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Medical Image Compression by Sampling DCT
Coefficients

Yung-Gi Wu

Abstract—Advanced medical imaging requires storage of large
quantities of digitized clinical data. Due to the constrained band-
width and storage capacity, however, a medical image must be com-
pressed before transmission and storage. Among the existing com-
pression schemes, transform coding is one of the most effective
strategies. Image data in spatial domain will be transformed into
spectral domain after the transformation to attain more compres-
sion gains. Based on the quantization strategy, coefficients of low
amplitude in the transformed domain are discarded and signifi-
cant coefficients are preserved to increase the compression ratio
without inducing salient distortion. In this paper, we use an adap-
tive sampling algorithm by calculating the difference area between
correct points and predicted points to decide the significant coef-
ficients. Recording or transmitting the significant coefficients in-
stead of the whole coefficients achieves the goal of compression.
On the decoder side, a linear equation is employed to reconstruct
the coefficients between two sequent significant coefficients. Simu-
lations are carried out to different medical images, which include
sonogram, angiogram, computed tomography, and X-ray images.
Consequent images demonstrate the performance at compression
ratios of 20–45 without perceptible alterations. In addition, two
doctors are invited to verify that the decoded quality is acceptable
for practical diagnosis. Therefore, our proposed method is found to
preserve information fidelity while reducing the amount of data.

Index Terms—Adaptive sampling, discrete cosine transform
(DCT), medical image compression.

I. INTRODUCTION

D
ATA COMPRESSION techniques play a key role as a

leveraging technology in all data-management systems.

The increasing demands for rapid communication and storage

go beyond the current limited capacity. Data compression bal-

ances the situation between the limited capacities and the lim-

ited user demand. It reduces the storage requirements and trans-

mission time, which makes the data management more effective

and efficient [1]–[3].

In medical application, where inherently large volumes of

digitized images are presented, image compression is indis-

pensable. There are two categories of compression: lossy and

lossless methods. The choice between the two depends on the

system requirements. Lossless compression ensures complete

data fidelity after the reconstruction, and yet the compression

ratio is limited in general to 2 : 1 to 3 : 1. The application of

lossy techniques results in information loss to some degree,

but it can provide more than 10 : 1 compression ratio with little

perceptible difference between reconstructed and original im-

ages. Lossy compression techniques have been widely utilized
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for image compression applications. Unlike other compression

applications such as TV and multimedia systems, the loss

of fidelity must be reduced as much as possible in medical

application so as not to contribute to diagnostic errors [4].

In this paper, an adaptive sampling algorithm imposed on the

spectral domain, achieved by discrete cosine transform (DCT),

is proposed. This algorithm records significant coefficients as

compressed data for transmission or storage. For the working

of the decoder, significant coefficients can be retrieved from

compressed data directly. As to other coefficients that exist be-

tween two significant coefficients, a linear function is derived

to reconstruct them. There are many sampling algorithms from

the literature. In [5], an irregular sampling algorithm was pro-

posed for wavelet compression. In that paper, an adaptive sam-

pling algorithm in the discrete time domain is constructed by

finding a univocal relation between the signal’s samples and the

nonzero wavelet transform coefficients. Reconstruction is per-

formed through repeated projections of an approximation of the

initial signal based on the arriving samples. The computational

burden is heavy.

The method proposed here is straightforward and simple. It

does not need complicated calculation; therefore the hardware

implementation is easy to attach. The rest of this paper is or-

ganized as follows. An adaptive sampling algorithm generated

by our proposed method is addressed in Section II. Descriptions

of DCT will be given in Section III. Section IV depicts how to

apply our adaptive sampling algorithm to medical image com-

pression system. There are simulation results and conclusions,

respectively, in Sections V and VI.

II. ADAPTIVE SAMPLING ALGORITHM

This algorithm essentially provides the adaptive sampling

scheme for one-dimensional signals. The original form of

this adaptive sampling algorithm was published in [6], which

applies the algorithm to ECG processing successfully. This

paper, however, applies the adaptive sampling algorithm to

image compression. The main feature of this algorithm includes

two schemes: the method of computing approximate distorted

area and the method of adaptive sampling. The first method is

based on the following criterion: when linking a line between

two significant samples of the original waveform, we can get

the approximate distortion of the area formed by the line of

the two significant samples and the original waveform. The

distorted area is the absolute sum of the difference between the

predicted samples and the original ones. The proposed sampling

algorithm selects the significant samples by calculating the

distorted area that is formed by the starting point and candidate

point sequentially. If the approximate distortion area exceeds
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Fig. 1. Displacement of a sample (x ; y ) to the linear segment formed by
c(i) and c(i + 1).

the defined threshold, then we store the samples forming the

area as nonredundant samples. As to the other samples, those

that can be approximately predicted are taken as redundant

samples, which are not necessary to be stored or transmuted.

A. Linear Interpolation, Linear Segments, and Displacement

We use linear segments for representing an encoded signal.

Consider Fig. 1. Let and be

two consecutive significant samples selected. Connecting these

two significant samples by linear interpolation constitutes an

approximation to the original fragment. The value of of any

sample on this linear segment can be estimated as

follows:

(1)

where and all computations use integer operations.

Let be the original sample and be the -coor-

dinate of the sample between and . Accordingly, the

displacement value of between the original sample

and the decoded (predicted) sample is .

The distortion area is a criterion for us to decide significant

points. The regions of A and B between the original and pre-

dicted lines in Fig. 2 form the distorted area. This area can be

calculated by mathematical integration. Consider Fig. 2. The

distortion area bounded by and is

(2)

Before integration, we first have to know the mathematic

equations of and . is a linear function that is

easy to obtain from starting and ending points, i.e.,

and . However, could have different patterns. If

the unprocessed data are simple, it is easy to get the equation.

Nevertheless, if it is as complicated as chaotic distribution, it

will become very hard to get the function.

In the discrete case, as illustrated in Fig. 3, however, the dis-

tortion area between and is defined as

(3)

is the sampling interval to convert continuous signals into

discrete forms. As we know, smaller achieves precise ap-

proximated area to the continuous form. However, it has more

computational burden. In our case, since the data that we process

have been converted into digital forms, (3) is adopted here.

Consider Fig. 1 again. Let be the distorted area generated

by and , . If , which is a constant speci-

fied by the user, then is selected as a significant sample, and

the linear segment that connects and is broken into

two linear segments that connect and , and , re-

spectively. Recursively, the same tests are carried out on each

of these two linear segments. It is clear that the number of re-

cursive iterations depends on the value of . A smaller value of

causes the number of recursive iterations needed for the dis-

torted area computations to increase.

The significant samples selected here are used to represent the

original signal, and the other samples are discarded. On the de-

coder side, a linear segment to connect two consecutive signifi-

cant samples is used to reconstruct the decoded signal sequences.

All points between and can be yielded from (1).

III. DISCRETE COSINE TRANSFORM TO MEDICAL IMAGE

DCT has been successfully used in many coding systems due
to its energy compactness in the frequency domain. That is, the
original signals can be represented within a relatively narrow
range of frequencies. The description and application of DCT
can be found in [7] and [8]. Fig. 4 illustrates the coefficient
distribution after 8 8 DCT transformation to a subpart of
a medical angiogram image. All the coefficients have been
rounded to the nearest integers. It is quite obvious that most of
the energies are concentrated into the regions of low frequency,
discarding the higher frequency components that do not give
rise to salient perceptual distortion after inverse DCT operation.
Such an employment of DCT in medical image compression
schemes can be found in [9]–[13]. However, due to its heavy
computational burden in the implementation of full-frame DCT,
the detailed characteristics of image content will be sacrificed
after quantization. As a result, in many of the DCT compression
schemes, the original image is divided into nonoverlapped
subimages, e.g., 8 8 or 16 16 submatrices. Small coding size
has the advantages of simple computational complexity and very
moderate memory requirements, but the compression ratio is
normally low. In general applications, consider the compromise
between computational burden and the characteristics pre-
serving ability; 8 8 and 16 16 are the widest used processing
sizes on current DCT-based image-compression products or
research. As we know, pure regions occupy most of the image
content in nearly all the medical images. Large coding size can
attain higher compression ratio for the consequent coefficients
of small magnitude. Because we do not want to increase compu-
tational burdens on the calculation of distortion area and DCT
implementation, we adopt a large processing size. Finally,
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Fig. 2. Area calculation for continuous form.

Fig. 3. Distortion area for discrete form.

Fig. 4. An example of DCT transformation.

we get the tradeoff by adopting a 16 16 processing size
between computational complexity and compression ratio from
empirical methods.

IV. INCORPORATING ADAPTIVE SAMPLING ALGORITHM INTO

FREQUENCY DOMAIN

Incorporating the proposed sampling algorithm to the spatial

domain does not work as well as the frequency domain after DCT

transformation. That is because the complexity of the signal has

been decreased after DCT. Such a phenomenon is particularly ev-

ident for most medical images because most of the content is pure

Fig. 5. Zigzag scanning patterns.

background. In addition, the contrast of the major part is not se-

rious. After the operation of DCT, the benefit of fulfilling com-
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Fig. 6. An example of zigzag scan converting the data in Fig. 4 (DC is excluded).

pression is obvious. Therefore, the incorporation of the sampling

algorithm into medical image compression works well.
Our algorithm achieves the goal of compression by sampling

one-dimensional (1-D) signals. The spectrum for still images,
however, is two-dimensional signals (2-D). Consequently, a
tool to transform two-dimensional signals into one dimension
is needed. There are many schemes to convert 2-D into 1-D,
including row-major scan, column-major scan, peano-scan, and
zigzag scan. Almost all the DCT coding schemes adopt zigzag
scan to accomplish the goal of conversion, and we use it here.
The benefit of zigzag is its property of compacting energy to
low frequency regions after discrete cosine transformation. The
arrangement sorts the coefficients from low to high frequency.
Therefore, the employment of our proposed method will
evidently work well. Fig. 5 shows the zigzag scanning order
for 4 4 block. Fig. 6 shows the relation between the original
2-D coefficient distribution (Fig. 4) to its correspondent 1-D
distribution after zigzag scanning. Then our adaptive sampling
algorithm will be employed for the 1-D coefficients that are
generated by zigzag scanning in the previous procedure. Notice
that the DC term is not included in our sampling algorithm.
The DC term is always considered an important sample,
and it is transmitted in its original form. What follows are
the Huffman codes for the linear segments that connect the
selected significant samples. Referring to Fig. 1 again, the
linear segment with start sample and end sample
can be described by , which is encoded by Huffman
coding, and is transmitted by the encoder. The training sets
for generating Huffman codes for each symbol are
from 20 different medical images. The detailed description of
Huffman coding procedure can be found in [1] and [2].

A detailed description of the incorporation of the adaptive

sampling algorithm into the 1-D sequence is given as follows:

Input: 1-D sequence ;

Output: Significant points

Step 1: Initial point ; ;

Record point as a significant point

Step 2: Calculate distorted area

/* is a function to calculate the distorted area between

two points: start and end ;

*/

Step 3: If [ and ] /* point

is not significant; is a threshold */

; Go to Step 2;

Fig. 7. Encoder system configuration.

Else If /* End of sequence */

Save EOS;

Exit ( );

Else /* point is significant */

Record point as a significant

point;

Initial point ;

; ;

Go to Step2;

The algorithm of function is depicted as follows:

Input: data sequence ; start point ; end

point ;

Output: distorted area

Step 1: Create a linear equation between start point

and end point ;

The equation is denoted as , where ranges

from to ; Goto Step 2;

Step 2: Calculate distorted area as follows

(4)

Return ; Exit ( );
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Refer to Fig. 6 again. The two points drawn circularly are in-
significant points. There are many insignificant points in Fig. 6.
Two points are simply picked out randomly.

Before the adaptive sampling operation is used to transform
coefficients, a classification procedure is needed to increase
the benefits of compression. The importance of every subblock
inside the medical image is not equivalent. Therefore, the
allowable sampling distortion area for different regions can be
adopted adaptively as well to achieve a higher compression
ratio. For example, the sampling distortion for those regions
located on the background can be set higher but is not harmful
to the primary image content. Most of the primary objects
are located on the central regions of the medical images, and
dark gray occupies all the background. Here, the criterion to
determine the complexity of unprocessed block data is based
on the variety of the one-dimensional data sequences ,
which can be obtained as follows:

(5)

(6)

where denotes the mean value of and can be expressed
as the complexity of . If is greater than the threshold ,
then sequence is regarded as complicated class. Otherwise,
it will be assigned to pure class. By adjusting the threshold, we
can get the suitable classification for every data sequence. A
smaller value allows bigger distorted area while compli-
cated sequences adopt restrained . Since the pure region oc-
cupies most of the image content, such a classification raises
the compression ratio greatly. However, it preserves significant
visual content without doing harm to diagnosis. As to the con-
sequent classification information, it needs to be transmitted or
stored completely to the decoder side. Then, original signal se-
quences can be reconstructed precisely. The overhead of
classification is given as follows:

numbers of classification

size of
bits pixel (7)

The overhead of classification in our case is little because we
only have two kinds of classification and the size of is 16

16 (256). It only costs 1/256 bits/pixel here. The configuration
of our proposed method for the encoder is illustrated in Fig. 7.

V. SIMULATION RESULTS

The performance is evaluated by the following two criteria:
1) subjective quality of decoded image, which is verified by two
doctors from the Radiation Department to judge if the result is
acceptable for practical application, and 2) peak signal-to-noise
ratio (PSNR), expressed in decibels (dB). PSNR is a mathemat-
ical evaluation expression that can be calculated as

PSNR (8)

In the above formula, and denote original and decoded
pixels, respectively. is the image size. PSNR has been

Fig. 8. Curve of processing size and time.

accepted as a widely used quality measurement in the field of
image compression. In addition, subjective judgment from the
doctors is also employed to evaluate decoded image quality to
avoid poor decoded quality that may cause misdiagnosis. Two
doctors are invited to help in the judgment.

Refer to Figs. 8–10, which illustrate the relationship among
processing block sizes, implementation time, preserved signif-
icant coefficients, and reconstruction quality. The processing
sizes are 4 4, 8 8, 16 16, and 32 32, respectively, and the
simulation process is manipulated on an Ultra-SPARC 2 work-
station whose CPU is 168 MHz. The threshold of distorted
areas in all the various processing sizes is 4.0. The test image is a
CT image. In this experiment, there is no classification process.
All the numerical data are listed in Table I. Fig. 7 shows the time
to run the adaptive sampling algorithm, which does not include
the operation of DCT manipulation. If the size is larger than 16
16, the implementation time becomes very long. Considering the
case of 4 4, the time to implement adaptive sampling is short
and the reconstructed quality is the best. However, it preserves
too many coefficients to achieve a low compression ratio. A
size of 32 32 is capable of preserving minimum significant
coefficients, but its implementation time is intolerable. After
considering the factors of time and quality, the DCT processing
size is selected to be 16 16 in the following experiments.

We first demonstrate the effectiveness of the employment of
the adaptive sampling algorithm to the DCT spectral domain.
Test data are shown in Fig. 11. Employing adaptive sampling
to the spatial domain can achieve a bit rate of 0.33 bpp with a
PSNR value of 37.85 dB. The bit rate achieved from spectral
domain is 0.18 bpp with a PSNR value of 42.82 dB. The pro-
cessing size is 16 16.

To demonstrate the effectiveness of our proposed technique,
it is carried out for several medical images, including sonogram,
X-ray, CT, and angiogram. The size for all of these is 512 512
with 8-bit monochromes gray images. The threshold value of to
classify if the sequence is a complicated class is 2.5. We obtained
this value empirically. The two allowed distorted area threshold
values of for pure and complicated sequences are 10.0 and
4.0, respectively. The threshold values are roughly selected after
considering the bit rate and reconstructed quality from empir-
ical experiments. Modifying these thresholds affects the decoded
quality and bit rate. The optimal threshold sets can be attained for
every kind of medical image if repetitive experiments are con-
ducted. However, the threshold values are the same as we set
above for all kinds of medical images in our experiments.

All of the test medical images and decoded images are shown

in Figs. 11–18. All of the test results are presented in Table II.
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Fig. 9. Curve of significant coefficients and processing time.

Fig. 10. Curve of processing size and reconstructed quality.

TABLE I
PROCESSING SIZE VERSUS TIME, NUMBER OF SIGNIFICANT COEFFICIENTS, AND RECONSTRUCTED QUALITY

Fig. 11. Original angiogram image. Fig. 12. Decoded angiogram image.
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Fig. 13. Original X-ray image.

Fig. 14. Decoded X-ray image.

Fig. 15. Original sonogram image.

Fig. 16. Decoded sonogram image.

Fig. 17. Original CT bone image.

Fig. 18. Decoded CT bone image.
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Fig. 19. Comparison curves of proposed method, JPEG, and wavelet compressions.

TABLE II
PERFORMANCE RESULTS OF PROPOSED ALGORITHM AND OTHER STRATEGIES

To demonstrate the performance of our strategy, the same test

images are also coded by a JPEG compressor, the widest used

compression tool today for comparison. Owing to the graceful

characteristics of intensity variety and dull background content

that exist in most of the medical images, the adaptive sampling

algorithm achieves good results, especially in X-ray, CT, and

angiogram images. The performance of the proposed method is

much better than JPEG under the same bit rate (compression

ratio) in the above kinds of images. In the case of the sonogram

image, there are texts and waveform within the image. In ad-

dition, the main object has complicated content. It is difficult

to get high fidelity at high compression ratio, no matter what

methods are used. Our method achieves a slightly higher PSNR

value than JPEG does. Considering Fig. 16, the texts and wave-

form are still recognizable after decoding. Therefore, the impor-

tant information for patients will not disappear after processing.

In addition, we use a wavelet provided by Matlab software to

compress the same images for comparison. Their experimental

results are listed in Table II. The results yielded by wavelet are

better than JPEG in angiogram and CT bone images only. Com-

pared to our proposed method, the performance in terms of re-

constructed quality is worse at the same bit rate. Fig. 19 is an

illustration of these comparisons. We find that our proposed

strategy achieves lower bit rates with higher PSNR values for

all test images, which demonstrates its performance. The math-

ematical evaluation of the proposed method outperforms JPEG

and wavelets. However, if we set the threshold of the distorted

area too large to achieve high compression, the blocky effect

will rise. Refer to Fig. 14, which is a decoded X-ray image. Vis-

ible vertical stripes are shown at the upper left. The quality is

not acceptable for practical application after the verification of

the two doctors, even after some deblocking techniques are em-

ployed. Deblocking will also sacrifice the detailed characteristic

of the major component in the medical image. A topic of fur-

ther investigation is to find a deblocking technique that does not

smooth out the important information in the medical image. Two

radiologists judge the acceptance of a decoded medical image

from a professional viewpoint and adapt the sophisticated statis-

tical methods in [14] for consideration. Notice that if we modify

the threshold value set to get the compression ratio below 20, the

decoded X-ray image is acceptable for practical applications.

The decoded quality for an angiogram image below the com-

pression ratio of 45 is acceptable. For the CT bone image, it is

acceptable for the compression ratio to be 35. As to the sono-

gram image, its content is very complicated; the compression

ratio below 15 is acceptable.

VI. CONCLUSION

In this paper, we employ the adaptive sampling algorithm to

medical image data compression. The proposed algorithm has

been adapted to the compression of ECG signals successfully

[15]. By employing the adaptive sampling algorithm to med-

ical image compression, its performance is still as good as the

employment of ECG compression. Due to the merit of simple

computational burden in terms of the calculation of distorted
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area, which needs addition operation only, the proposed method

does not increase heavy computational complexity in achieving

a higher compression ratio compared to other published strate-

gies in [10]–[13]. For the case of a 2-D signal as image data, we

use zigzag scanning to convert spectral coefficients into 1-D se-

quences. Adaptive sampling is used to record those significant

coefficients. Simulation results demonstrate that our proposed

algorithm preserves the essential information while achieving

the data minimum for the purpose of transmission or storage.

Therefore, it is an efficient information processing technique

in the field of medical signal processing. In fact, every kind

of medical image has its own characteristics. If we modify the

threshold sets for one kind of medical image specifically, the re-

sult will be better than listed in the previous section.
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