteristics of the medical images of interest. -en,
different CNN models are trained on the same dataset.
Finally, the trained heterogeneous, multicolumn CNN is
combined with an adaptive sliding window fusion mech-
anism proposed in this paper; this combination completes
the medical image classification task. Based on the above
ideas, this paper proposes a medical classification algo-
rithm based on weight initialization/sliding window fusion
for multilevel CNNs.

Section 2 of this paper mainly presents the weight
initialization algorithm based on the deep learning model
proposed in this paper. Section 3 systematically describes
the sliding window fusion CNN model proposed in this
paper. Section 4 introduces a medical classification al-
gorithm based on weight initialization and multilevel
CNN sliding window fusion. Section 5 analyzes the
proposed medical image classification algorithm and
compares it with mainstream medical image classification
algorithms. Finally, Section 6 summarizes and discusses
the full text.

2. Deep Learning Model Weight Initialization
Method-Based Adaptive Taylor

-e problem of classifying medical images is essentially
one of the identifying features after their extraction. Al-
though shallow networks can implement complex non-
linear transformations that convert input to output in a
system, high computational complexity is required to
achieve nonlinear representation capabilities similar to
those of deep networks. -erefore, under the condition of
corresponding increase in computational complexity, in-
creasing network depth is the most reliable method to
solve medical image classification problems. However,
optimizing deep networks is a difficult problem in deep
learning, especially given the exploding gradient problem
caused by improper initialization. Of the existing methods,
the Microsoft Research Asia (MSRA) method has good
convergence and generalizability, but its disadvantage is
that it is limited to a specific network type. In view of this
shortcoming, this section proposes a new initialization
method that aims to improve the convergence and gen-
eralization ability of the model through optimization
techniques. -e initialization method proposed in this
paper combines the advantages of the above two methods
to avoid their shortcomings, and it is essentially an ex-
tension of the MSRA method. -erefore, this section is
divided into two parts: an introduction to the MSRA
method and a description of the proposed method.

2.1. MSRA Method. For the ith convolutional layer, an
output pixel yi can be expressed as in [42]:

yi � wi × xi + bi, (1)

where yi is a random variable and wi and xi are mutually
independent random vectors (vectors are shown in bold).
-e offset term bi is initialized with zeros. bi is expressed as
the offset term of the ith convolutional layer. -e following
formula gives the relationship between the variance of yi− 1
and the variance of yi:

Var yi( 􏼁 � Var wi × xi + bi( 􏼁, (2)

Var yi( 􏼁 � Var wixi( 􏼁, (3)

Var yi( 􏼁 � k2i ciVar wixi( 􏼁, (4)

where ki represents the convolution kernel size, ci is the
number of channels input by the convolutional layer, and wi
and xi are independent random variables. Formula (4) is
established when the elements in the random vector wi in
formula (3) and the elements in xi are independently and
identically distributed. When wi is initialized with a zero-
mean symmetric distribution, formula (4) is transformed as
follows:

Var yi( 􏼁 � k2i ciVar wi( 􏼁E x2i􏼐 􏼑. (5)

-e following shows the relationship between Var(yi)
and Var(yi− 1). -e key is that there is a nonlinear unit f
between xi and yi− 1:

xi � f yi− 1( 􏼁. (6)

For sigmoid nonlinearity, formula (6) can be adjusted to

xi �
1

1 − e− yi− 1
. (7)

Based on formula (7), the methods from [43–46] assume
a linear relationship between xi and yi− 1 near the origin. -is
formula derives the Xavier initialization method. For rec-
tified linear unit (ReLU) nonlinearity, formula (6) can be
adjusted to

xi � max 0, yi− 1( 􏼁. (8)

He et al. [42] extended Xavier initialization to the ReLU
network using formula (8).

2.2. Adaptive Taylor Initialization Method. Substituting
formula (7) into formula (5) yields the Xavier initialization
method applicable to a sigmoid network. Similarly,
substituting formula (8) into formula (5) yields the MSRA
initialization method applicable to a ReLU network.
-erefore, the analytical solution of the initialization is a
function of the relationship between xi and yi− 1. However, if
the expansion of formula (6) has a higher-order term,
formula (5) will be difficult to solve. -erefore, the current
mainstream initialization method is theoretically not ap-
plicable to networks other than those using ReLU or sigmoid
activation functions. In response to this problem, this paper
introduces the Taylor formula and proposes a more general
initialization method.
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According to the definition of nonlinear elements by
Gulcehre [47], a nonlinear element is a mapping from
real space to real space and can be guided almost ev-
erywhere. -at is, f: R⟶R. For the convenience of
derivation, we define a nonlinear unit using the following
function:

x � f(y), (9)

where x is the output of the nonlinear unit, y is the input of
the nonlinear unit, and f exists almost everywhere in y ∈R.
Suppose y ∈R has a point ε such that f(ε)� 0. -e nth (n≥ 1)
order Taylor expansion for f at y� ε is

x � f(ε) + f′(ε)(y − ε) + f
″(ε)
2!

(y − ε)2 + · · ·

+
fn(ε)

n!
(y − ε)n + Rn(y),

(10)

which can be found by formula (5). However, when the
order of formula (10) is 2, the above formula is difficult to
solve. To solve this problem, this section uses the Taylor
formula to approximate the nonlinear element by taking the
linear term of n≤ 1 in formula (10). By definition, if f is
continuous at y� ε and can be guided, formula (10) can be
simplified to

x � f(ε) + f′(ε)(y − ε) + Rn(y), (11)

x ≈ f(ε) + f′(ε)(y − ε). (12)

If f is nondifferentiable at y� ε, but its lower gradient
exists (for example, ReLU), then

x ≈
f(ε) + f′ ε+( 􏼁(y − ε), y> ε,
f(ε) + f′ ε−( 􏼁(y − ε), y≤ ε.

⎧⎨⎩ (13)

Formula (12) can be regarded as a special case of formula
(13). -erefore, this paper is based on formula (12).

For any y ∈R, if f′(ε+) � f′(ε− ) � 0, then x� f(ε). -is
property shows that the output of the nonlinear element is
constant, which causes the CNN to lose discriminative
power and thus needs to be ruled out.

When neither f′(ε+) or f′(ε− ) are zero, then if the
convolutional layer parameter w is initialized with a zero-
mean symmetric distribution, b is initialized with a constant
(ε + f′(ε+))/f′(ε+) for y≤ ε. b is the offset term of a con-
volutional layer. For y≤ ε, to initialize (ε + f′(ε+))/f′(ε+)
with a constant, then f(ε) + f′(ε±)(y − ε) must have a
symmetric distribution with a mean of ε. Let x have a
probability density function p(x). For convenience, recall
that y − ε is 􏽢y. -en,

E x2􏼐 􏼑 � 􏽚+∞
− ∞

x2p(x)dx ≈ 􏽚ε
− ∞

f(ε) + f′ ε−( 􏼁􏽢y( 􏼁2
+ p f(ε) + f′ ε−( 􏼁􏽢y( 􏼁d f(ε) + f′ ε−( 􏼁􏽢y( 􏼁
+ 􏽚+∞

ε
f(ε) + f′ ε+( 􏼁􏽢y( 􏼁2 + p f(ε) + f′ ε+( 􏼁􏽢y( 􏼁d

f(ε) + f′ ε+( 􏼁􏽢y( 􏼁
�
1

2
E f(ε) + f′ ε−( 􏼁􏽢y( 􏼁2􏽨 􏽩 + 1

2
E f(ε) + f′ ε+( 􏼁􏽢y( 􏼁2􏽨 􏽩

�
1

2
E f2

(ε) + 2f(ε)f′ ε−( 􏼁􏽢y + f′2 ε−( 􏼁􏽢y2􏼐 􏼑
+
1

2
E f2

(ε) + 2f(ε)f′ ε+( 􏼁􏽢y + f′2 ε+( 􏼁􏽢y2􏼐 􏼑
�
1

2
f2
(ε) + 2f(ε)f′ ε−( 􏼁E(􏽢y) + f′2 ε−( 􏼁E 􏽢y2􏼐 􏼑􏼐 􏼑

+
1

2
f2
(ε) + 2f(ε)f′ ε+( 􏼁E(􏽢y) + f′2 ε+( 􏼁E 􏽢y2􏼐 􏼑􏼐 􏼑

�
1

2
f2
(ε) + 2εf(ε) + f′2 ε−( 􏼁􏼐 􏼑 Var 􏽢y2􏼐 􏼑 + E(􏽢y)2􏼐 􏼑

+
1

2
f2
(ε) + 2εf(ε) + f′2 ε+( 􏼁􏼐 􏼑 Var 􏽢y2􏼐 􏼑 + E 􏽢y2􏼐 􏼑2􏼒 􏼓

�
1

2
f2
(ε) + 2εf(ε) + ε2 + f′2 ε−( 􏼁􏼐 􏼑 Var 􏽢y2􏼐 􏼑􏼐 􏼑

+
1

2
f2
(ε) + 2εf(ε) + ε2 + f′2 ε+( 􏼁􏼐 􏼑 Var 􏽢y2􏼐 􏼑􏼐 􏼑

� f2
(ε) + 2εf(ε) +

1

2
f′2 ε−( 􏼁 + f′2 ε+( 􏼁􏼐 􏼑Var 􏽢y2􏼐 􏼑.

(14)
Because Var(􏽢y) � Var(y − ε) � Var(y), formula (14)

can be simplified to

E x2􏼐 􏼑 ≈ f2
(ε) + 2εf(ε) +

1

2
f′2 ε−( 􏼁 + f′2 ε+( 􏼁􏼐 􏼑Var(y).

(15)
Let P � f2(ε) + 2εf(ε). -en, formula (15) can be

substituted into formula (5), obtaining

Var yi( 􏼁 ≈ k2i ciVar wi( 􏼁 P + 1

2
f′2 ε−( 􏼁 + f′2 ε+( 􏼁􏼐 􏼑􏼒 􏼓Var yi− 1( 􏼁

� Pk2i ciVar wi( 􏼁 + 1

2
f′2 ε−( 􏼁 + f’2 ε+( 􏼁􏼐 􏼑k2i ciVar wi( 􏼁

Var yi− 1( 􏼁.
(16)
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-e relationship between the output variance of the Lth
layer and the output variance of the 1st layer is as follows:

Var yL( 􏼁 ≈ P􏽘L
j�2

NL− j􏽙L
i�j

Mi
⎞⎠ + Var y1( 􏼁􏽙L

i�2

MiN,⎛⎝
(17)

whereMi � k
2
i ciVar(wi) andN � (1/2)(f′2(ε− ) + f′

2
(ε+)).

Similarly, we can see that f′(ε− ) and f′(ε+) are 0.
Formula (17) shows that the size of Var(yL) is related to

the exponential increase in L. For the nonlinear unit f:
R⟶R, if there is no point ε, let f(ε)� 0. -en, when L is
large, Var(yL) will also be large. -is phenomenon causes
the output of the softmax layer to overflow, and the network
cannot converge. For most nonlinear elements, the function
f is usually designed to pass through the origin, i.e.,

f(0) � 0. (18)

Take ε� 0, that is, perform a Taylor expansion on f at
y� 0. Here, the initial value of b becomes 0; then, formula
(17) can be simplified to

Var yL( 􏼁 ≈ Var y1( 􏼁􏽙L
i�j

1

2
f′2 0−( 􏼁 + f′2 0+( 􏼁􏼐 􏼑k2i ciVar wi( 􏼁.

(19)
It can be seen that there is a scaling factor􏽑L

i�2(1/2)(f′
2
(0− ) + f′

2
(0+))k

2
i ciVar(wi) between the

output variance of the Lth layer and the output variance of
the 1st layer. According to [42], a reasonable initialization
method can avoid exponentially increasing or decreasing
amplitude of the signal during forward transmission. -e
sufficient conditions to establish the above conclusions are as
follows:

1

2
f′2 0−( 􏼁 + f′2 0+( 􏼁􏼐 􏼑k2i ciVar wi( 􏼁 � 1. (20)

Substituting formula (20) into formula (19) yields

Var wi( 􏼁 � 2

f′2 0−( 􏼁 + f′2 0+( 􏼁􏼐 􏼑k2i ci, (21)

which shows that if the variance in the convolution layer
parameters satisfies the above relationship, then the am-
plitude of the input signal will not diverge or disappear
during the forward transfer. -is relationship further en-
sures the rationality of the gradient flow in the backward
transfer process. -rough the above analysis, the adaptive
Taylor initialization method proposed in this paper is as
follows:

wi ∼ 0,

��������������������
2

f′2 0−( 􏼁 + f′2 0+( 􏼁􏼐 􏼑k2i ci
􏽳⎛⎝ ⎞⎠,

b � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(22)

-at is, the convolution parameter w is initialized with a

Gaussian distribution (0,

�����������������������
2/((f′2(0− ) + f′

2
(0+))k

2
i ci)

􏽱
),

and the convolution layer offset b is initialized to 0. Except
for f(0)� 0, this method does not define the specific func-
tional form of f in the derivation process. -erefore, formula
(21) is more relaxed than the MSRA and Xavier conditions;
that is, it is suitable for a network with piecewise linearity, a
network with piecewise exponential nonlinearity and even
other types of networks. In addition, the existing initiali-
zation method can also be considered a special case of the
method in this paper.

3. Sliding Window Fusion Method Based on
Multilayer Convolutional Neural Network

3.1. Multilayer Convolutional Neural Network. A multilayer
CNN is formed by multiple CNNs with different structures.
A schematic diagram of a multilayer CNN is shown in
Figure 1. -is number of layers is a more optimized form
obtained through the actual model training process in this
paper. Generally, 20 layers or less will be selected because too
many layers will affect the training time of the model.

During the convolution process, the convolutional layer
affects the model as follows: first, the size of the convolution
kernel determines the scale of the receptive field and affects
the amount of feature information; second, the number of
convolution kernels determines the richness of the feature
information. In view of these properties, this section first
constructs multiple CNNs with different convolution kernel
sizes and numbers of feature maps and then trains each
convolutional neural network, thereby achieving the pur-
pose of fitting the training datasets to different network
model structures. Finally, the outputs of the multilayer
convolutional neural network are combined to form the final
output, and better classification accuracy is achieved.

3.2. Sliding Window Fusion Method for Multilayer Con-
volutional Neural Networks. Different preprocessing
methods were proposed for input images in [32] to obtain
diverse network models. However, this paper is different
from [32]; here, the diversity of multilayer CNNs is achieved
by training multiple CNNs with different structures.

-e classifier fusion methods mainly include the min,
max, average, and product rules. -ese methods have a
single function and many limitations. -erefore, this paper
proposes a new classifier fusion method based on a sliding
window. -is method is a generalization of traditional
classifier fusion methods, but it is more flexible and
generalizable.

3.2.1. Sliding Window Fusion Process. In this paper, a 10-
layer convolutional neural network is used as an example to
describe the sliding window fusionmethod.-e basic flow of
the method is shown in Figure 2.

For an input medical image, after passing through each
layer of the CNN during forward conduction, W1 to W10
are the classification probabilities of each layer of the CNN
for a certain category. -e above probabilities are first sorted
from low to high; then, a sliding window is applied to the
sorted classification probability distribution to produce the
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final classification result. -is process mainly accomplishes
the following tasks:

(1) It determines which network classifications will be
integrated into the subsequent results. -is function
is determined by the start and end ranges of the
window (Range).

(2) It determines the fusion of the selected classification
results, which is determined by the parameter Op-
eration. During the actual network fusion process,
sliding window fusion is more flexible than the
traditional single fusion method. -e integration
process is as follows:

(1) Parameter description

-e input layer (P) P(i, j) represents the prediction
probability of the jth category of the ith column of the
CNN, S is the starting position of the sliding window
(Start), R is the range of the sliding window (Range),
andO is the operation of the slidingwindow (operation,
which can be set to “sum” or “product”). -e output
layer (T)T(j) represents the prediction probability of the
jth category after the sliding window is merged.

(2) -e number of columns in the convolutional neural
network is m⟵ size(P, 1).

(3) -e number of categories predicted is n⟵ size(P, 2).

(4) For category j to be cyclically processed from 1 to n,
the predictions of the multicolumn CNN are spliced
into a vector: t⟵ [P(1, j), . . ., P(m, j)].-e elements
in vector t are sorted: ts⟵ size(P, 1).

(5) When o� sum, T(j)⟵ is accumulated from ts(h),
and r elements are added. When o� product,
T(j)⟵, and r elements are multiplied from the
beginning of ts(h).

Start, Range, and Operation are the three sliding window
parameters. Start and Range determine which independent
CNN classifications are used to calculate the final classifi-
cation probability for the entire system. Start indicates the
starting position of the sorted probabilities. Range de-
termines how many categorical values are used for the
calculation of the final classification. When Range exceeds
the number of CNNs, the classification value continues to be
selected from the first classified value after sorting. Sum and
Product are the two methods that can be selected by the
parameter Operation. Sum represents the summation of all
the classification probabilities selected by the sliding window
to attain the final classification (M� Start + Range − 1,
yisort− CNNj

represents the sorted probability of sorting):

yiMCDNN � 􏽘M
j�start

yisort− CNNj
. (23)

Product calculates the final classification probability by
multiplying all the probabilities selected by the sliding window:

yiMCDNN � 􏽙M
j�start

yisort− CNNj
. (24)

According to formulas (23) and (24), the method is a
generalized classifier fusion method. For example, when the
parameters of the sliding window start and range are both 1
yiMCDNN � y

i
sort− CNNj

, since yisort− CNNj
represents the prob-

abilities sorted from low to high, and the sliding window
fusion follows the traditional min rule case:

yiMCDNN � min
j∈[1,N]

yiCNNj
. (25)

After adjusting the sliding window to blend the pa-
rameters, the method is converted to other classifier
methods, as shown in Table 1.

3.2.2. Parameter Acquisition Method. -e parameters in-
volved in the sliding window fusion method (Start, Range,
and Operation) are obtained through exhaustion and
training. Although the exhaustive method theoretically
achieves the best classification effect, it has the following
disadvantages: (1) the algorithm used in the exhaustive
method to obtain the parameters is computationally ex-
pensive, with a complexity of O(n2), where n is the number
of CNN models. (2) -e exhaustive mode tests known data
better than unknown data, which are less effective. -ere-
fore, the exhaustive approach does not meet the actual
testing requirements. In contrast, the training method first
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Figure 2: Schematic diagram of the sliding window fusion method
for multilayer CNNs.
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Figure 1: Structure of the multilayer convolutional neural network
proposed in this paper.
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obtains all the parameters on the training set and finally finds
the optimal parameters for related testing.-e complexity of
this approach is still O(n2), but the complexity of the test is
reduced to O(1). -e relevant parameters of the method are
obtained by training, which is beneficial to improving the
versatility and universality of the method. -erefore, the
proposed method uses the training method to obtain the
relevant parameters.

4. Medical Image Classification Algorithm
Based on Weight Initialization-Sliding
Window Fusion Convolutional
Neural Network

Based on the above, this section builds a medical image
classification algorithm based on a weight initialization/
sliding window fusion CNN. First, a CNN weight initiali-
zation method is established, which improves the conver-
gence and generalizability of the model and avoids problems
such as gradients in the CNN that occur due to weight
initialization problems. -en, the weight initialization
method is introduced into the sliding window fusion CNN
model proposed in the second part of this paper to improve
the adaptive ability of the multilayer CNN sliding window
fusion model. Finally, a medical image classification algo-
rithm based on a weight initialization/sliding window fusion
CNN is established. -e basic flow chart of the proposed
medical image classification algorithm is shown in Figure 3.
-e basic steps are as follows:

(1) First, the medical image is preprocessed (e.g.,
denoised).

(2) Weighted neural network weight initialization is
performed using the adaptive Taylor weight initial-
ization method proposed in this paper. Compared
with other methods, this method has strong versa-
tility and can yield analytical solutions. It also im-
proves the adaptive ability and feature extraction
ability of the CNN model; thus, it extracts more
medical image feature information.

(3) To improve the complex feature information of
medical images that cannot be completely obtained
by a single CNN, this paper differentiates the
characteristics of the same medical image by con-
structing different network structures, thereby im-
proving the generalization performance of the entire
network. Moreover, for the fusion of multilayer
networks, a sliding window fusion mechanism is
proposed to realize flexible selection of multilayer
network classification results. It also optimizes the

fusion process of multilayer CNNs and improves the
accuracy of medical image classification.

(4) -emethods of step (2) to step (3) are combined, and
a medical image classification algorithm based on
weight initialization-sliding window fusion con-
volutional neural network is established through
steps (1)–(3). -e medical image classification al-
gorithm is used to analyze related examples and
obtain the classification results.

5. Experiment Analysis

5.1. Breast Mass Classification Experiment. -e breast mass
image dataset used in this experiment is the Digital Database
for Screening Mammography (DDSM) released by the
University of South Florida. -e dataset includes labels that
indicate benign and malignant breast masses and lesion-
level annotated information for pixel-level accuracy. -e
specific experimental data were set as follows: 600 images
from the dataset (300 benignmass images and 300malignant
mass images) were divided into training sets and test sets
according to a 60 : 40 ratio, respectively, with equal numbers
of benign and malignant masses in each set.

To verify the effectiveness of the proposed method, this
paper selects the average classification accuracy of multiple
randomized datasets (the average of 100 randomized par-
titions) as the actual test results and adopts the mainstream
methods ([48] refers to the machine learning classification
method and [49, 50] refer to the optimized CNN methods)
for comparison.-e specific test results are shown in Table 2.

Table 1: Special cases of the sliding window fusion method.

Start Range Operation Fusion method

1 1 — Min rule
N 1 — Max rule
— N Sum Average rule
— N Product Product rule

Begin

Image 
preprocessing

Establishing deep learning model weight 
initialization method-based adaptive Taylor

Sliding window fusion method based on
multilayer convolutional neural network

Medical image classification algorithm based
on weight initialization-sliding window

fusion convolutional neural network

Test model

Figure 3: Basic flow chart of the medical classification algorithm
proposed in this paper.
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Table 2 shows that the medical image classification
method proposed in this paper achieves better results than
the other methods. -e accuracy of the proposed method is
3.8 percentage points higher than that in [48] and 1.7
percentage points higher than that of the traditional CNN.
-is finding shows that the proposed method has greater
advantages over the machine learning method and the
traditional CNN.-e classification accuracy obtained by the
proposedmethod is 1.5 percentage points and 1.1 percentage
points higher than that of the methods in [49, 50], re-
spectively. -is finding further verifies that the proposed
method is superior to other mainstreamCNN-basedmedical
image classification methods. To better explain why the
proposed method is superior to other CNN-based methods,
the following explains the theory behind and the practical
calculations of the method.

In this paper, for the image of a breast mass, the gray
features of the original breast mass image, the features of the
CNN feature layer, and the CNN features of the feature
transformation were visualized. -e results are shown in
Figure 4. Figures 4(a)–4(c) represent the original grayscale
features of the breast mass image, the feature vectors of the
network layer, and the visualization results of the network
layer features processed by the method, respectively. In each
figure, the yellow and blue dots represent benign mass image
samples and malignant mass image samples, respectively. By
comparing the visualization results of the different layer
feature distributions in the figure, it can be known that the
CNN features and the features after the multisliding window
transformation greatly improve discrimination between the
original benign and malignant breast mass images. In ad-
dition, the CNN features are represented by the network
layer without the large-interval metric-learning layer
transformation. -e large-interval metric-learning layer can
transform the original breast mass image CNN features into
a new feature space with a more compact distribution and a
more discrete distribution between classes. It makes the
different types of masses more distinguishable in the feature
space, thereby further improving the classification accuracy.

5.2. Brain Tumor Tissue Classification Experiment. -e ex-
perimental data are from the -ird Hospital of Peking
University. -e dataset contains cross-sectional MRI images
of the brains of 12 patients with brain tumors. All the images
were preprocessed in terms of format, noise reduction, etc.,
and the neurosurgical and imaging surgeons mapped the
true area of the brain tumor as a training sample label and a
reference standard for the comparison experiments.

Moreover, a large number of samples are required for
training CNN models. To expand the number of training
samples and test the results of this method to classify dif-
ferent brain tumor images, the experiment used ten-fold
cross-validation by the leave-one-out method. For the 12
MRI images of brain tumors, 11 images were selected for the
training set, and 1 image was used as the test set. -e
numbers of training samples and test samples collected in
each experiment are shown in Table 3.

In the experiment, the classification method proposed in
this paper was tested first. To verify the effectiveness of the
proposed method, it was compared with traditional machine
learning methods and other deep learning methods. All the
experimental data and the experimental environments were
consistent, and the relevant parameter settings were ob-
tained by the optimization method. -e brain tumor tissue
classification results are shown in Table 4.

As shown in Table 4, the average accuracy for the tra-
ditional machine learning method (i.e., the support vector
machine (SVM)) is only 88.19% because the SVMmethod is
a small sample method; it is not as effective for large samples
as deep learning methods. -e average accuracy of the
traditional CNN method is 91.12%—nearly 3 percentage
points higher than that of the SVM method. -is result
shows that the deep learning method has large advantages
over the traditional machine learning method. -e average
classification accuracy of the optimized CNN method
proposed in [2] is 93.67%, which is not only much higher
than the traditional SVM method but also higher than the
traditional CNNmethod because the method suppresses the
overfitting problem of the CNN to a certain extent and
consequently achieves a good classification effect. -e av-
erage accuracy of the method proposed in this paper reached
95.71% on the image block classification task of the MRI
images of 12 patients with brain tumors, which was the
highest accuracy among the tested models, especially on the
2nd, 11th, and 12th samples, which were more difficult to
classify than the other samples. -is experiment fully
demonstrates that the proposed method not only greatly
improves the classification accuracy but also has good sta-
bility and robustness and better solves the problems of
weight initialization and overfitting in CNNs. -us, the
model structure can take full advantage of the deep learning
method.

5.3. Medical Database Classification Experiment. To further
validate the classification effect of the proposed algorithm on
medical images, this section conducts classification tests on
two public medical databases (i.e., -e Cancer Imaging
Archive (TCIA)-CT database [51] and the Open Access
Series of Imaging Studies (OASIS)-MRI database [52]) and
mainstream images. -e classification algorithms were
evaluated through a comparative analysis. -is study
adopted the same settings for the TCIA-CTdatabase as those
in [53]; the images are of the Digital Imaging and Com-
munications in Medicine (DICOM) type. -is analysis was
used for the experimental tests in this section, and examples
are shown in Figure 5. -is study selected 604 colon images

Table 2: Comparison table of breast tumor image classification
results.

Classification method Classification accuracy (%)

[48] 95.4
CNN 96.5
[49] 96.7
[50] 97.1
Method of this paper 98.2
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from the database and used the data enhancement strategy to
improve the database to obtain a training dataset of 988
images and a test dataset of 218 images. -e OASIS-MRI
database was divided into four categories, each of which
contains 152, 121, 88, and 68 images; examples are shown in
Figure 6. -is image set was processed using the same data
selection and data enhancement method as was used on the
TCIA-CT database, generating a training set of 498 images
and a test set of 86 images.

-e two abovementioned medical image databases were
classified by the classification algorithm proposed in this
paper and other mainstream image classification algorithms,
and the results are shown in Table 5.

It can be seen from Table 5 that the medical image
classification algorithm proposed in this paper has better
classification effect than traditional medical classification
algorithms and other deep learning medical classification
algorithms. Moreover, the proposed method performs stably
on both medical image databases. Specifically, the first three
traditional classification algorithms in the table are mainly to
separate image feature extraction and classification into two
steps and then combine them to classify the medical images.
-e three corresponding deep learning algorithms in the
table unify the feature extraction and classification process
into a single task to complete the corresponding test.
-erefore, the robustness and accuracy of the classification
results obtained by the integrated classification algorithms
are higher than those of the combined traditional methods.

Specifically, for the performance in the TCIA-CT da-
tabase, only the algorithm proposed in this paper achieves
the best classification results. -e three traditional medical
image classification algorithms are less accurate. -e results
of the two deep learning models DeepNet1 and DeepNet3
are satisfactory; they have certain advantages over traditional
methods. For the more difficult to classify OASIS-MRI
database, all the deep models perform significantly better
than the traditional machine learning algorithms.-is result
indicates that the accuracy of automatically learning deep
features when applied to medical image classification tasks is
much higher than the accuracy of artificially designed image
features.

In short, the traditional classification algorithms have the
disadvantages of low classification accuracy and poor sta-
bility on medical image classification tasks. It shows that this
combined traditional classification method does not work
well for biomedical image classification. -e algorithms’
classification accuracy of the deep learning algorithms on the
two medical image databases is significantly better than
those of the traditional classification algorithms, again

Table 4: Brain tumor tissue classification results.

Sample number SVM (%) CNN (%) [2] (%) Our (%)

1 89.41 91.09 92.82 94.70
2 76.71 85.26 89.76 93.48
3 93.32 94.32 95.15 97.12
4 95.29 96.01 97.89 98.88
5 94.31 95.32 97.18 99.16
6 94.87 96.02 97.90 98.89
7 91.05 92.16 93.92 95.82
8 89.87 91.09 93.82 95.70
9 86.54 89.05 91.72 93.55
10 89.33 92.03 93.79 95.69
11 78.23 86.05 90.57 93.30
12 79.31 85.06 89.55 92.26
Average value 88.19 91.12 93.67 95.71

(a) (b) (c)

Figure 4: Visual distributions of the breast mass features: (a) original underlying features; (b) network layer features; (c) features learned by
the proposed method.

Table 3: Samples for each experiment.

Rounds Training samples Test sample

1 150380 76502
2 160920 76530
3 165400 79980
4 177000 80640
5 150820 71600
6 135340 68850
7 144828 68877
8 148860 71980
9 159300 72576
10 135738 64440
11 181940 87978
12 194700 88704
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(a) (b)

(c) (d)

Figure 5: Examples from the TCIA-CT database.

(a) (b)

Figure 6: Continued.
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indicating that deep learning models have advantages from
the side. In addition, the deep learning model medical image
classification algorithms have high stability. In particular, the
medical image classification algorithm proposed in this paper
achieves better effects than the other deep learning medical
classification algorithms. -is result occurs because the deep
learning model proposed in this paper not only solves the
problem of model weight initialization but also solves the
problem of multilayer association in the deep learning model.

5.4. Brain Medical Database Classification Experiment. In
order to further verify that the proposed algorithm can have
a good classification effect on general medical databases, this
paper randomly downloads 395 participants from the public
dataset Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [54]. -ese participants were composed of 101
patients with early Alzheimer’s disease (AD), 145 patients
with mild impairment cognitive (MCI), and 149 normal
control (NC). All longitudinal MRI scan images are obtained
using a professional scanner. Each participant has 1 to 10
scanned images; that is, participants perform MRI scans at
up to 10 different time points. Moreover, each scanned
image has an average of 180 slice images. Part of the image is
shown in Figure 7. At the same time, in order to better adapt
to the composition of relevant datasets, the paper randomly

selected the corresponding participants from the participants
of AD, MCI, and NC according to the ratio of 35%, 30%, and
35% and obtained 9 sets of data. Among them, 35% of the
selected participants merged and got the training set. -e
other 35% of the selected participants merged and trained to
get the test set.-e remaining 30% of the selected participants
are merged and trained to obtain a validation set.

-e classification algorithm and the other mainstream
image classification algorithms are used to classify the
medical image databases randomly selected by the ADNI
database. -e classification results are shown in Table 6.

As can be seen from Table 6, the traditional machine
learning method as in reference [55] is only 88.3%.-e brain
medical database constructed in this paper is composed of
randomly selected data in the ADNI database, which has
greater randomness and uncertainty. Traditional machine
learning methods cannot extract more effective feature in-
formation from these random images. -e classification
accuracy of the CNN algorithm is only 0.9% higher than that
of the traditional machine learning algorithm. -e main
factor may be that the CNN network structure is not well
adapted to the image characteristics in the brain medical
database built in this paper. Other deep learning algorithms
such as reference [56–60] have classification accuracy of
90.3%, 91.2%, 92.3%, 92.3%, and 92.5%, respectively. It can
be seen that the classification accuracy of these deep learning
algorithms is above 90%, which also shows that the deep
learning algorithm constructed by the subsequent use of
brain medical image feature information can better utilize
brain medical image information for classification. -e
classification accuracy obtained by the proposed method
reaches 95.1%, which is 2% higher than other deep learning
algorithms. -is is mainly because this paper proposes a
network weight initialization method that can better solve
the deep learning model from the network structure of deep
learning. It also increases the potential of convolutional
neural networks to handle different visual tasks. At the same
time, the framework of multicolumn convolutional neural

(c) (d)

Figure 6: Examples from the OASIS-MRI database.

Table 5: Comparison of classification accuracy of different clas-
sification algorithms on two medical image databases (unit: %).

Method type
Medical database type

TCIA-CT OASIS-MRI

LBP+ SVM 71.8 57.5
HOG+KNN 85.1 67.6
HOG+SVM 87.3 81.6
DeepNet1 98.7 89.2
DeepNet3 99.2 92.1
Our 100 95.9
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network is constructed according to the characteristics of
medical images, and the sliding window fusion processing is
performed on the multicolumn convolutional neural net-
work. It can obtain a better convolutional neural network
model and achieve high-precision classification of brain
medical databases. -e experiment and the above experi-
ments also show that the medical image classification al-
gorithm proposed in this paper can classify many different
medical images well, which further validates the validity and
reliability of the proposed algorithm. At the same time, it
further confirms that the proposed method has good sta-
bility and robustness.

6. Conclusion

From the network optimization perspective, this paper
uses optimization methods to improve the nonlinear
modeling ability of the network. By improving the
attracting domain to improve the generalization per-
formance of the solution after convergence, a new
method of network weight initialization is proposed. -is
method alleviates the problem that the initialization
theory of existing deep learning is limited by the type, and
it increases the potential of the neural network to address
different visual tasks. Moreover, this paper constructs a
CNN model with a variety of structures that better adapt

to the characteristics of the medical images of interest.
-e different CNN models are trained on the same
dataset, and finally, the trained heterogeneous multi-
column CNN is combined with the adaptive sliding
window fusion mechanism proposed in this paper. To-
gether, they accomplish the task of classifying medical
images.

-e results of the brain tumor tissue classification ex-
periments show that the proposed method has the highest
average accuracy, reaching 95.71%. On the image block
classification task involving MRI samples of 12 patients with
brain tumors, the proposed model’s advantages were clearly
shown on samples 2, 11, and 12, which are more difficult to
classify than the other samples. -is experiment shows that
the method proposed in this paper has good stability and
robustness while greatly improving the classification
accuracy.

-e results of the medical database classification ex-
periments show that the classification algorithm proposed in
this paper achieves the best classification results for the
TCIA-CT database and for the images in the OASIS-MRI
database that are the most difficult to classify. -e proposed
method is not only superior to traditional machine learning
algorithms but also improves other deep learning models.

-e results of brain-based self-built medical database
classification experiments show that the proposed method
has the highest accuracy rate of 95.1% on the brain medical
database constructed on the basis of ADNI database. It
further verifies that the proposed method can better adapt to
the classification task of general medical database.
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(a) (b) (c)

Figure 7: Examples from the ADNI database.

Table 6: Brain medical image classification results comparison
table.

Method type Classification accuracy (%)

Zhang et al. [55] 88.3
CNN 89.2
Suk et al. [56] 90.3
Liu et al. [57] 91.2
Liu et al. [58] 92.3
Shen et al. [59] 92.3
Aderghal et al. [60] 92.5
Our 95.1

12 Complexity



Acknowledgments

-is paper was supported by the National Natural Science
Foundation of China (no. 61701188) and China Postdoctoral
Science Foundation (no. 2019M650512). -is work was
supported in part by National Natural Science Foundation of
China (no. 61701188), Postdoctoral Science Foundation of
China (no. 2019M650512), and Natural Science Foundation
of Shanxi (no. 201801D221171).

References

[1] Y. Song, W. Cai, H. Huang et al., “Large margin local estimate
with applications to medical image classification,” IEEE
Transactions on Medical Imaging, vol. 34, no. 6, pp. 1362–
1377, 2015.

[2] H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and
A.-B. M. Salem, “Classification using deep learning neural
networks for brain tumors,” Future Computing and In-
formatics Journal, vol. 3, no. 1, pp. 68–71, 2018.

[3] S. K. Zhou, H Greenspan, and D. Shen, Deep Learning for
Medical Image Analysis, Academic Press, Cambridge, MA,
USA, 2017.

[4] J. Verma, M. Nath, P. Tripathi, and K. K. Saini, “Analysis and
identification of kidney stone using Kth nearest neighbour
(KNN) and support vector machine (SVM) classification
techniques,” Pattern Recognition and Image Analysis, vol. 27,
no. 3, pp. 574–580, 2017.

[5] F. A. Spanhol, L. S. Oliveira, P. R. Cavalin, C. Petitjean, and
L. Heutte, “Deep features for breast cancer histopathological
image classification,” in Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
pp. 1868–1873, Banff, Canada, October 2017.

[6] F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “A
dataset for breast cancer histopathological image classifica-
tion,” IEEE Transactions on Biomedical Engineering, vol. 63,
no. 7, pp. 1455–1462, 2016.

[7] A. Esteva, B. Kuprel, R. A. Novoa et al., “Dermatologist-level
classification of skin cancer with deep neural networks,”
Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[8] D. Liu, S. Wang, D. Huang, G. Deng, F. Zeng, and H. Chen,
“Medical image classification using spatial adjacent histogram
based on adaptive local binary patterns,” Computers in Biology
and Medicine, vol. 72, pp. 185–200, 2016.

[9] G. Mohan and M. M. Subashini, “MRI based medical image
analysis: survey on brain tumor grade classification,” Bio-
medical Signal Processing and Control, vol. 39, pp. 139–161,
2018.

[10] J. Wu, Y. Yu, and C. Huang, “Deep multiple instance learning
for image classification and auto-annotation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3460–3469, Boston, MA, USA, June 2015.

[11] R. J. Ramteke and Y. K. Monali, “Automatic medical image
classification and abnormality detection using k-nearest
neighbor,” International Journal of Advanced Computer Re-
search, vol. 2, no. 4, pp. 190–196, 2012.

[12] J. J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and
A. Yuille, “Efficient multilevel brain tumor segmentation with
integrated Bayesian model classification,” IEEE Transactions
on Medical Imaging, vol. 27, no. 5, pp. 629–640, 2008.

[13] A. Rao, Y. Lee, A. Gass, and A. Monsch, “Classification of
Alzheimer’s disease from structural MRI using sparse logistic
regression with optional spatial regularization,” in Proceedings

of the 2011 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pp. 4499–4502,
Boston, MA, USA, August 2011.

[14] S. Issac Niwas, P. Palanisamy, and K. Sujathan, “Complex
wavelet as nucleus descriptors for automated cancer cytology
classifier system using ANN,” in Proceedings of the IEEE 2010
International Conference on Computational Intelligence and
Computing Research, pp. 1–5, Coimbatore, India, December
2010.

[15] Z. Camlica, H. R. Tizhoosh, and F. Khalvati, “Medical image
classification via SVM using LBP features from saliency-based
folded data,” in Proceedings of the 2015 IEEE 14th In-
ternational Conference on Machine Learning and Applications
(ICMLA), pp. 128–132, Miami, FL, USA, December 2015.

[16] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray,
“Visual categorization with bags of keypoints,” in Proceedings
of the Workshop on Statistical Learning in Computer Vision
(ECCV), pp. 1–4, Prague, Czech Republic, May 2004.

[17] A. Singh, “Detection of brain tumor in MRI images, using
combination of fuzzy c-means and SVM,” in Proceedings of
the 2015 2nd International Conference on Signal Processing
and Integrated Networks (SPIN), pp. 98–102, New Delhi,
India, February 2015.

[18] Y.-D. Zhang, S. Chen, S.-H. Wang, J.-F. Yang, and P. Phillips,
“Magnetic resonance brain image classification based on
weighted-type fractional fourier transform and nonparallel
support vector machine,” International Journal of Imaging
Systems and Technology, vol. 25, no. 4, pp. 317–327, 2015.

[19] S. Zhu and H. R. Tizhoosh, “Radon features and barcodes for
medical image retrieval via SVM,” in Proceedings of the In-
ternational Joint Conference on Neural Networks (IJCNN),
pp. 5065–5071, Vancouver, Canada, July 2016.

[20] H. A. Abbass, “An evolutionary artificial neural networks
approach for breast cancer diagnosis,” Artificial Intelligence in
Medicine, vol. 25, no. 3, pp. 265–281, 2002.

[21] M. Karabatak and M. C. Ince, “An expert system for detection
of breast cancer based on association rules and neural net-
work,” Expert Systems with Applications, vol. 36, no. 2,
pp. 3465–3469, 2009.

[22] L.-H. Juang and M.-N. Wu, “MRI brain lesion image de-
tection based on color-converted K-means clustering seg-
mentation,” Measurement, vol. 43, no. 7, pp. 941–949, 2010.

[23] D.-Q. Zhang and S.-C. Chen, “A novel kernelized fuzzy
C-means algorithm with application in medical image seg-
mentation,” Artificial Intelligence in Medicine, vol. 32, no. 1,
pp. 37–50, 2004.

[24] D. Singh and K. Kaur, “Classification of abnormalities in brain
MRI images using GLCM, PCA and SVM,” International
Journal of Engineering and Advanced Technology (IJEAT),
vol. 1, no. 6, pp. 243–248, 2012.

[25] G. E. Hinton and R. R. Salakhutdinov, “Reducing the di-
mensionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504–507, 2006.
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