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Abstract. The creation of average anatomical atlases has been a grow-
ing area of research in recent years. It is of increased value to construct
representations of, not only intensity atlases, but also their segmentation
into required tissues or structures. This paper presents novel groupwise
combined segmentation and registration approaches, which aim to simul-
taneously improve both the alignment of intensity images to their average
shape, as well as the segmentations of structures in the average space.
An iterative EM framework is used to build average 3D MR atlases of
populations for which prior atlases do not currently exist: preterm in-
fants at one- and two-years old. These have been used to quantify the
growth of tissues occurring between these ages.

1 Introduction

Anatomical atlases representative of populations are of tremendous value in
medical image analysis and have allowed the investigation of structural and
functional characteristics of the brain. There has been a recent increase in the
construction of atlases representing the average anatomy of a population [1]
[2] [3] [4] [5] [6] either through using pure groupwise registration techniques or
through the averaging of transformations from pairwise registrations, which are
less biased towards any single subject. In addition to average structure inten-
sity atlases, it is also valuable to have segmentations of this average shape [7].
Segmentation allows for the quanitification of structural volumes, which can be
used to analyse morphological differences over time or between subjects [8] [9],
or for 3D visualisation and analysis [10].

Atlases representing segmented structures are useful in determining typical
anatomy in a given group. Additionally, they are often used in the segmentation
of new subjects of the same population [11] [12]. The construction of corre-
sponding intensity and segmentation atlases can be achieved either through the
segmentation of images followed by the registration of these segmentations [6],
or through the alignment of intensity images and the propagation of individual
segmentations [11]. Clearly, in the first case, the registration is dependent on the
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quality of the segmentation, and, in the second method, the final segmentation
is dependent on the accuracy of the registration. Segmentation and registration
would therefore appear to be complementary processes and an improvement in
one is likely to lead to an improvement in the other.

Much previous work on supervised segmentation of brain MR images has used
probabilisitic atlases (priors) to help classify voxels [13] [12] according to their
location. However, problems may occur if the population from which the prior
was created differs from that of the image to be segmented, for example, in the
use of adult priors, such as the MNI305 priors, to segment child brain images [14].
It may not, however, be easy to obtain representative priors, as they themseleves
are created from the segmentation of multiple subjects of the same population.

There has therefore been recent development in non-rigidly aligning priors to
an image to be segmented [15]. The most recent work has shown that integrating
the registration parameters into the Bayesian framework of maximum likelihood
or maximum a-posterior estimation [16] [17] benefits the segmentation. However,
no attempt is made to use segmentations to assist in the registration of images.
This is done in [18], where a segmented target and a floating image are registered.
The transformation between these images is used to improve the segmentation in
the target space. The combined segmentation, registration and modelling of sets
of images is considered in [19] which iteratively registers a current estimate of the
transformed intensity image to a reconstruction of the image based on its current
segmentation. However, it is not obvious in their work how the integration of
these methods provides an improvement over sequential techniques.

In this paper, we introduce novel groupwise combined segmentation and regis-
tration algorithms. The aim is to concurrently align to, and segment a population
of images in, the average coordinate system of the population. This is defined
as the coordinate system which requires least deformation from itself to all sub-
jects in the population [4]. To do this we combine methods which previously
have been shown, individually, to perform well for their respective tasks - group-
wise registration using the Kullback-Leibler divergence [6] and the Expectation-
Maximisation (EM) algorithm for segmentation [13] [12] - and demonstrate the
mutual benefit of their integration. Furthermore, we incorporate an iterative
update into the segmentation process which uses the current probabilistic seg-
mentations of the population to create representative prior models for the next
iteration. The use of these dynamic models, created from the population con-
cerned, reduces the bias as compared to priors based on standard atlases.

2 Methods

2.1 The EM Algorithm for Single-Subject Segmentation

For an image i, let Y be the collection of J voxels, each with intensity yj , i.e.
Y = {yj, j = 1, 2...J}. Assume we wish to segment this image into K tissue
classes. Let the unknown tissue labelling Z be represented by a vector z of
length K for each voxel. When a voxel is classified as being tissue class l, zl = 1
and zk �=l = 0. Each tissue class, k, can be assumed to approximate a Gaussian
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distribution, with mean intensity μk and variance σ2
k, forming the distribution

parameters θ = {μk, σ2
k, k = 1, 2...K}. The overall image can be considered to

be a mixture of Gaussian distributions, with the mixing coefficients given by the
prior probabilities of each of the labels, p(zjk = 1) = πjk, for each voxel j. The
aim is to find the segmentation and Gaussian parameters which maximise the
log-likelihood:

∑

j

log
∑

k

p(yj |zjk = 1, θ) · p(zjk = 1) =
∑

j

log
∑

k

Gjk · p(zjk = 1) (1)

where Gjk = p(yj |zjk = 1, θ) gives the Gaussian probability density calculated
from the distribution parameters. The EM algorithm solves this by iterating
between two steps, details of the solution being given in [12]:

1. Expectation step. Calculate the posterior probability distribution, wjl =
p(zjl = 1|yj, θ), of a voxel j being labelled as tissue class l.

2. Maximisation step. Find the Gaussian parameters that maximise Eq. 1.

2.2 Groupwise Segmentation

The aim of our proposed groupwise segmentation method is to segment a group
of n images, which have been non-rigidly aligned to their average coordinate
system, using representative priors created from the current estimate of the
segmentations of the individuals in the group. In order to create initial soft
segmentations, p(zijk = 1|yij , θ), for each image, i, the EM algorithm is run
for just a single iteration using MNI priors. The voxel-wise mean of these soft
segmentations is then used to create a new prior model, π

(t+1)
k , of each class, k,

to be used in the next iteration t + 1:

π
(t+1)
jk =

∑n
i p(zijk = 1|yij , θ)

n
=

∑n
i wijk

n
(2)

To avoid magnifying inaccuracies caused by bias of an initial prior model, the
EM process continues with the model being updated at every iteration, using
Eq. 2. However, although at each iteration the log-likelihood (and therefore the
theoretical segmentation) is improved for the current model, constantly updating
the model means that, overall, the log-likelihood will not converge. Instead, the
algorithm is terminated when the complexity of the model converges. When the
images are segmented with greatest confidence and perfectly aligned, the entropy
of the model will always be at a minimum. We therefore instead aim to reduce
the entropy of the model, and terminate the segmentation-registration process
when this converges. The entropy of the prior model, M , at iteration t is given
by:

H(M (t)) = −
∑

j

∑

k

π
(t)
jk log π

(t)
jk (3)
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2.3 Groupwise Non-rigid Registration

In order to ensure the alignment of the priors to each of the images, the im-
ages need first to be aligned to a common, and preferably average, space. This
could be done using a variety of either pairwise, or groupwise, non-rigid regis-
tration methods [4] [2] [1] [20] [3] [5] [6]. However, as the segmentation of each
image gets more certain, this addtional knowledge can also be used to further
improve the registration. The Kullback-Leibler divergence (KLD) is an additive
metric for comparing distances between probability distributions. As individual
segmentations become more accurate, the prior model becomes a more specific
representation of the average shape. Reducing the distance between the model
and each subject will therefore improve the alignment of the population to the
average shape. The KLD similarity measure is given by the distance between
the prior model πjk and the classification of each subject wijk :

Minimise :
∑

i

∑

j

∑

k

wijk log
(

wijk

πjk

)
(4)

This aims to align each probability map with the current average probability map
of the group. When they are all perfectly aligned, all distributions will be the
same. This metric is particularly useful as a similarity measure for pure groupwise
registration [6] as it reduces sensitivity to largely varying image intensities. The
performance of the registration method is, however, dependent on the quality of
the segmentations.

2.4 Integrated Segmentation-Registration

The groupwise registration method described in the previous section aims to
align a group of subjects by using their segmentations. The quality of the regis-
tration is likely to be improved with improved segmentations. However, there is
no requirement of the registration to provide an optimal solution to aid segmen-
tation. The registration can instead be incorporated into a Bayesian maximum
a-posteriori (MAP) framework for segmentation, as in [16]:

(θ(t+1), R(t+1)) = argmax
θ,R

log
∑

Z

P (θ, R,Z|Y) (5)

This aims to maximise the probability of the Gaussian parameters, θ, the reg-
istration parameters, R, and the tissue labelling, Z, given the image intensities,
Y. Extending the approach in [16] to include multiple deformable images gives:

(θ(t+1), R(t+1)) = argmax
θ,R

∑

j

∑

k

w
(t)
ijk ·

[
log Gjk + log π

(t)
jk

]
(6)

This can be solved using the Expectation Conditional Maximisation (ECM)
algorithm [21] by optimising Eq. 6 with respect to θ and R in turn. The term
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on the right-hand-side of Eq. 6 represents a cost function to be maximised. This
can be rewritten by adding (wijk log wijk − wijk log wijk = 0):

argmax
θ,R

∑

j

∑

k

wijk log (Gjk · wijk) − wijk log
(

wijk

πjk

)
(7)

The final term represents the KLD between the posteriors and the model, and thus
the alignment of the image to the group average. However, the first term depends
only on the image under consideration. Maximising these two terms concurrently,
as in the integrated method, need not necessarily result in improved alignment.

2.5 Interleaved Segmentation-Registration

An alternative method is to interleave groupwise segmentation and groupwise
registration such that each term of Eq. 7 is optimised individually. The groupwise
registration algorithm in Section 2.3 maximises only the second term of Eq. 7.
Any resulting reduction in the value of the first term can be compensated for
by subsequently applying the groupwise segmentation algorithm of Section 2.2.
This second stage finds the Gaussian parameters that maximise only the first
term without affecting the registration result. The interleaved segmentation-
registration algorithm therefore aims to improve both the segmentation and the
registration by iterating between the two processes.

3 Results

3.1 Evaluation of Methods on Simulated Data

A population of 100 subjects was created by deforming the MNI Brainweb im-
age by known deformation fields (generated using a free-form deformation model
based on B-splines [22]), which were constrained to sum to zero deformation
across the population. The MNI Brainweb image also has ground truth and prob-
abilistic segmentations for WM, GM, CSF and background (BG) tissue classes.
The transformations to the average space, as well as the segmentations of the
individual images are therefore known. In addition, varying levels of Gaussian
noise (with zero mean and standard deviation ranging from 0-5) were applied
across the population. The proposed methods of interleaved (INLVD) and inte-
grated (INTGD) segmentation-registration approaches have been tested on the
simulated dataset. An initial estimate of the alignment is used, created using a
groupwise registration approach based on B-splines [4] with a KLD similarity
metric. The MNI305 priors are used as the initial prior probability maps. Addi-
tionally, the groupwise segmentation method alone has been applied, using the
known, actual transformations to average space (GW).

Effect on segmentation. The segmentation of each subject using the described
techniques is compared to that obtained using the standard EM algorithm on
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each individual, using affinely-aligned MNI priors. Average Dice overlaps be-
tween the known and obtained segmentations are computed for each structure
and are shown in Table 1. It can be seen that the use of groupwise segmentation-
registration improves the accuracy and consistency of the segmentation.

Table 1. Mean and standard deviation of dice similarity for each structure using each
segmentation method

Method BG CSF GM WM
EM 0.976 ± 0.0044 0.779 ± 0.0247 0.871 ± 0.0067 0.922 ± 0.0066

INGTD 0.988 ± 0.0009 0.847 ± 0.0063 0.882 ± 0.0037 0.949 ± 0.0023
INTLV 0.988 ± 0.0009 0.850 ± 0.0060 0.884 ± 0.0038 0.950 ± 0.0023
GW 0.989 ± 0.0008 0.862 ± 0.0059 0.891 ± 0.0036 0.955 ± 0.0021

Effect on registration. Both integrated and interleaved methods used con-
strained groupwise registration [4], using the KLD similarity measure, to ensure
the atlas represents average shape of the population. The average root-mean-
squared (RMS) error of the final voxel deformations from the original shape
were calculated. The average RMS deformation of the unregistered population
was 2.92mm. The average error after only groupwise registration was found to
be 1.93mm. This improved to 1.70mm when using the interleaved method of
segmentation-registration. However, as predicted, no improvement was found
from the integrated method which resulted in a final RMS error of 1.97mm.

3.2 Average Brain Atlases of Preterm Infants at One and Two
Years

Populations of 22 preterm-born subjects imaged at one year and again at two
years were initially aligned to their average shapes, by averaging pairwise trans-
formations [2]. The pure groupwise segmentation algorithm was run on each of
these aligned populations, using the MNI305 priors for the initial iteration. The
prior atlases were recalculated after each iteration. Convergence of these atlases
for the two-year-old population is shown in Fig. 1. Fig. 2 shows the final aver-
age intensity and tissue class probability atlases for the average shape of each
population.

The model of priors has additionally been used to calculate volumes of the
segmented tissue classes of each average shape. It was found that the mean
volume of WM increases from 278 to 326cm3 (+17%) and the mean volume of
GM increases from 536 to 612cm3 (+14%) between one and two years.

4 Discussion

The groupwise segmentation-registration methods developed have been used to
create average intensity and probabilistic segmentations of populations, repre-
senting their average shape. Additionally, these techniques have been used to
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(a) (b) (c) (d) (e)

Fig. 1. The evolution of prior models for the two-year-old population for WM (top
row), GM (middle row) and CSF (bottom row). (a) MNI 305 priors; (b)-(d) updated
models at iterations 1-3; (e) convergence of model entropy at iteration 6.

Fig. 2. Average shape atlases of 22 one- (top row) and two-year-olds (bottom row).
L-R: sagittal intensity, WM and GM atlases, coronal intensity, WM and GM atlases.
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segment the individual subjects of each population in their native space. On
the simulated dataset, both combined segmentation-registration methods out-
perform the EM algorithm at segmentation of the original images. The best
segmentation occurs when the images are perfectly aligned, as obtained when
the known transformations to the average space are applied. However, only the
interleaved method, which explicitly aims to maximise the registration, improves
the alignment of the images over that obtained by pure groupwise registration.

The groupwise segmentation algorithm has also been used to create average
shape and probabilistic segmentation atlases of populations of preterm infants at
one- and two-years-old, as well as hard segmentations of the individual subjects
in their native space. The atlases obtained have been used to quantify tissue
growth between one and two years.

It is acknowledged that validation on a simulated dataset is limited as real
populations contain differing brain topologies and imaging artifacts such as noise
and inhomogeneity. Manual segmentations of the infant dataset are not available
at time of writing, and it is intended to compare the results on real data to gold
standard segmentations in the future.
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