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Medical Image Compression
and Vector Quantization
Sharon M. Perlmutter, Pamela C. Cosman, Chien-Wen Tseng,
Richard A. Olshen, Robert M. Gray, King C. P. Li and Colleen J. Bergin

Abstract. In this paper, we describe a particular set of algorithms for
clustering and show how they lead to codes which can be used to com-
press images. The approach is called tree-structured vector quantization
(TSVQ) and amounts to a binary tree-structured two-means clustering,
very much in the spirit of CART. This coding is thereafter put into the
larger framework of information theory. Finally, we report the method-
ology for how image compression was applied in a clinical setting, where
the medical issue was the measurement of major blood vessels in the
chest and the technology was magnetic resonance (MR) imaging. Mea-
suring the sizes of blood vessels, of other organs and of tumors is fun-
damental to evaluating aneurysms, especially prior to surgery. We argue
for digital approaches to imaging in general, two benefits being improved
archiving and transmission, and another improved clinical usefulness
through the application of digital image processing. These goals seem
particularly appropriate for technologies like MR that are inherently
digital. However, even in this modern age, archiving the images of a
busy radiological service is not possible without substantially compress-
ing them. This means that the codes by which images are stored digi-
tally, whether they arise from TSVQ or not, need to be “lossy,” that is,
not invertible. Since lossy coding necessarily entails the loss of digital in-
formation, it behooves those who recommend it to demonstrate that the
quality of medicine practiced is not diminished thereby. There is a grow-
ing literature concerning the impact of lossy compression upon tasks that
involve detection. However, we are not aware of similar studies of mea-
surement. We feel that the study reported here of 30 scans compressed
to 5 different levels, with measurements being made by 3 accomplished
radiologists, is consistent with 16:1 lossy compression as we practice it
being acceptable for the problem at hand.

Key words and phrases: Lossy image compression; tree-structured vec-
tor quantization; measurement accuracy; image quality; evaluation.
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1. INTRODUCTION

Recent years have seen an increasing use of imag-
ing technologies such as magnetic resonance imag-
ing (MRI) and computerized tomography (CT) that
render images in digital format. Although such dig-
ital images are usually reduced to hard-copy ana-
log form for display, their digital properties hold
promise for a significant expansion of their uses in
diagnosis. They are amenable to signal processing,
including image enhancement and classification, the
combining of images obtained from different modali-
ties, 3-D modeling and motion video. One fundamen-
tal difficulty in working with digital medical images,
however, is the size of individual files involved (CT,
0.5 Mb; MR; 0.13 Mb; digitized X-rays; 8 Mb); this
difficulty is compounded by the immense number
of images produced. Each year Stanford University
Medical Center alone generates some 1.2 Terabytes
of CT and MR images that require digital storage
on magnetic tape. Because of space constraints, the
tapes are erased and reused after two years; images
remain available only in analog hard-copy format if
at all. If the digital properties of medical images are
to be exploited, it is clear that compression will be
needed to allow long-term and cost-efficient storage,
as well as rapid access and transmission.

When a standard lossless (reversible) compres-
sion scheme such as a Lempel–Ziv algorithm is ap-
plied to MR and CT scans, typically compression ra-
tios of about 2 : 1 are achieved. Recent studies have
shown that, with more complex lossless compres-
sion, compression ratios of 3 : 1 or 4 : 1 are possible
[5, 6, 60, 61]. Lossless compression alone is in gen-
eral insufficient to attain ratios better than 4:1. It
is then natural to turn to schemes for lossy (irre-
versible) compression that have provided excellent
results for nonmedical images. One goal of this pa-
per is to survey the basic theory and algorithmic
ideas underlying lossy compression, especially the
trade-offs between common engineering measures
of image quality, the bit rate required for transmis-
sion and storage, and the complexity of implement-
ing the compression algorithms. The basic problem
formulation and many of the techniques used to de-
sign compression systems directly parallel ideas in
statistical classification and regression, and these
parallels have proved useful in designing simple and
effective codes.

Most compression algorithms in practice are dig-
ital, beginning with an information source that is
discrete in time and amplitude. If an image is ini-
tially analog in space and amplitude, one must first
render it discrete in both space and amplitude be-
fore compression. Discretization in space is gener-

ally called sampling—this consists of examining the
intensity of the analog image on a regular grid of
points called picture elements, or pixels. Discretiza-
tion in amplitude is simply scalar quantization: a
mapping from a continuous range of possible values
into a finite set of approximating values. The term
analog-to-digital (A/D) conversion is often used to
mean both sampling and quantization, that is, the
conversion of a signal that is analog in both space
and amplitude to a signal that is discrete in both
space and amplitude. Such a conversion is by itself
an example of lossy compression.

A general system for digital image compression is
depicted in Figure 1. It consists of one or more of the
following operations, which may be combined with
each other or with additional signal processing:

• Signal decomposition—The image is decomposed
into several images for separate processing. The
most popular signal decompositions for image pro-
cessing are linear transformations of the Fourier
family, especially the discrete cosine transform
(DCT), and filtering with a subband or wavelet
filter bank. Both methods can be viewed as trans-
forms of the original images into coefficients with
respect to some set of basis functions. There are
many motivations behind such decompositions.
Transforms tend to “mash up” the data so that
the effects of quantization error are spread out
and ultimately invisible. Good transforms con-
centrate the data in the lower order transform
coefficients so that the higher order coefficients
can be coded with few or no bits. Good transforms
tend to decorrelate the data with the intention
of rendering simple scalar quantization more ef-
ficient. The eye and ear are generally considered
to operate in the transform domain, so that it is
natural to focus on coding in that domain where
psychophysical effects such as masking can be
easily incorporated into frequency dependent
measures of distortion. Lastly, the transformed
data may provide a useful data structure, as do
the multiresolution representations of wavelet
analysis.
• Quantization—High rate digital pixel intensities

are converted into relatively small numbers of
bits. This operation is nonlinear and noninvert-
ible; it is “lossy.” The conversion can operate on
individual pixels (scalar quantization) or groups
of pixels (vector quantization). Quantization can
include discarding some of the components of the
signal decomposition step. Our emphasis is on
quantizer design.
• Lossless compression—Further compression is

achieved by an invertible (lossless, entropy) code
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Fig. 1. Image compression system.

such as run-length, Huffman, Lempel–Ziv or
arithmetic code.

Many approaches to systems for image compres-
sion have been proposed in the literature and in-
corporated into standards and products, both soft-
ware and hardware. These differ primarily by the
different choices made for the three basic compo-
nents: signal decomposition; quantization; and loss-
less coding. A variety of systems and algorithms for
compression are described to provide context, but
the method chosen for the current study is a com-
promise among a variety of considerations. The al-
gorithm used was predictive pruned tree-structured
vector quantization [12, 32, 62, 45]. This technique
involves fast encoding and decoding, and provides
additional advantages such as simple progressive
transmission and potential incorporation of other
signal processing techniques such as classification
[56, 57]. The algorithm does not perform a signal
decomposition such as a DCT or wavelet, and it pro-
duces directly a variable length code without sepa-
rate entropy coding. Our reasons for selecting this
algorithm are threefold. The first is simplicity; in
particular, the compression operates directly on the
individual pixels and produces a variable rate bit-
stream without the need to compute transforms and
inverse transforms or to do separate entropy cod-
ing. This results in a simple decompression algo-
rithm that depends mostly on table lookups with
few arithmetic operations. The second reason is that
the tree-structured algorithms used inherently pro-
vide a natural progressive structure to the code,
which incorporates the ability for progressive re-
construction of an improved image as bits arrive.
Finally, our emphasis in this work is on judging
the quality and utility of lossy compressed medi-
cal images, and the protocol for evaluating qual-
ity does not depend on the compression algorithm
at all.

The purpose of the compression system is to code
an information source, such as a sequence of pixel
blocks making up an image, into a sequence of bi-
nary integers or bits, which can then be decoded or
decompressed to reproduce the original source with
the best possible fidelity. The goal is to have the best
possible fidelity between the reproduction and orig-

inal subject to a constraint on the average number
of bits transmitted or stored.

With medical images, however, the common engi-
neering measures of quality such as signal-to-noise
ratio (SNR) are insufficient; in medical applications
the primary concern is that the diagnostic accuracy
of the lossy compressed images remain not less than
that of the original images. Signal-to-noise ratios
and mean squared error (MSE) may indicate di-
agnostic accuracy, but the accuracy must be dem-
onstrated directly. In addition, the images must
appear nearly identical to the originals, or the ra-
diologists will not use them no matter their other
features. A wide variety of diagnostic tasks must be
studied, including measurement of structures, de-
tection of lesions and interpretation of texture. We
have developed and implemented protocols for ex-
perimentation by which the diagnostic accuracy of
radiologists who make use of images, compressed
or not, can be quantified.

Most previous studies have focused on the effects
of lossy compression on detection tasks [7, 16, 18,
35, 48, 64]. We are not aware of any other studies
on the effects of lossy compression on the accuracy
of measurement. Measurement tasks on structures
such as blood vessels, other organs and tumors take
a central role in the evaluation of aneurysms, espe-
cially prior to surgery. Abdominal aortic aneurysms
are evaluated routinely with ultrasound; thoracic
aortic aneurysms are evaluated by CT or MRI. The
aortic diameter is usually measured manually with
calipers. A measured value of diameter in excess
of 4 cm entails a diagnosis of aneurysm. A larger
aneurysm carries a greater risk of rupture. About
10% of those aneurysms between 5 and 10 cm in di-
ameter and about 50% of those with values greater
than 10 cm do eventually rupture [41]. Because rup-
ture is invariably fatal, measured values more than
5 or 6 cm indicate operative repair [68, 8]. Of course
the clinical decision depends not only on the size
of the aneurysm but also on the clinical status of
the patient (especially as concern pain and hemo-
dynamic instability). Dilation less than 5 cm in di-
ameter may be followed conservatively by serial MR
imaging studies at 6-month intervals. Observing an
increase in the aortic diameter of 0.5 cm over the
course of a 6-month interval would be indication for
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surgical repair. Comparison films are imperative for
appropriate management of these patients.

The goal of the study reported here was to quan-
tify the effects of lossy compression on measurement
accuracy through experiments that follow closely
the clinical tasks of radiologists evaluating aortic
aneurysms. We wished to examine whether com-
pression maintains the information required for ac-
curate measurements, or whether it leads to inac-
curacies by blurring edges or distorting structures.
The task to be studied is the measurement of four
primary blood vessels in the mediastinum: the as-
cending aorta, descending aorta, right pulmonary
artery (RPA) and superior vena cava (SVC). Clearly,
if compression at a certain bit rate caused a 0.5-cm
error in the aortic measurement above and beyond
any error that might typically be made on the un-
compressed image, the compression would be unac-
ceptable. One fundamental message readers might
take from this paper is that what variability there
is in the measurements of our judges (at least for
images compressed not more than to 0.55 bits per
pixel) is already there in measurements on uncom-
pressed images. Although we focused on the medical
problem of thoracic aortic aneurysms as seen on MR
scans, the methodology developed in this research is
broadly applicable to any medical task requiring the
measurement of structures. Our project is divided
into three general areas as follows:

• establishing a protocol for obtaining measure-
ments and subjective scores in a clinical setting;
• establishing a “gold standard” for the “correct

vessel sizes,” selecting parameters for quanti-
fying measurement error and choosing a set of
statistical methods to determine to what bit rate
these images can be compressed without loss in
measurement accuracy;
• determining whether subjective scores and mea-

surement error vary similarly with decreasing bit
rates.

A set of 9-bit original MR chest images contain-
ing aneurysms and normal vessels was compressed
to five bit rates between 0.36 and 1.7 bits per
pixel (bpp). Example images are seen in Figure 2.
The approach to compression is through a binary
tree-structured two-means clustering, very much
like CART. The basic set of algorithms is called
tree-structured vector quantization (TSVQ), and
considerable detail is given later in the paper after
background material provides context. Radiologists
measured the four vessels on each image. As a
separate task, the radiologists also rated the sub-
jective quality of each image by assigning a score of
1 (worst) through 5 (best) to each image.

In our statistical analyses, we set two gold stan-
dards, a “personal” one [16, 18], and an “indepen-
dent” one. These are two methods of establishing the
correct size of each blood vessel, that is, the under-
lying “truth” of each image. The personal gold stan-
dard is derived for individual radiologists based on
their own measurements of the same image at the
uncompressed level. Since the personal gold stan-
dard defines the measurements on the originals to
be correct (for that image and that judge), the com-
pressed images cannot be as good as the originals
if there is random error in the measurement pro-
cess. For this reason, we also defined an indepen-
dent gold standard. This is based on the consen-
sus measurements taken by two radiologists on the
original images. These two radiologists are differ-
ent from the three radiologists whose judgments are
used to determine diagnostic accuracy. This does in-
troduce interobserver variability into that portion of
the analysis, but it also allows the original images
to be compared fairly with the compressed ones.

For each of these gold standards, we quantify the
accuracy of the measurements at each compression
level by taking the percentage measurement error
for each image, defined to be the difference between
a radiologist’s measurement and the gold standard,
scaled by the gold standard measurement. This er-
ror is reported as a function of bit rate. Other pa-
rameters such as subjective scores and signal-to-
noise ratios are also analyzed as functions of bit
rate. Variabilities of the measurements by (judge,
image) pairs are quantified by two-way analyses of
variance in which the effects are level of compres-
sion and structure, and there is also a (one degree
of freedom) term for nonadditivity. These ANOVAs
are thought of as descriptive statistics, and they are
summarized by various box plots.

2. SIGNAL COMPRESSION

We review the basic notions of sources, codes,
fidelity and optimal performance and describe
both general and specific compression systems,
including the particular algorithm—predictive tree-
structured vector quantization—emphasized in the
image quality experiments considered here.

2.1 Source Coding

The Shannon model for a compression system is
a source code with a fidelity criterion [66, 67]. The
source to be coded, �X�n�y n ∈ Z�, is considered a
random process, where Z is the integers. The X�n�
are assumed to take values in k-dimensional Eu-
clidean space with marginal distribution PX. This
distribution might be parametric, but in practice we
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Fig. 2. (a) Original 9:0-bpp MR chest scan; (b) same image compressed to 1:14 bpp; (c) image compressed to 0:36 bpp.

usually work with an empirical distribution PL esti-
mated from a training or learning set L = �xly l =
1; : : : ; �L �� as

PL �G� =
1
�L �

∑
x∈L

1�x ∈ G�

for any event G, where 1�x ∈ G� is the indicator
function that equals 1 if x ∈ G and equals 0 other-
wise.

The dimension k is a parameter of the particular
application. Shannon information theory [66, 67] in-
dicates that improved performance can be achieved
using larger vector dimensions at the expense of
added complexity in terms of memory and computa-

tion. As our example of primary interest, the vectors
are rectangular blocks of pixel intensities within a
sampled image.

A source code or compression code for the source
�X�n�� consists of a pair �α;β� of encoder and de-
coder. An encoder αx A→ �0;1�∗ is a mapping from
the input alphabet A (typically a subset of Rk) into
the set of all binary sequences of finite length. Of
particular importance is the range space W ≡ α�A�,
which we refer to as the channel codebook, the set of
binary sequences that are stored in a digital storage
medium or are transmitted from the transmitter to
the receiver via a digital communication link. In or-
der to ensure that a sequence of symbols (variable
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length binary vectors) drawn from the channel code-
book can be decoded uniquely if the starting point
is known, we require that the W be prefix-free or
satisfy the prefix condition: no word in the code-
book is a prefix of any other word in the codebook.
It is a standard exercise in information theory to
demonstrate that any uniquely decodable channel
codebook can be made into a channel codebook with
the same codeword lengths that also satisfies the
prefix condition, and hence no essential generality
is lost by the assumption. (See, e.g., [19, 32].)

The decoder βx �0;1�∗ → C is a mapping from
the space of finite-length binary sequences onto a
set C ≡ �β�w�y w ∈ W � called the reproduction
codebook, with members called reproduction code-
words or templates. The members of C are chosen
from a reproduction alphabet Â which typically, but
not always, is simply the input alphabet, A. For a
given encoder we care about the definition of β�w�
only for w ∈ W . It can be defined arbitrarily outside
this set.

This model of a compression system is general in
the sense that it includes any code operating on dis-
joint blocks of data functionally independent of past
or future coding operations. In other words, it mod-
els codes that have no memory of previous vectors or
anticipation of future vectors. These codes are some-
times referred to as block source codes to distinguish
them from codes that can vary the dimension of in-
put blocks or that can operate on overlapping input
blocks in a “sliding-block” fashion.

2.2 Quality versus Cost

To measure the fidelity or lack thereof between an
input vector and its reproduction, we assume that
we have a distortion measure d�x;y� ≥ 0 defined for
every possible x;y; d�x; x̂� measures the distortion
or loss resulting if an original input x is reproduced
as x̂. The overall goal of a compression system is
to keep distortion and bit rate small. The distortion
measure need not be a metric, but ideally it should
possess the following properties:

• It should be easy to compute so that the distortion
can be monitored easily.
• It should be tractable for theoretical analysis so

that performance can be predicted and optimized
for parametric models such as Gaussian sources.
• It should be meaningful in the desired applica-

tion, for example, large or small average distor-
tion should correspond to an image that looks bad
or good, respectively, in an entertainment appli-
cation, or to an image that lends itself poorly or
well to further analysis, for example, recognizing
tumor tissue in medical images.

No single distortion measure accomplishes all of
these goals, although the widely used squared error
distortion defined by

d�x;y� = ��x− y��2 =
k−1∑
l=0

�xl − yl�2;

where x = �x0; x1; : : : ; xk−1�, accomplishes the first
two goals and occasionally correlates with the third.
Unfortunately, distortion measures that have been
found to be good measures of perceived quality in
speech and images have often proved to be quite
complicated and have usually lacked the first two
properties [10, 69, 50, 46, 54, 51, 63]. As a result,
the squared error distortion has dominated the lit-
erature with relatively rare extensions to other
measures. For particular applications, one varia-
tion on the squared error distortion measure has
provided a promising means of incorporating per-
ceptually important characteristics of an image by
incorporating knowledge of the human visual sys-
tem while retaining much of the tractability and
amenability to analysis. This variation is the class
of input weighted quadratic distortion measures
of the form d�x; x̂� = �x − x̂�tBx�x − x̂�, where
Bx is a positive definite symmetric matrix which
can depend on the input [55, 23, 33, 30, 26]. The
Mahalonobis distance of statistics provides a sim-
ple example where the weighting matrix does not
depend on the specific input, so that one could,
for example, choose a separate inverse covariance
matrix for different classes of inputs when mea-
suring the distortion. A simple example of input
dependence would be to have Bx be the identity
times the sample variance of components of the
vector x. Thus the distortion would be increased if
x has large variability and hence x is an “active”
vector. The Lloyd quantizer algorithm described
here extends to such distortion measures [34], as
does the Bennett asymptotic quantization theory
[30, 42] mentioned later in this paper. Since no
single weighting matrix is considered the best,
and such perceptually based distortion measures
have not yet been treated in measuring quality
in medical images, we focus on the simple squared
error.

The distortion resulting from applying a source
code �α;β� to a specific input vector x is d�x;β�α�x���:
A code �α;β� will be said to be lossless if β�α�x�� =
x, for all inputs x ∈ A. For a lossless code, β is the
inverse of α. Given that d�x;y� > 0 if x 6= y, the
code is lossless iff d�x;β�α�x��� ≡ 0, x ∈ A. Lossless
codes are also called invertible codes, noiseless codes
or entropy codes.
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A code that is not lossless is lossy and it is usu-
ally called a quantizer. Since the alphabet is in gen-
eral a k-dimensional vector, the more general no-
tion is a vector quantizer (VQ). The overall mapping
Qx A→ C defined as the composite Q�x� = β�α�x��
is often referred to as a VQ, and the term is also
used somewhat more generally to denote any map-
ping from a continuous or large discrete space into a
smaller space. The smaller space is usually required
to be finite, but sometimes it is useful to allow it to
be countably infinite. The encoder mapping can also
be represented in terms of a Voronoi diagram, which
illustrates how the vector space is partitioned. Fig-
ure 3 provides an example of a Voronoi diagram for a
two-dimensional vector. The mapping rule of the en-
coder is represented by the boundaries between the
Voronoi cell. Each Voronoi cell represents the set of
input vectors that mapped to a particular codeword.
The codewords are represented by black dots.

Lossless codes are an important special case of
compression codes. When compressing a computer
program or bank statement, for example, it is crit-
ically important to make no errors. A single wrong
digit could have catastrophic consequences. We ar-
gue that in some examples, such as medical and sci-
entific images, lossy compression may be quite use-
ful even though the utility of the images is strongly
related to the quality of the reproductions.

The “cost” of encoding an input vector x in terms
of the memory occupied by the stored channel code-
word or the communications channel capacity re-
quired for its transmission is taken to be the length
of the encoded input vector α�x� in binary symbols,
which we denote by l�α�x��. This quantity is also re-
ferred to as the instantaneous rate r�x� = l�α�x�� in
bits per input vector. It is convenient to normalize
both distortion and rate into units per input symbol
by dividing by the dimension k of the input vectors
and to report r in terms of bits per input symbol.
Obviously the distortion resulting from encoding an
input vector depends on the encoder and decoder,

Fig. 3. Voronoi diagram.

while the instantaneous rate depends only on the
encoder.

The performance of a compression system is mea-
sured by the expected values of the distortion and
rate. The average distortion corresponding to a spe-
cific source code applied to a specific source is de-
noted D�α;β� = E�d�X;β�α�X����: It is often re-
ported in logarithmic form as a signal to noise ratio
SNR = 10 log10�D0/D� with units decibels (dB); D0
is a reference value and is often the average distor-
tion resulting from the optimum zero rate code. In
the case of a squared error distortion measure, D0 is
the variance of the components of the input vector.
Other normalizations are used, including the non-
central second moment (energy) and the square of
the maximum possible input value (yielding what is
called a peak SNR (PSNR)). The average rate is de-
fined as R�α� = E�r�X�� = E�l�α�X��� in bits per
vector. This is usually normalized by dividing by the
dimension k, which gives average bits per symbol
(or pixel in the case of sampled images). The distri-
bution with respect to which expectations are com-
puted is always determined by context, although in
practice it can only be a suitable empirical distri-
bution.

Every source code operating on a source will
be characterized by a point in the two-dimensional
rate–distortion plane: �R�α�;D�α;β��. BothD�α;β�
and R�α� can be considered as cost functions for a
source code. All else being equal, one code is better
than another if it has smaller D or smaller R than
another. Thus if we were to consider a plot of all
achievable distortion–rate pairs, the only points of
practical interest would be those not dominated by
any other points in the sense of having a smaller
D (or R) given the same or smaller R (or D). This
leads to the definitions of optimal source codes, just
as it does to admissibility in statistics.

2.3 Optimal Source Codes

2.3.1 Optimality properties. The goal of source
coding is to characterize the optimal trade-off be-
tween average bit rate and average distortion and
to design codes that compare well to the optimal
performance. The optimization problem can be
formulated in several ways. The distortion–rate
approach constrains the average rate and mini-
mizes the average distortion; the rate–distortion
approach constrains the average distortion and
minimizes the average rate; and the Lagrangian
formulation minimizes a weighted sum of distortion
and rate. All formulations are analogous to those
that bear upon the construction of statistical tests,
in Neyman–Pearson style for the first two and as
Bayesian tests for the third. In the first approach
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we define the optimal code (if it exists) for a given
rate R as the �α;β� minimizing D�α;β� subject to
R�α� ≤ R. Define the operational distortion–rate
function

D̂�R� = inf
α;βxR�α�≤R

D�α;β�:

The function D̂�R� is obviously monotonically non-
increasing in R. The rate–distortion function is de-
fined by reversing the roles of rate and distortion.

The Lagrangian approach incorporates the rate
constraint into a modified distortion measure ρ de-
fined between the input vector and the channel
codeword by

ρ�x; i� = d�x;β�i�� + λl�i�;(1)

for a Lagrange multiplier λ, so that the average
modified distortion measure is given by

E�ρ�X;α�X��� = D�α;β� + λR�α�:(2)

The constrained minimization of D is equivalent
to an unconstrained minimization of Eρ. For ev-
ery choice of λ the unconstrained minimization will
yield a pair �D;R� in the distortion–rate plane,
where D is the operational distortion–rate function
evaluated at the rate R (and λ proves to be the
negative of the slope of the distortion–rate function
at that pair [13]). We focus on the Lagrangian for-
mulation as the more natural for the problem at
hand.

The case of 0 rate code is of course artificial,
but it is useful as a step toward describing op-
timality properties for the general case. In order
to achieve the minimum possible average dis-
tortion with a 0 rate codebook having a single
word y, a y yielding the minimum average dis-
tortion (if such exists) should be chosen as the
output of β operating on the empty string \. Thus
β�\� = arg miny∈ÂE�d�X;y��: If the minimum
indeed exists, we have

D̂�0� = min
y
E�d�X;y��:(3)

The vector achieving this minimum is the centroid
of the alphabet A with respect to the distribution
PX. If the average distortion is given by the squared
error E���X − y��2�, then this is the expected value
EX since, for any y, E���X−y��2� ≥ E���X−EX��2�:
If the distribution is an empirical distribution de-
scribed by the training sequence, then this is simply
the sample mean or Euclidean centroid

1
L

L∑
n=1

xn:

The zero rate result extends easily to describing
the optimal decoder in general for a given encoder.

Given an encoder α, define the encoder partition
S =�Siy i∈W � with atoms Si=�xxα�x�= i�. Given
that α�X� = i, the best reproduction value y to rep-
resent all input vectors in the set Si in the sense
of minimizing the average conditional distortion
E�d�X;y��X∈Si� is arg miny∈ÂE�d�X;y��X∈Si�.
For the squared error distortion, this is simply the
conditional expectation E�X�X ∈ Si�. As in the
zero rate case, the optimal decoder output for a
given channel codeword is a centroid, but now of
an encoder partition cell instead of the entire input
space. If Pr�X ∈ Si� = 0, then the decoder can be
defined in an arbitrary fashion, say as the centroid
of the entire input distribution.

This provides a general optimality condition de-
scribing the best decoder for a given encoder, a
condition originally formulated by Lloyd for scalar
(univariate) quantization in 1957 [44]: given an
encoder α, the optimal decoder β is given by

β�i� = arg min
y∈Â

E�d�X;y��α�X� = i�(4)

for each i. The optimal decoder for any encoder
is also defined for any internal nodes in the tree-
structured representation that will be discussed,
permitting a progressive reconstruction as the
bits arrive. This condition has a history in both
the engineering quantization and the statistical
literature.

In a similar fashion, one can define an optimal en-
coder α for a fixed decoder β with respect to the La-
grangian distortion measure. Given β, any encoder
α must satisfy the inequality

E�ρλ�X;β�α�X����

=
∫
dPX�x��d�x;β�α�x��� + λl�α�X���

≥
∫
dPX�x�min

i
�d�x;β�i�� + λl�i��:

(5)

This lower bound is achievable by the minimum
modified distortion encoder

α�x� = arg min
i

�d�x;β�i�� + λl�i��:

Thus, given the reproduction codebook β, the opti-
mal encoder is the minimum distortion encoder with
respect to the modified distortion measure.

As will be discussed at more length later, it is
often useful to place additional constraints on the
structure of the codebook in order to simplify the
code. Adding constraints to an optimization problem
may of course result in a code that is suboptimal for
the unconstrained problem, but it may have advan-
tages that are due to simple implementation. The
most important example of such a constraint is to
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require the channel code to have all its binary words
be of some fixed lenth R, in which case the channel
codebook consists simply of all N = 2R binary R-
tuples. In this case the instantaneous rate and the
average rate are both given by r = k−1 log2N = R/k
bits per source symbol, and the code is referred
to as a fixed rate code. The primary advantage of
fixed rate codes is reduced complexity. Variable rate
codes may produce symbols faster or slower than the
transmission rate of a digital communication sys-
tem, which necessitates the use of buffers to handle
underflows and overflows. We here focus on vari-
able rate schemes, which are better able to devote
more bits to more active input vectors and fewer to
background.

2.3.2 The Lloyd algorithm. These optimality prop-
erties suggest an iterative design algorithm for
compression given an initial encoder–decoder pair.
Any given code can be improved (at least made no
worse) by successively applying the above two prop-
erties. First optimize the reproduction codebook (or
decoder) for the given encoder, then optimize the
encoder for the given reproduction codebook and
channel codebook. There are a wide variety of ways
that an initial codebook can be designed. The ap-
proach used in this study was to grow it from a 0
rate code. The design procedure is a variation of a
1957 algorithm of Lloyd [44] for the design of op-
timum pulse coded modulation (PCM) systems or
scalar quantizers with fixed rate codebooks (where
the channel codebooks are restricted to have all en-
tries of equal length and hence the constraint is on
the rate).

Lloyd’s method is familiar to statisticians since
variations have appeared in several statistical as
well as engineering guises. In the scalar case with
an empirical distribution, the problem of choosing
the best set of N points minimizing a sample vari-
ance is the “problem of optimum stratification” of
Dalenius [21] in 1950 and Dalenius and Gurney
[22] in 1951. The first appearance of the condi-
tions for optimal fixed rate scalar quantization for
a general one-dimensional distribution was in 1955
in the work of Lukaszewicz and Steinhaus [47].
Lloyd reported the properties along with a simple
proof not requiring differentiability in 1957, and
J. Max subsequently rediscovered a similar method
in 1960 [52]. The optimal scalar quantization result
is often referred to in the engineering literature
as a Lloyd–Max quantizer, although it is Lloyd’s
method of proof and not Max’s calculus-based min-
imization that easily generalizes to vectors. Also
in 1957 Cox [20] provided the same conditions for
“grouping” equivalent to quantization and, like

Lloyd, applied the results to the Gaussian distri-
bution. Unlike Lloyd, Cox explicitly considered the
two-dimensional case.

Lloyd’s method applied to vectors and multidi-
mensional distributions is essentially equivalent to
Forgey’s 1965 algorithm [29] and MacQueen’s k-
means algorithm [49] if the distribution is an em-
pirical distribution. Unlike the original k-means al-
gorithm, however, Lloyd’s algorithm was a “batch”
algorithm in that each iteration was on the entire
distribution (an empirical distribution if a training
set is used) rather than on an incremental update
for each training vector. (Subsequent variations of
k-means operate in a similar fashion.) The algo-
rithm and its variations are popular for a variety
of clustering applications as is seen, for example, in
[36]. Lloyd proved the quantizer optimality proper-
ties by basic inequalities as above rather than by
setting derivatives to zero, and hence no assump-
tions past the existence of the centroids of sets were
required for the algorithm to be well defined. Lloyd’s
method was explicitly applied to random vectors in
the quantization context by several people, includ-
ing Chen [11], Hilbert [37], and Linde, Buzo and
Gray [43]. The algorithm was extended to the vari-
able rate case by Chou, Lookabaugh and Gray [14].

More recently, in 1990 the method reappeared un-
der the name of “principal points,” distinguished
from traditional k-means by the assumption of an
absolutely continuous distribution instead of an em-
pirical distribution [28, 70]; these works by Flury
alone and with colleagues ignore the quantization
literature. It is interesting to note in particular that
Flury observes with surprise that the optimal points
need not be symmetric about the mean even if the
distribution is symmetric, a fact noted in the quan-
tization literature by Abaya and Wise in 1981 [1].

Since distortion is nonnegative and nonincreas-
ing, the algorithm is a descent algorithm. In gen-
eral the algorithm converges only to a stationary
point, and there is no guarantee that the resulting
code will be globally optimal. (It is guaranteed to be
globally optimal for all codebook sizes if X is uni-
variate and the distribution is absolutely continuous
with log concave density [71, 40]. This is equivalent
to the distribution being strongly unimodal, that is,
for its convolution with every univariate unimodal
distribution to be unimodal (see [38]; see also [39]).)

2.3.3 Source coding and quantization theory. The
Lloyd algorithm is simply a clustering algorithm,
and a wide variety of other clustering algorithms
have been used to design vector quantizers. In gen-
eral there are no guarantees that such algorithms
will produce globally optimal codes, and the intent
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is to produce at least a locally optimal and good
code. It is natural to inquire if the truly optimal
performance can be derived theoretically so that
one can have a benchmark for comparison of differ-
ent codes. There are two approaches to quantifying
the optimal performance when the underlying dis-
tributions are known, and both were developed pri-
marily at Bell Laboratories in the late 1940s and
1950s. The first is Shannon’s information theory.
Shannon showed that a suitably well behaved ran-
dom process can be described by a distortion–rate
function D�R� which is related to the previously de-
fined operational distortion–rate function as follows.
For dimension k let D̂k�R� denote the operational
distortion–rate function for vectors of dimension k.
Then

inf
k
D̂k�R� = lim

k→∞
D̂k�R� = D�R�;

that is: (1) no codes can ever yield performance
lower than Shannon’s distortion rate function and
(2) for dimension large enough performance arbi-
trarily close to the Shannon distortion rate function
can be achieved. Shannon’s distortion rate func-
tion is defined as an information theoretic mini-
mization and it can be computed for some processes
and distortion measures (such as Gaussian pro-
cesses with a squared error distortion measure)
and bounded for others. This result, known as
Shannon’s source coding theorem with a fidelity
criterion, has the shortcoming that it is not con-
structive; and it suggests that very large vector
dimensions may be needed to approach the optimal
performance. It also assumes that one knows the
underlying distributions, which is usually not the
case in practice.

The alternative approach to quantifying the the-
oretically achievable optimal performance is the
approach developed by Bennett [4] for scalar quan-
tization and subsequently extended to vector quan-
tization by others [75–77, 31, 74, 53]. Instead of
fixing a bit rate R and letting the dimension k grow,
this approach fixes the dimension k and lets the
rate (or number of quantization levels) get asymp-
totically large (or the distortion asymptotically
small). This theory has the advantage of applying
to a fixed dimension, but requires the assumption
of a large rate, which is usually not desirable when
data compression is the goal and relatively small
rates are desired. As with the Shannon theory, it
assumes known distributions.

We mention the theories of source coding and
quantization only in passing as they do not yield
useful performance bounds when coding real im-
ages, but both theories have provided useful in-

sights into code design and have been much used
for benchmarking various approaches to design for
common parametric models such as memoryless
Gaussian and Laplacian sources.

2.3.4 Tree-structured codes. In practice it is often
of interest to optimize over a constrained subset of
possible codes rather than over all of them. Uncon-
strained codes may prove difficult or impossible to
implement, and added structure may provide gains
in practical simplicity that more than compensate
for loss of optimality.

All vector quantizers can be considered to have a
tree-structured form since any channel codebook is
a collection of binary words satisfying the prefix con-
dition, and any such collection can be depicted as a
binary tree. The entire input alphabet can be asso-
ciated with the root node of the tree, from which de-
scend two branches connected to two children nodes.
One branch is labeled 0, the other 1, according to the
first symbol in the channel codebook. Each of the
two children nodes will be associated with all input
vectors having channel codewords which begin with
the branch label leading to that node. A node will
be a terminal node or leaf of the tree if the label of
the branch leading into the node is the final sym-
bol in the channel codewords for all of the vectors
associated with that node. Otherwise the node has
two children, one for each possible next symbol in
the channel codeword. Thus the channel codebook
corresponds to a binary tree with terminal nodes
corresponding to complete channel codewords and
internal nodes corresponding to prefixes of channel
codewords. The channel codeword can now be in-
terpreted as providing a pathmap through the tree,
ending in the terminal node. On arriving at a ter-
minal node, the decoder can produce the optimal
reproduction, the centroid of all input vectors which
are mapped into that node by the encoder. The
tree structure has an immediate benefit: Instead of
waiting for the terminal node to be reached before
producing a reproduction, the decoder could produce
a reproduction at each interim node traversed by
the encoder, the centroid of all input vectors which
are associated with that interim node. This means
that the decoder can reconstruct the input vector
in a progressive manner that should provide an in-
creasingly good reproduction as more bits arrive
and as the terminal node is achieved. This progres-
sive reconstruction can be very useful in practice as
it means one can see an ever improving image as
the bits arrive instead of waiting for all of the bits
before anything is reconstructed. It also suggests
an alternative simple, but suboptimal, means of
encoding.
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The optimal encoder must look at all of the termi-
nal nodes of the tree and find the minimum distor-
tion (or nearest neighbor) in the sense of providing
the smallest Lagrangian combination of squared er-
ror and channel codeword length (the depth of the
terminal node). A simple suboptimal encoder could
perform a greedy search of the code tree instead of
a full search of all leaves to find the minimum mod-
ified distortion. In this case each node is considered
to be labeled by its optimal reproduction, and at
each node the encoder makes a simple binary deci-
sion comparing the distortion resulting from using
either of the two available children nodes. Since one
bit is added regardless of which node is selected, bits
are not explicitly taken into account during encod-
ing. They are taken into account when the tree itself
is designed. The decision is therefore simply a mini-
mum squared error selection between two available
reproductions for a given input vector. The mini-
mum distortion binary decision is equivalent to a
hyperplane test or, in engineering parlance, a corre-
lation or matched filter detector.

The channel codeword is thus selected by a
sequence of simple binary decisions. Vector repro-
ductions are stored at each node in the tree. The
search begins at the root node. The encoder com-
pares the input vector to two possible candidate
reproductions, chooses the one with the minimum
distortion and advances to the selected node. If the
node is not a terminal leaf, the encoder continues
and chooses the best available node of the new pair
presented. The encoder produces binary symbols
to represent its sequence of binary decisions. The
stored index is then a path map through the tree
to the terminal node, which is associated with the
final codeword. For example, if one constrains the
code to have only fixed length codewords and there
are N = 2kR codewords, then the optimal encoder
must compute 2kR distortions in order to select the
minimum distortion codeword, while the subopti-
mal greedy tree search will make only kR binary
comparisons. Clearly one no longer will have an
optimal encoder for the given code, and it may be
that a good code for an optimal search may prove
poor for the suboptimal search. Hence it is of con-
cern to design a code that will be good when used
specifically with such a suboptimal encoder.

A code with this structure of performing a se-
quence of pairwise nearest neighbor decisions
is called a tree-structured VQ (TSVQ). A tree-
structured quantizer is clearly analogous to a clas-
sification or regression tree, such as those designed
by the CART algorithm [9]: at each successive node
the input vector is “classified” according to the bi-
nary nearest neighbor selection of the centroids of

Fig. 4. Simple TSVQ example.

the two available children nodes. The quantizer
can also be viewed as a classical nearest neighbor
classifier, where the nearest neighbor in a collec-
tion (here the reproduction codebook and not the
entire training set) is only approximated by a se-
quence of pairwise nearest neighbor selections. The
squared error distortion function of TSVQ becomes
Bayes risk in a classification tree, and the cost
might be the number of leaves or the total number
of nodes in the channel codebook in a classifica-
tion problem. The Euclidean minimum distortion
binary decision rule in a TSVQ typically becomes
a one-dimensional threshold rule on a single vec-
tor coordinate in CART, although one can make the
decisions multidimensional by first transforming
the input vector, or by allowing more general hy-
perplane splits. The fact that TSVQ and CART can
be viewed as variations of each other suggests that
the CART tree design methodology can be com-
bined with the Lloyd algorithm in order to design a
TSVQ, which is the approach that is adopted here.

As a simple example of a TSVQ, consider the la-
beled tree of Figure 4. This tree will be used to rep-
resent the data in an image that is divided into 2×2
blocks. Each node is labeled by the reproduction vec-
tor used to represent any data coded to that node.

Suppose that this tree is used to encode the image
of Figure 5, with intensities from an alphabet of size
8, or 3 bits per pixel (bpp). The encoder operates by
successively encoding 2× 2 blocks taken from the
“image,” and the decoder then reconstructs the im-
age using the reproduction codewords indexed by
the channel codeword. If only the root node is used
for a zero rate code, then the average squared error
resulting will be D0 = 7:53. If the nearest neighbor
from the two codewords labeling the first level nodes

Fig. 5. Example image.
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is chosen for each input vector (or a simpler hyper-
plane or correlation test is used to accomplish the
same goal), then the rate is one bit per input vector
(1/4 bpp); and the resulting average squared error is
D = 4:19, yielding SNR = 10 log10D0/D = 2:55 dB.
If the complete tree is used so that the left node in
the first level is split and each image vector reaching
this node is further encoded by choosing the near-
est neighbor label from the children nodes, then the
distortion drops to 2.81 and the SNR rises to 4.3 dB,
but the cost is an increase in the average bit rate to
1.5 bpp.

2.4 TSVQ Design

Tree-structured vector quantizers, like classifica-
tion trees, can be designed from scratch by means
of a gardening metaphor. The trees are first grown
from a root node by successively splitting nodes
and running a Lloyd algorithm on the new leaf set,
which now becomes a two-means design. As grow-
ing may overfit the data, the resulting tree can then
be pruned so as to optimally trade off average dis-
tortion and rate. This trading of average distortion
and average bit rate is simply a variation on the de-
sign strategy for classification and regression trees
[9] embodied in the CART algorithm. The simplest
growing technique is to split every leaf simulta-
neously to form a new tree. In particular, the root
node is split and the Lloyd algorithm run to pro-
duce a one-bit tree. Then both nodes are split and
the Lloyd algorithm run to produce a two-bit tree
with four leaves. The Lloyd algorithm is modified
in that it is really two clustering algorithms with
two codewords each rather than a single clustering
algorithm with four words. Each Lloyd algorithm is
run for the conditional distributions of each parent
node. Continuing in this way will yield a balanced
tree and fixed-rate code.

Alternatively, nodes can be split individually and
selectively. For example, every leaf in a code tree
has some conditional average distortion, say D�n�,
which is the average distortion resulting when the
input vectors coded to this node are encoded to
the centroid of the node. If this node is split and the
Lloyd algorithm run on the conditional node distri-
bution, then the two children nodes, n0 and n1, will
have conditional distortions D�n0� and D�n1� with
probabilities p0 and p1 = 1 − p0, respectively. This
will result in a new conditional distortion for input
vectors reaching node n of

p0D�n0� + p1D�n1� ≤ D�n�y(6)

that is, the average distortion drops due to the node
split. On the other hand, all vectors reaching node
n will now have an additional bit added to their

path map so that the average rate will increase.
Thus one strategy for splitting is to split the node
that results in the greatest drop in average condi-
tional distortion per average additional bit. This is
the most common growing strategy, but it is by no
means the only one. For example, one could split
the node with the largest contribution to the overall
average distortion.

Once grown, the tree can be pruned by remov-
ing all descendents of any internal node, thereby
making it a leaf. This will increase average distor-
tion, but will also decrease the rate. Once again, one
can select for pruning the node that offers the best
trade-off in terms of the least increase in distortion
per decrease in bits. It can be shown that, for quite
general measures of distortion, pruning can be done
in optimal fashion and the optimal subtrees of de-
creasing rate are nested.

2.4.1 Predictive vector quantization (PVQ). One
method for incorporating memory or context into
coding is to predict the current vector based on its
neighbors and then quantize the prediction resid-
ual [32]. Predictive vector quantization (PVQ) is
a straightforward vector extension of traditional
scalar predictive coding [25]. The basic encoder and
decoder structures are shown in Figure 6. The en-
coder makes a prediction X̃n of the incoming vector
Xn based on previously encoded vectors X̂n. The
difference between the actual input vector and its
prediction is called the residual vector en. This
residual is vector quantized (ên). Because the en-
coder only uses the previously decoded outputs in
making its prediction, the decoder is able to make
the same prediction. After dequantizing the resid-
ual vector, the decoder adds the prediction to it
to form the reproduction vector X̂n. The predic-
tion is often a simple linear predictor that takes
a weighted average of nearby previously encoded
coefficients.

In predictive TSVQ, the residual quantizer is a
TSVQ. For each residual vector, the encoding path
through the tree is sent to the decoder. Given the
same tree, the decoder decodes the quantized resid-
ual and reconstructs the pixel block by adding it to
its prediction of the block. The selection of vector
dimension or block size is important in predictive
TSVQ. For the predictor, a larger block size results
in a more tenuous prediction since pixels being pre-
dicted are farther apart from pixels used in the
prediction. For the residual quantizer, on the other
hand, larger pixel blocks better exploit Shannon’s
theory on the ability of vector quantizers to asymp-
totically outperform scalar quantizers. The block
size choice is a trade-off among prediction accu-
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Fig. 6. Encoder and decoder for a predictive vector quantizer.

racy, algorithmic complexity, storage memory and
quantization performance. While performance theo-
retically improves with block size, large block sizes
can introduce block artifacts into an image that can
outweigh any improvement in quantitative perfor-
mance. Here we have chosen the block size with an
emphasis on achieving low complexity.

The coefficients for the predictor have in the past
been calculated by Wiener–Hopf techniques; that is,
one finds the best linear unbiased estimator for pre-
dicting one pixel block from its neighbors, assuming
that the neighbors are known perfectly. This is
simplistic since the prediction coefficients will in
practice be applied to the quantized neighbors and
not to the true neighbors. The method is simple,
however, and has worked reasonably well exper-
imentally. From the training set, the correlation
matrix between the current block and its neighbors
is estimated and inverted to obtain the prediction
coefficients. These coefficients are thus based upon
correlations between original pixel values and
neighboring original pixel values. During compres-
sion, however, the prediction coefficients are used
with encoded values of adjacent previously encoded
blocks rather than with original pixel values.

Once the prediction coefficients are fixed, a train-
ing sequence of residuals is generated from the
training sequence of original pixel values by cal-
culating the differences between actual values and
predicted values. The tree-structured encoder is de-
veloped using these residual vectors as a training
set. By encoding the lower energy residual signal,
fewer bits can be used to encode to a desired dis-
tortion level than would be needed for encoding the
original higher energy signal.

An advantage of predictive TSVQ is that explicit
entropy coding is not needed because the code is
designed directly to minimize average bit rate. Ad-
ditional compression could be achieved by not using
the natural tree-structured code representation and
instead designing an optimal entropy code for the
final code indices. If this is to be done, then bet-
ter performance could be achieved by designing the

original TSVQ to minimize average entropy instead
of average length.

An additional advantage is the natural progres-
sive character of the code: on the average distortion
diminishes with additional bits of the path map.

Recent work has shown that the Wiener–Hopf
technique can be improved upon in some applica-
tions by a variation of ridge regression [59, 2]. How-
ever, one should not lose track of the fact that the
goal is good ultimate codes rather than good predic-
tion for its own sake. One can imagine prediction
that is dreadful in an MSE sense, but that makes
for trivial encoding of residuals. In statistical terms,
bias is not the issue here. Instead, it is the simplic-
ity of the range of the predictor.

3. STUDY DESIGN

We turn now to the particular clinical experiment
we conducted and that was described to some extent
earlier.

To develop a tree-structured residual encoder and
decoder, 20 MR chest scans were picked to be the
training set; they included a wide range of normal
and aneurysmal vessels. An additional 30 scans
were chosen as test images. All images were ob-
tained using a 1.5-T whole body imager (Signa, GE
Medical Systems, Milwaukee, Wisconsin), a body
coil and an axial cardiac gated T1 weighted spin
echo pulse sequence with the following parameters:
cardiac gating with repetition time (TR) of 1 R–R
interval; echo time (TE) of 15–20 msec; respira-
tory compensation, number of repetition (NEX) of
2; 256 × 192 matrix; slice thickness of 7 mm with
a 3-mm interslice gap. To simulate normal clinical
practice, test images were selected from 30 sequen-
tial thoracic MR examinations of diagnostic quality
that were obtained after February 1, 1991. The pa-
tients studied included 16 females and 14 males,
with ages ranging from 1 to 93 years and an average
age of 48:0 ± 24:7 years �mean ± s.d.�. Clinical in-
dications for the thoracic scans included suspected
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aortic aneurysm (11), thoracic tumors (11), evalua-
tion of patients before or after lung transplant (5),
constrictive pericarditis (1) and subclavian artery
rupture (1). From each examination, one image
which best demonstrated all four major vessels of
interest was selected. The training images were se-
lected similarly from different examinations. All
analyses are based solely on measurements made
on the test images.

In our study, the 256 × 256 pixel MR scans were
broken into 2 × 4 pixel blocks for encoding and de-
coding. The coefficients for the Wiener–Hopf linear
predictor were calculated from the training set im-
ages and used to produce a residual (prediction er-
ror) training set. Using predictive TSVQ, a residual
tree was grown to 2.25 bpp and pruned back to a
set of optimally pruned subtrees representing bit
rates from 0–2.25 bpp. Five subtrees were chosen
to produce average bit rates of 0.36, 0.55, 0.82, 1.14
and 1.70 bpp on the 30 test images and to have no
overlap between the bit rates of the image set en-
coded with two different subtrees. These subtrees
and their average bit rates are termed compression
levels 1–5. The original scans at 9.0 bpp are termed
level 6.

The 30 test scans compressed to 5 bit rates plus
the originals give rise to a total of 180 images. These
images were arranged in a randomized sequence and
presented on separate hard-copy films to three Stan-
ford radiologists. The viewing protocol consisted of
three sessions held at least two weeks apart. Each
session included 10 films viewed in a predetermined
order with six scans on each film. The radiologists
began viewing films at different starting points in
the randomized sequence. To minimize the probabil-
ity of remembering measurements from past images,
a radiologist saw only two of the six levels of each
image in each session, with the second level of each
image spaced at least four films after the first.

Following standard clinical methods for detect-
ing aneurysms, the radiologists used calipers and
a millimeter scale available on each image to mea-
sure the four blood vessels appearing on each scan.
Although the use of digital calipers might have
allowed more accurate measurements, this would
have violated one of our principal goals, namely, to
follow as closely as possible actual clinical practice.
It is the standard practice of almost all radiologists
to measure with manual calipers. This is especially
true for radiologists in private practice, who repre-
sent more than 90% of the radiologist population
in the United States. Even in a tertiary referral
setting, manual calipers are used routinely. We
asked radiologists to make all measurements be-
tween the outer walls of the vessels along the axis
of maximum diameter. It is this maximum diam-

eter measurement that is used to make clinical de-
cisions. If measurements were made only in the
straight anterior–posterior direction or the orthog-
onal transverse direction, it would not be possible
to determine whether compression has an impact
on clinical decisions. Both the measurements and
axes were marked on the film with a grease pen-
cil. A subjective score of 1 (worst) through 5 (best)
was also assigned to each image based on the ra-
diologist’s opinion of the quality of that image for
the measurement task. The subjective scores were
used purely as a measure of subjective quality and
not as a measure of diagnostic accuracy. Relation-
ships among subjective score, SNR and diagnostic
accuracy are further elaborated in [17] and [15].

4. UNIVARIATE ANALYSES

4.1 Measurement Standards
and Error Parameters

In order to quantify the accuracy of measure-
ments at each level of compression, we set two
“gold standards” to represent the “correct measure-
ment” for each vessel. One gold standard was set
by having two expert radiologists, not the judges,
come to an agreement on vessel sizes on the un-
compressed scans. This provides an “independent
standard.” The two radiologists first independently
measured the vessels on each scan. For those ves-
sels on which they differed, they remeasured until
an agreement was reached. The average measure-
ment of the gold standard judges, pooled across
structures, was 20.44 mm with standard deviation
5.86 mm. We lack data on what any separate ini-
tial measurements may have been. Test judges had
averages that varied across levels from averages
of about 20 mm to about 27 mm. Standard devi-
ations ranged from about 5 mm to about 6 mm.
A “personal standard” was also derived for each
judge by taking their own measurements on the
uncompressed image to be the gold standard for
corresponding measurements on the compressed
scans. Comparison with the personal gold stan-
dard quantifies individual consistency, or lack of it,
over bit rates rather than performance relative to
“absolute truth.”

Once the gold standard measurement for each
vessel in each image was assigned, the analysis of
a radiologist’s performance was made by comparing
the errors made on compressed and on uncom-
pressed images. The measurement error can be
quantified in a variety of ways. If z is the radi-
ologist’s measurement and g represents the gold
standard measurement, then some potential error
parameters are �z − g�, log�z/g�, �z − g�/g and
��z − g�/g�. These parameters have obvious invari-
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ance properties that bear upon understanding the
data. For simplicity and appropriateness in the
statistical tests carried out, the error parameters
chosen for this study are percentage measurement
error �z − g�/g × 100% and absolute percentage
measurement error � �z − g�/g � × 100%, both of
which scale the error by the gold standard mea-
surement to give a concept of error relative to the
size of the vessel being measured.

4.2 Parameters and Tests

The differences in error achieved at each bit rate
for our paired data could be quantified in many
ways. We use both the t and Wilcoxon signed rank
tests. The measurements are paired in a compar-
ison of two bit rates since the same vessel in the
same image is measured by each radiologist at both
bit rates. We also accounted for the multiplicity of
comparisons. If x1 is the measurement of a ves-
sel at bit rate 1, x2 its measurement at bit rate 2
and g the vessel’s gold standard measurement, then
the percentage measurement errors at bit rates 1
and 2 are �x1 − g�/g × 100% and �x2 − g�/g ×
100%, and their difference is �x1−x2�/g×100%. In
such a two-level comparison, percentage measure-
ment error more accurately preserves the difference
between two errors than does absolute percentage
measurement error. A vessel that is overmeasured
by α% (positive) on bit rate 1 and under-measured
by α% (negative) on bit rate 2 will have an error
distance of 2α% if percentage measurement error
is used but a distance of zero if absolute percent-
age measurement is used. Therefore both the t-test
and the Wilcoxon signed rank test were computed
using only percentage measurement error. Absolute
percentage measurement error is used to present a
more accurate picture of average error across the 30
test images plotted against bit rate.

The size of our data set �4 vessels × 30 images ×
6 levels × 3 judges = 2,160 data points� makes a
formal test for normality nearly irrelevant since
Gaussian approximations to sampling distributions
are quite adequate for our purposes; Q–Q plots
of percentage measurement error differences that
were made for comparisons of other levels exhibit
varying degrees of linearity. In general, the Q–Q
plots indicate a moderate fit to a Gaussian model.

5. RESULTS

5.1 Distortion–Rate Performance

Figure 7 shows SNR (10 log10�D0/D�) versus bit
rate for the 30 test images compressed to the five bit
rates. A quadratic spline with a single knot at 1.0
bpp was fitted through the data points to show the

Fig. 7. Signal-to-noise ratio as a function of bit rate: the ×’s in-
dicate data points for all images, pooled across judges and com-
pression levels; the solid curve is a quadratic spline fitted to the
data with a single knot at 1:0 bpp.

general trend. Generally, images with lower visual
distortion have higher SNR.

5.2 Results Using the Independent Gold Standard

Figures 8–11 are plots of trends in measurement
error as a function of bit rate. In all cases, the gen-
eral trend of the data is indicated by fitting the
data points with a quadratic spline having one knot
at 1.0 bpp. The “◦” symbols indicate the 95% con-

Fig. 8. Mean percentage measurement error versus mean bit rate
using the independent gold standard: the dash–dotted, dotted and
dashed curves are quadratic splines fitted to the data points for
Judges 1; 2 and 3; respectively; the solid curve is a quadratic
spline fitted to the data points for all judges pooled. The splines
have a single knot at 1:0 bpp; 95% BCa confidence intervals [24]
are displayed separately for each judge and bit rate.
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Fig. 9. Percentage measurement error versus actual bit rate us-
ing the independent gold standard: the ×’s indicate data points
for all images, pooled across judges and compression levels; the
solid curve is a quadratic spline fitted to the data with a single
knot at 1:0 bpp.

Fig. 10. Mean absolute percentage measurement error versus
mean bit rate using the independent gold standard: the dash–
dotted, dotted and dashed curves are quadratic splines fitted to
the data points for Judges 1; 2 and 3; respectively; the solid curve
is a quadratic spline fitted to the data points for all judges pooled.
The splines have a single knot at 1:0 bpp; 95% BCa confidence
intervals are displayed separately for each judge and bit rate.

fidence intervals obtained from the bootstrap BCa
method [24]. Our approach here has been to apply
this bias-adjusted, accelerated percentile method to
data that come from the spline fits at fixed bit rates.
Images were the sampling units in all computations.
Figure 8 is a plot of the average percentage mea-
surement error against the mean bit rate for all ra-
diologists pooled (i.e., the data for all radiologists,

Fig. 11. Absolute percentage measurement error versus actual
bit rate using the independent gold standard: the ×’s indicate
data points for all images, pooled across judges and compresssion
levels; the solid curve is a quadratic spline fitted to the data with
a single knot at 1:0 bpp.

images, levels and structures, with each radiolo-
gist’s measurements compared to the independent
gold standard) and for each of the three radiolo-
gists separately. In Figure 9, the percentage mea-
surement error versus actual achieved bit rate is
plotted for all data points. The relatively flat curve
begins to increase slightly at the lowest bit rates,
levels 1 and 2 (0.36, 0.55 bpp). It is apparent that,
except for measurement at the lowest bit rates, ac-
curacy does not vary greatly with lossy compression.
Possibly significant increases in error appear only at
the lowest bit rates, whereas at the remaining bit
rates measurement accuracy is similar to that ob-
tained with the originals. The average performance
on images compressed to level 5 (1.7 bpp) is actually
better than performance on originals.

While the trends in percentage measurement er-
ror versus bit rate are useful, overmeasurement
(positive error) can cancel undermeasurement (neg-
ative error) when these errors are being averaged
or fitted with a spline. For this reason, we turn
to absolute percentage measurement error, which
measures the error made by a radiologist regard-
less of sign. Figure 10 is a plot of average absolute
percentage measurement error versus average bit
rate for each radiologist and for all radiologists
pooled. Figure 11 shows actual absolute percentage
measurement error versus actual bit rate achieved.
These plots show trends similar to those already
seen. The original level has about the same abso-
lute percentage measurement error as compression
levels 3, 4 and 5 (0:82;1:14;1:7 bpp). Levels 1 and 2
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(0:36;0:55 bpp) show slightly higher measurement
error.

The t-test was used to test the null hypothesis
that the “true” percentage measurement error be-
tween two bit rates is zero. None of the levels down
to the lowest bit rate of 0.36 bpp was found to have
a significantly higher percentage measurement er-
ror (at the 5% significance level) when compared
to the error of measurements made on the origi-
nals. Among the compressed levels, however, level
1 (0.36 bpp) was found to be significantly different
from level 5 (1.7 bpp). As was mentioned, the perfor-
mance on level 5 was better than that on all levels,
including the uncompressed level.

When using the Wilcoxon signed rank test to
compare compressed images against the originals,
only level 1 (0.36 bpp) differed significantly (at
the 5% significance level) in the distribution of
percentage measurement error. Within the levels
representing the compressed images, levels 1, 3
and 4 (0:36;0:82;1:14 bpp) had significantly differ-
ent percentage measurement errors than those at
level 5 (1.7 bpp). Since measurement accuracy is
determined from the differences with respect to the
originals only, a conservative view of the results of
the analyses using the independent gold standard
is that measurement accuracy is retained down to
0.55 bpp (level 2).

5.3 Results Using the Personal Gold Standard

As previously described, the personal gold stan-
dard was set by taking a radiologist’s recorded
vessel size on the uncompressed image to be the
correct measurement for judging performance on
the compressed images. Using a personal gold stan-
dard in general accounts for a measurement bias
attributed to an individual radiologist, thereby
providing a more consistent result among the
measurements of each judge at the different com-
pression levels. The personal gold standard thus
eliminates the interobserver variability present
with the independent gold standard. However, it
does not allow us to compare performance at com-
pressed bit rates to performance at the original bit
rates since the standard is determined from the
original bit rates. As before, we first consider visual
trends.

Figure 12 shows the average percentage measure-
ment error versus mean bit rate for the five com-
pressed levels for Judge 1 and for the judges pooled.
Figure 13 shows the corresponding information for
Judges 2 and 3. Figure 14 is a display of the ac-
tual percentage measurement error versus actual
achieved bit rate for all the data points. The data
for the judges pooled are the measurements from all

Fig. 12. Mean percentage measurement error versus mean bit
rate using the personal gold standard: the dash–dotted curve is
a quadratic spline fitted to the data points for Judge 1; the solid
curve is a quadratic spline fitted to the data points for all judges
pooled. The splines have a single knot at 1:0 bpp; 95% BCa con-
fidence intervals are displayed separately for each bit rate for
Judge 1.

Fig. 13. Mean percentage measurement error versus mean bit
rate using the personal gold standard: the dotted and dashed
curves are quadratic splines fitted to the data points for Judges
2 and 3; respectively. The splines have a single knot at 1:0 bpp;
95% BCa confidence intervals are displayed separately for each
judge and bit rate.

judges, images, levels and vessels, with each judge’s
measurements compared to her or his personal gold
standard. In each case, quadratic splines with a sin-
gle knot at 1.0 bpp were fitted to the data. Fig-
ures 15, 16 and 17 are the corresponding figures for
the absolute percentage measurement error. As ex-
pected, with the personal gold standard, the errors
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Fig. 14. Percentage measurement error versus actual bit rate
using the personal gold standard: the ×’s indicate data points for
all images, pooled across judges and compression levels; the solid
curve is a quadratic spline fitted to the data with a single knot at
1:0 bpp.

Fig. 15. Mean absolute percentage measurement error versus
mean bit rate using the personal gold standard: the dash–dotted
curve is a quadratic spline fitted to the data points for Judge
1; the solid curve is a quadratic spline fitted to the data points
for all judges pooled. The splines have a single knot at 1:0 bpp;
95% BCa confidence intervals are displayed separately for each
bit rate for Judge 1.

are less than those obtained with the independent
gold standard. The graphs indicate that, whereas
both Judges 2 and 3 overmeasured at all bit rates
with respect to the independent gold standard, only
Judge 3 consistently overmeasured with respect to
the personal gold standard.

The t-test results indicate that levels 1 (0.36 bpp)
and 4 (1.14 bpp) have significantly different per-
centage measurement error associated with them.

Fig. 16. Mean absolute percentage measurement error versus
mean bit rate using the personal gold standard: the dotted and
dashed curves are quadratic splines fitted to the data points for
Judges 2 and 3; respectively. The splines have a single knot at
1:0 bpp; 95% BCa confidence intervals are displayed separately
for each judge and bit rate. The “◦” symbols and solid bars cor-
respond to the confidence intervals for Judge 2; the “×” symbols
and dotted bars correspond to the confidence intervals of Judge 3.

Fig. 17. Absolute percentage measurement error versus actual
bit rate using the personal gold standard: the ×’s indicate data
points for all images, pooled across judges and compresssion lev-
els; the solid curve is a quadratic spline fitted to the data with a
single knot at 1:0 bpp.

The results of the Wilcoxon signed rank test on per-
centage measurement error using the personal gold
standard are similar to those obtained with the in-
dependent gold standard. In particular, only level 1
at 0.36 bpp differed significantly from the originals.
Furthermore, levels 1, 3 and 4 were significantly
different from level 5.
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With Bonferroni considerations, the percentage
measurement error at level 4 (1.14 bpp) is not sig-
nificantly different from the uncompressed level.
The simultaneous test indicates that only level
1 (0.36 bpp) has significantly different percentage
measurement error from the uncompressed level.
This agrees with the corresponding result using
the independent gold standard. Thus, percentage
measurement error at compression levels down to
0.55 bpp does not seem to differ significantly from
the error at the 9.0 bpp original.

5.4 Subjective Score

In the previous sections, we looked at how mea-
surement performance changes with bit rate in
terms of the distribution of percentage measure-
ment error. In addition to characterizing such
objective aspects of error, we would like to examine
the effect of compression on subjective opinions. In
particular, does a radiologist’s perception of image
quality change with bit rate, and does it change in
a manner similar to the way percentage measure-
ment error changes? At the time of measurement,
radiologists were asked to assign subjective scores
of 1 (worst) through 5 (best) to each image based
on “its usefulness for the measurement task.” The
term “usefulness” was defined as “your opinion of
whether the edges used for measurements were
blurry or distorted, and your confidence concern-
ing the measurement you took.” The question was
phrased in this way because our concern is whether
measurement accuracy is in fact maintained even
when the radiologist perceives the image quality as
degraded.

We do not know whether radiologists are incul-
cated during their training to assess quality visually
based on the entire image, or whether they rapidly
focus on the medically relevant areas of the image.
Indeed, one might reasonably expect that radiolo-
gists would differ on this point, and a question that
addressed overall subjective quality would therefore
produce a variety of interpretations from the judges.
By focusing the question on the specific measure-
ment and the radiologists’ confidence in it, regard-
less of what portion of the image contributed to that
confidence level, we hoped to obtain data relevant to
the question of whether radiologists can be asked to
trust their diagnoses made on processed images in
which they may lack full confidence.

Figures 18 and 19 show the general trend of mean
subjective score versus mean bit rate. A spline-like
function that is quadratic from 0 to 2.0 bpp and lin-
ear from 2.0 to 9.0 bpp was fitted to the data. The
splines have knots at 0.6, 1.2 and 2.0 bpp; 95% confi-
dence intervals are obtained from the bootstrapped

Fig. 18. Mean subjective score versus mean bit rate: the dash–
dotted curve is a spline fitted to the data points for Judge 1;
the solid curve is a spline fitted to the data points for all judges
pooled; the “◦” symbols represent the 95% BCa confidence inter-
vals for Judge 1.

Fig. 19. Mean subjective score versus mean bit rate: the dotted
and dashed curves are splines fitted to the data points for Judges
2 and 3; respectively; the “◦” symbols and solid bars represent the
95% BCa confidence intervals for Judge 2; the “×” symbols and
dotted bars represent the corresponding confidence intervals for
Judge 3.

BCa method. Figure 20 shows a spline fit of subjec-
tive score plotted against actual bit rate for the com-
pressed levels only. The general conclusion from the
plots is that the subjective scores at level 5 (1.7 bpp)
and level 6 (9 bpp) were quite close (with level 6
slightly higher) but at lower levels there was a steep
drop-off of scores with decreasing bit rate.

The Wilcoxon signed rank test shows that the sub-
jective scores at all of the five compression levels
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Fig. 20. Subjective score versus bit rate: the ×’s indicate data
points for all images, pooled across judges and compression levels;
the solid curve is a quadratic spline fitted to the data with a single
knot at 1:0 bpp.

differ significantly from the subjective scores of the
originals at p < 0:05 for a two-tailed test. The sub-
jective scores at all the compression levels also differ
significantly from each other.

Although the subjective impressions of the radiol-
ogists were that the accuracy of measurement tasks
degraded rapidly with decreasing bit rate, their ac-
tual measurement performance on the images as
shown by both the t-test and Wilcoxon signed rank
test (or the Bonferroni simultaneous test) remained
consistently high down to 0.55 bpp. It is evident
(and hardly surprising) that analyses not reported
here indicate radiologist performance tends to be
slightly better on images they like better. Thus,
their subjective opinion of an image’s usefulness for
diagnosis was not a good predictor of measurement
accuracy.

6. ANALYSIS OF VARIABILITY

Most analyses presented thus far were based on
data for which judges, vessels, and images were
pooled. Other analyses in which the performances
of judges on particular vessels and images are sep-
arated demonstrate additional variability. Judges
seem to have performed significantly differently
from each other. Judges 2 and 3 consistently over-
measured. As a result, the Wilcoxon signed rank
test using the independent gold standard indicates
significant differences between the gold standard
and the measurements of Judges 2 and 3 at all
compression levels, including the original. Judge
1, however, does not have any significant perfor-
mance differences between the gold standard and
any compression levels. In addition, certain vessels

and images had greater variability in percentage
measurement error than others.

We turn now to matters of describing variabili-
ties we cite. Whether compression degrades clinical
performance is of fundamental importance to policy.
We believe that at least within broad ranges it does
not. However, this is not to obscure the finding that
radiologists themselves are different. They are dif-
ferent in the impact compression has on their per-
formance. They are different in how they measure
vessels, on compressed or original images. And they
differ in how compression may degrade their per-
formance for different vessels, to the extent that it
does.

The outcome here is percentage measurement
error relative to an independent gold standard.
One approach to this analysis might have been
a (necessarily complex) random or mixed effects
analysis of variance. Inferences therefrom tend
to be heavily dependent upon Gaussian assump-
tions, and even when they hold, distributions of
some relevant statistics have been computed only
approximately. A bootstrap approach would be un-
necessarily complicated. In fact, the “signals” in
our data are simple to describe and can be summa-
rized well with a far simpler approach. Thus, we
fix (judge, image) pairs, of which there are 90 in
all, and analyze them by fixed effects two-way anal-
yses of variance with one observation per cell in
which there are two fixed effects: levels and struc-
tures. Although we are not ordinarily entitled from
such data to make inferences on interactions, we
compute Tukey’s one degree of freedom for nonaddi-
tivity [72, 65]. If yij is the percentage measurement
error, i refers to levels and j to structures, then we
model yij = µ+αi+βj+γij+εij, where εij are taken
to be iid mean 0 and constant variance, although
not constant across judges or images; i = 1; : : : ;6;
j = 1; : : : ;4. We assume the usual constraints,
that is,

�
i αi ≡

�
j βj ≡

�
i γij ≡

�
j γij ≡ 0, and

further that γij = Gαiβj for some constant G.
Gaussian assumptions on the εij are not in force
here, for we view the F-statistics and residual mean
squares as descriptive statistics that are summa-
rized by the box plots of Figures 21–24. Details of
the computations are given in [65, Section 4.8].

The box plots are self-explanatory—and dra-
matic! Clearly Judge 2 was affected by compression
more than was Judge 3, who was affected more
than was Judge 1, whose F-statistics surround
the null value 1. Variability obviously increased
by judge as the impact of compression increased.
Structures differed less for Judge 1 than for the
others, and variability was less, too. The influence
of structure upon variability in level was less for
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Fig. 21. Box plots of F for levels.

Fig. 22. Box plots of F for structures.

Judge 1 than for the others, yet residual variabil-
ity was less for Judge 2 than for Judge 1, and was
highest for Judge 3. Although we are reluctant to
infer much by way of performance from our study,
it does appear that Judge 1 fared better than did
the others of our capable judges.

7. DISCUSSION

There are a number of issues to consider in or-
der to determine which gold standard is preferable.
One disadvantage of an independent gold standard
is that since it is determined by the measurements
of radiologists who do not judge the compressed im-
ages, significant differences between a compressed
level and the originals may be due to differences
between judges. For example, a judge who tends to
overmeasure at all bit rates may have high percent-
age measurement errors that are not entirely re-
flective of the effects of compression. In our study,

Fig. 23. Box plots of F for interactions.

Fig. 24. Box plots of F for residual mean squares.

we determined that two judges consistently over-
measured relative to the independent gold standard.
This is not an issue with the personal gold standard.
A personal gold standard also has the advantage of
reducing percentage and absolute percentage mea-
surement error at the compressed levels, one result
being a clarification of trends in a judge’s perfor-
mance across different compression levels. Differ-
ences are based solely on compression level and not
on differences between judges.

One disadvantage with the personal gold stan-
dard, however, is that by defining the measurements
on the original images to be “correct” we are not
accounting for the inherent variability of a judge’s
measurement on an uncompressed image. For ex-
ample, if a judge makes an inaccurate measure-
ment on the original and accurate measurements on
the compressed images, these correct measurements
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will be interpreted as incorrect. Thus the method
is biased against compression. An independent gold
standard reduces the possibility of this situation oc-
curring since we need an agreement by two inde-
pendent radiologists on the “correct” measurement.

8. CONCLUSIONS

Evaluating the quality of images is an important
and expanding area of research. In recent years con-
siderable attention has been given to the use of
perceptually based computational metrics for eval-
uating quality of compressed images [27, 3]. How-
ever, human observer studies such as the one re-
ported here remain the method of choice for many
applications. The development of international stan-
dards for still-image and video compression relies on
human observer studies to determine quality [58].
Similarly, the development and validation of meth-
ods for comparing medical images also rely on stud-
ies of human observers to examine diagnostic util-
ity because the relationship between computational
metrics for quality, even sophisticated ones based on
properties of the human visual system, and diagnos-
tic accuracy remains elusive. Most human observer
studies have focused on subjective quality and on
the objective detection of tumors, for example. We
believe that, in the future, studies will involve more
diverse and clinically representative tasks including
measurement of the sizes of vessels and the funda-
mental issue of managing patients.

The highly litigious nature of American society
has caused many people to question whether lossy
compression can ever be used here in a medical
context, despite encouraging results regarding the
maintenance of diagnostic accuracy. These doubts
are heard less frequently today. The distortion–rate
performance of algorithms for compression has
improved enormously over the past decade. The
quantity of medical images to be handled by picture
archiving systems has increased greatly, outstrip-
ping gains in the capabilities of storage media.
Thus the gains to be had from compression are now
more important than they were previously. Possi-
ble areas of application for compression of medical
images have proliferated. They include wireless
emergency medical services, battlefield and ship-
board surgery and medicine, progressive browsing
of databases, medical teaching archives and others.
Today, full-field digital mammography is poised to
emerge as an important new technology within the
medical imaging industry. The United States Food
and Drug Administration has been in the position
of defining the protocols that will be used to test the
hypothesis that the new digital technology is not

worse in clinical practice than conventional film-
screen analog mammography. These protocols could
equally well be used to test the hypothesis that
compressed digital mammograms are not worse
than conventional analog mammograms. Medical
image compression today is thus at an unusually
important juncture, with the emergence of a major
new digital imaging modality occurring at a time
when the techniques for digital image compression
are mature and used widely in other fields.

The goal of this paper was to quantify the effects
of lossy compression on measurement accuracy. The
fundamental ideas of lossy signal compression were
thus presented and the particular algorithm used,
predictive tree-structured vector quantization, was
described in detail. The task chosen was the mea-
surement of the diameters of four principle blood
vessels in the chest, and both independent and per-
sonal gold standards were established. With both
the t-test and the Wilcoxon signed rank test, the
percentage measurement error at compression rates
down to 0.55 bpp did not differ significantly from
the percentage measurement error at the 9.0-bpp
original. We thus conclude that compression with
predictive TSVQ is not a cause of significant mea-
surement error at bit rates ranging from 9.0 bpp
down to 0.55 bpp.
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