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Analysis of multispectral or multitemporal images requires
proper geometric alignment of the images to compare corre-
sponding regions in each image volume. Retrospective three-di-
mensional alignment or registration of multimodal medical images

based on features intrinsic to the image data itself is complicated
by their different photometric properties, by the complexity of the
anatomical objects in the scene and by the large variety of clinical
applications in which registration is involved. While the accuracy
of registration approaches based on matching of anatomical
landmarks or object surfaces suffers from segmentation errors,
voxel-based approaches consider all voxels in the image without
the need for segmentation. The recent introduction of the criterion
of maximization of mutual information, a basic concept from
information theory, has proven to be a breakthrough in the field.
While solutions for intrapatient affine registration based on this
concept are already commercially available, current research in
the field focuses on interpatient nonrigid matching.

Keywords—Image registration, medical imaging, mutual infor-
mation.

I. INTRODUCTION

With current medical imaging modalities, such as com-

puted tomography (CT), magnetic resonance imaging

(MRI), or positron emission tomography (PET), it is

possible to routinely and minimally invasively acquire

three-dimensional (3-D) images of the internal organs of the

human body. These radiological images provide detailed in-

formation about anatomy and function of the imaged organs

and play an essential and crucial role in the medical decision
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process in diagnosis, therapy planning, and assessment.

The classical representation of medical images, printed on

radiological film and visualized using a light box, makes

image interpretation necessarily subjective and qualitative.

However, most modern medical image acquisition systems

generate digital images that can be processed by a computer

and transferred over computer networks. Digital imaging

allows to extract objective, quantitative parameters from the

images by image analysis. Medical image analysis exploits

the numerical representation of digital images to develop

image processing techniques that facilitate computer-aided

interpretation of medical images.

The continuing advancement of image acquisition tech-

nology and the resulting improvement of radiological image

quality have led to an increasing clinical need and physi-

cian’s demand for quantitative image interpretation in rou-

tine practice, imposing new and more challenging require-

ments for medical image analysis. Typical applications in-

clude for instance volumetry of organs or lesions using CT

or MRI, morphometry of the brain using MRI, correlation of

anatomical information from MRI with functional informa-

tion from PET, or the planning of therapeutic interventions

such as surgery or radiotherapy using CT images. However,

accurate quantification of structural and physiological pa-

rameters from medical images is often quite difficult, due to

the 3-D nature of the problem and due to limitations intrinsic

to the imaging process itself, such as insufficient contrast,

limited resolution, noise, inhomogeneities, or artifacts. Am-

biguity in the interpretation of the images introduces inter-

and intraobserver variability in the measurements that may

be of the same order of magnitude as the parameter to be

quantified itself. This variability affects the reproducibility

of the measurements and undermines the significance of the

clinical findings derived from them. There is, therefore, great

need for more automated methods for computer-aided image

interpretation to improve the reliability of the measurements.

A fundamental problem in medical image analysis is the

integration of information from multiple images of the same
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subject, acquired using the same or different imaging modali-

ties and possibly at different time points. One essential aspect

thereof is image registration, i.e., recovering the geometric

relationship between corresponding points in multiple im-

ages of the same scene. While various more or less automated

approaches for image registration have been proposed in the

field of medical imaging and image analysis, one strategy

in particular, namely maximization of mutual information

(MMI), has been extremely successful at automatically com-

puting the registration of 3-D multimodal medical images

of various organs from the image content itself. Mutual in-

formation (MI) is a basic concept from information theory,

that is applied in the context of image registration to measure

the amount of information that one image contains about the

other. The MMI registration criterion postulates that MI is

maximal when the images are correctly aligned. MMI has

been demonstrated to be a very general and powerful cri-

terion, that can be applied automatically and very reliably,

without prior segmentation or preprocessing, on a large va-

riety of applications. This makes the method highly suited

for routine use in clinical practice.

This paper presents a review of the MMI registration cri-

terion and its application for 3-D medical image registration.

We start with a discussion of the need and requirements for

3-D medical image registration in Section I-A. Section I-B

reviews previous work on intensity-based image registration

and situates the MMI criterion within the state-of-the-art at

the time of its introduction in the field. The theory and imple-

mentation of the MMI registration criterion are presented in

Section II. The concept of mutual information is introduced

in Section II-A and the MMI registration criterion is formu-

lated in Section II-B. This section also discusses some de-

fective aspects of the assumptions underlying MMI, which

are known to result in registration failures in some partic-

ular cases. The MMI registration algorithm as originally pre-

sented by Collignon et al. [17] is outlined in Section II-C. Al-

ternative implementations, other MI related registration mea-

sures and extensions of the MMI approach are discussed in

Section II-D.

Validation of the MMI registration criterion is discussed

in Section III. Section III-A reviews the validation of the ro-

bustness of the MMI criterion with respect to implementation

issues, such as image sampling, intensity interpolation, and

optimization strategy, and with respect to image related as-

pects, such as image degradation and partial overlap of the

registered images. The accuracy of the MMI criterion has

been validated as part of the Retrospective Registration Eval-

uation Project (RREP) conducted by Fitzpatrick et al. [50]

at Vanderbilt University, Nashville, TN, by comparison with

external marker based registration. The results of this study,

which are discussed in Section III-B, demonstrate the sub-

voxel accuracy of MMI for registration of CT, MR, and PET

images of the brain. In Section IV, we illustrate the clinical

relevance of the MMI registration criterion for 3-D affine

image registration in a wide range of applications involving

CT, MR, and PET images of the head, the thorax, and the ab-

domen, including: registration of MR time series images of

the brain for the study of lesion evolution over time in mul-

tiple sclerosis (MS); staging of metastatic mediastinal lymph

nodes from CT and PET images in lung cancer patients; and

planning of radiotherapy treatment of brain and prostate tu-

mors from CT and MR images. All these registration applica-

tions can be handled by a single software tool using a single

registration algorithm, without having to tune it to each spe-

cific application at hand.

While affine image registration using MMI is well estab-

lished and used already in routine clinical practice, extension

of the MMI criterion to nonrigid image registration is still an

active area of research. The state-of-the-art of nonrigid image

registration using MMI is reviewed in Section V.

In this paper, we focus on the application of MMI for

registration of 3-D image volumes. MMI has also been ap-

plied for other registration problems, such as two-dimen-

sional (2-D)/3-D image registration [16], [78], registration of

surface models to 2-D and 3-D images [122], or registration

in other contexts, such as microscopy [10] or histology [55].

For an extensive survey of MMI registration applications we

refer to [83].

A. Image Registration Problem

Different imaging modalities, such as CT, MRI, and PET,

are based on different physical principles and capture dif-

ferent and often complementary information. Many applica-

tions in clinical practice benefit from an integrated visualiza-

tion and combined analysis of such multimodal images. In

radiotherapy planning, for instance, computation of the ra-

diation dose distribution around the target volume is based

on CT, while the lesion to be radiated itself can often better

be discriminated and defined in the corresponding MRI scan.

In neurology, functional information about the brain derived

from PET needs to be correlated with anatomical information

from MRI. For the diagnosis of lung cancer, tumors can be

easily detected in PET, but a CT scan is required for anatom-

ical localization, etc. In many applications, it is also neces-

sary to compare images acquired at a different time point,

such as: dynamic sequences of 3-D images, for instance,

for functional analysis of the heart; followup studies, for in-

stance, for diagnosis of evolving disease processes such as

MS or for assessing the outcome of therapy; or pre- and post-

operatively acquired images, for instance, for validation of a

surgical intervention. Analysis of a single scene, i.e., the pa-

tient, from multiple images assumes that the geometrical cor-

respondence or registration between these images is known,

such that from the coordinates of a point in one image the

coordinates of the geometrically corresponding point in each

of the other images can be obtained. Anatomically identical

points can then be precisely located and compared in each of

the images. The principle of image registration is illustrated

in Fig. 1.

While in some cases, the images may be assumed to

be aligned at acquisition, such as simultaneously acquired

proton density (PD) and T2 weighted MR images or PET

transmission and emission images acquired without the

patient leaving the scanner, images acquired by different

scanners or at different time points are usually acquired
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(a) (b) (c)

Fig. 1. Principle of 3-D image registration illustrated on CT and
MR brain images of the same subject. (a) Original CT slice. (b)
Original MR slice. (c) Slice through the reformatted CT image
volume that geometrically corresponds to image (b) after 3-D
registration to the MR image. Note the rotation around the vertical
axis. Points at the same position in both images are anatomically
identical and can immediately be compared. Both images offer
complementary information—CT shows primarily bony structures,
i.e., the skull, while MRI allows better differentiation of the internal
soft tissue brain structures. A lesion is clearly visible in the MR
image.

independently one of another and their relative position

is generally unknown, unless specific provisions were

made prior to acquisition. In stereotactic brain surgery, for

instance, a reference frame is rigidly attached to the skull

of the patient prior to image acquisition. The frame holds

a set of markers with known geometry and filled with an

appropriate contrast medium, such that they are clearly

visible as bright spots and easy to detect automatically in

the images. From the position of all markers in each of the

image slices, the transformation from image coordinates

to frame coordinates, and, hence, to patient coordinates

and vice versa, can be computed. If multiple images were

acquired, the location of corresponding frame markers in

each of the images allows to compute the registration of

one image to another (see [62] and references therein). The

accuracy of external frame based registration is usually very

good and of the order of 1–2 mm, provided that registration

errors induced by scanner miscalibration or by geometric

distortion in the MR images have been minimized by

proper calibration and appropriate selection of scan protocol

parameters, respectively. Less invasive and more patient

friendly skin markers have been developed, but these are less

accurate than bone-implanted or skull-fixated markers due

to the nonrigid nature of the skin. However, external marker

based registration can not be applied in all applications,

such as registration of CT and MR images of the abdomen

for instance, and does not allow retrospective registration

of images acquired without markers attached to the patient.

Retrospective registration requires procedures that allow

to recover the registration transformation from the image

content itself.

With the traditional film-based representation of 3-D

image volumes as a sequence of 2-D cross-sectional slices,

the clinician mentally has to construct a picture of the 3-D

geometric relationship between the different sets of slices

when jointly interpreting multiple image volumes, using

prior anatomical knowledge to combine the geometrical

clues provided by corresponding anatomical landmarks

visible in each of the images separately. It is clear that

when one wants to exploit the benefits of digital imaging

and medical image processing for quantitative analysis of

multimodal images, a formal computer-based registration

procedure is required. The registration may be performed

manually by the user tuning the registration parameters as-

sisted by visualization software that supplies visual feedback

of the quality of the registration [75], [79], [98]. While such

subjective approach may be sufficient to support clinical

decisions in some applications, a more objective registration

measure is needed when higher accuracy is required, as in

brain surgery for instance, or if clear anatomical references

are missing or uncertain in one of the images, as when

staging mediastinal tumors from PET and CT images, or

when one wants to exploit the benefits of digital image

processing for quantitative analysis, as for instance in the

followup of MS lesion load over time from MRI. The

retrospective registration of 3-D multimodal images is,

therefore, a fundamental task in medical image processing.

For any image registration tool to be useful and successful

in clinical practice, it needs to be sufficiently accurate and

reliable in all cases and the effort and time required by the

user should be minimal. These requirements can best be met

by automating the registration process as much as possible.

Retrospective registration of 3-D medical images for clin-

ical applications is not a trivial problem, due to the some-

times large differences in patient positioning in the scanner,

the different image content and resolution of the images, the

possible presence of modality specific image degradations

and artifacts and of pathology induced distortions. Moreover,

patient related changes over time may have occurred between

both acquisitions, for instance because of a surgical inter-

vention. Another difficulty is the large variety of different

applications in which image registration is important. These

do not only involve radiological images of the head and the

brain, but also of other organs, such as the thorax, the ab-

domen, or the pelvic region. Each of these applications poses

specific problems the registration method should be able to

cope with, such as for instance breathing induced motion ar-

tifacts in case of the thorax or differences in bladder filling

in case of the pelvis. In many applications, local nonrigid

tissue deformations are negligible or irrelevant and the geo-

metric relationship between the images to be registered can

be modeled by a rigid or affine linear transformation, com-

posed of a 3-D translation and rotation and possibly also 3-D

scaling and skew. The registration problem then consists of

determining the 6 or 12 parameters of the rigid or affine ge-

ometrical transformation that correctly aligns both images.

In other applications, it may be needed to correct for local

nonrigid image distortions, for instance to compensate for

breathing induced deformations in the thorax, or to quantify

local morphological differences from similar images of dif-

ferent subjects, for instance, for building geometrical models

of the brain. In these cases, a more general nonrigid defor-

mation model, with typically much more degrees of freedom,

needs to be used.

B. Voxel Based Strategies for Image Registration

For an extensive overview and classification of medical

image registration techniques, we refer to Maintz [62],

extending earlier overviews of [7], [70], [117]. Registration
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procedures can be classified according to their registration

paradigm [62], i.e., the image features and the correspon-

dence criterion used to compute the registration. Registration

features are either extrinsic, i.e., relating to external objects

or markers introduced in the imaged space specifically for

registration purposes, or intrinsic, i.e., based on the image

information generated by the object under study itself.

Extrinsic registration can not be applied retrospectively.

Intrinsic methods can be classified as either point based,

surface based or voxel based. Point based methods rely on

manually indicated anatomical landmarks or automatically

computed geometrically salient points. Although very ver-

satile, these methods are labor-intensive if user interaction is

required and their accuracy relies on the accurate localiza-

tion of a sufficient number of corresponding landmarks in all

modalities. Surface based registration requires delineation

of corresponding surfaces in each of the images separately.

However, surface segmentation algorithms are generally

highly data and application dependent and difficult to

automate, and surfaces are not easily identified in functional

modalities such as PET. Voxel based registration methods

optimize a functional measuring the similarity of all geo-

metrically corresponding voxel pairs for some feature. Their

main advantage is that feature calculation is straightforward

or even absent when only grey-values are used, such that

accuracy is not limited by segmentation errors as in point or

surface based methods. By extending the feature space from

points to surfaces to all voxels in the image, knowledge of

point-to-point correspondences is traded for a larger set of

samples that is accounted for by the similarity measure.

For intramodality registration, multiple voxel based

methods have been proposed that optimize some global

measure of the absolute difference between corresponding

voxel intensities within overlapping parts or in a region of

interest [13], [32], [90], [121]. These criteria all rely on the

assumption that the intensities of the two images are linearly

correlated, which is generally not satisfied for intermodality

registration. Cross-correlation of feature images derived

from the original image data has been investigated using

geometrical features such as edges [64] and ridges [116] or

using especially designed intensity transformations [115].

However, feature extraction may introduce new geometrical

errors, requires extra calculation time, and may be modality

or application specific, which makes automation more

difficult. Moreover, correlation of sparse features like edges

or ridges may have a very peaked optimum at the regis-

tration solution, but at the same time be rather insensitive

to misregistration at larger distances, as all nonedge or

nonridge voxels correlate equally well. A multiresolution

optimization strategy is, therefore, required, which is not

necessarily a disadvantage, as it can be computationally

attractive.

In the approach of Woods et al. [129] and Hill et al.

[40], [42], misregistration is measured by the dispersion of

the scatter-plot or 2-D joint histogram of image intensities

of corresponding voxel pairs, which is assumed to be

minimal in the registered position. However, the dispersion

measures they propose are largely heuristic. Hill’s criterion

requires segmentation of the images or delineation of

specific histogram regions to make the method work [103],

while Woods’ criterion is based on additional assumptions

concerning the relationship between the grey-values in

the different modalities, which reduces its applicability to

some very specific multimodality combinations (PET/MR).

Collignon et al. [18], inspired by the work of Hill and

Woods, recognized the information theoretic nature of the

image registration problem and proposed the much more

general notion of entropy of the grey-level scatter-plot as a

new matching criterion. However, this measure is sensitive

to partial overlap of the images, as it does not account for

the fact that the information content of each of the images

separately within their region of overlap may not be constant

during registration.

Finally, two different groups, Collignon and Maes et al.

[17], [59] at KU Leuven, Belgium, and Viola and Wells et

al. [122], [124] at the Massachusetts Institute of Technology,

Cambridge, almost simultaneously but independently of

each other, introduced MMI of image intensities as a new

registration criterion. MI, or relative entropy, is a basic

concept from information theory, which can be considered a

nonlinear generalization of cross-correlation. MI measures

the statistical dependence between two random variables or

the amount of information that one variable contains about

the other [20]. The MMI registration criterion postulates

that the MI of the image intensity values of corresponding

voxel pairs is maximal if the images are geometrically

aligned. The information theoretical relationship of MI with

the registration criteria of Hill and Woods is examined in

[59]. The mathematical elegance, algorithmic simplicity

and spectacular robustness of the MMI registration criterion

immediately attracted a lot of interest from the research

community. Related early work in this area includes the

work by Studholme et al. [103], Pluim [82], and Meyer et

al. [51].1

II. THEORY OF IMAGE REGISTRATION USING MMI

A. Mutual Information

Two discrete random variables and with marginal

probability distributions and and joint prob-

ability distribution are statistically independent

if , while they are maximally

1Historical footnote: Collignon and Maes formulated the MMI regis-
tration criterion early 1995. It was presented orally by Collignon at the
CVRMED’95 conference in Nice, France, in April of that year [18], and
first published in the proceedings of the IPMI’95 conference in Brest,
France, in June [17]. Almost simultaneously, Viola and Wells presented
their own formulation of MMI at ICCV’95 in Cambridge, MA, also in June
[122]. Hawkes, Hill, and Studholme, at UMDS, London, U.K., already
working on histogram dispersion measures for image registration [42], got
informed about MMI by personal communication with Collignon and Maes
during mutual visits between both groups in January and March, 1995.
At IPMI’95, Collignon’s enthusiasm about the new registration measure
was supported by Studholme’s comparison of MMI with other voxel-based
registration measures, which was presented at that same conference [103].
The group of Viergever, Maintz, and Pluim at ISI, Utrecht, the Netherlands,
started working on MMI in 1996 using software provided by Maes [82].
Meyer attended Collignon’s presentation at CVRMED’95. His group was
the first to apply MMI for nonrigid matching [51].
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dependent if they are related by a one-to-one mapping

: . The mutual

information of and measures the degree of

dependence of and as the distance between the joint

distribution and the distribution associated to the

case of complete independence , by means of

the Kullback-Leibler measure [20], [114], i.e.,

(1)

Mutual information is related to the information theoretic

notion of entropy by the following equations:

(2)

(3)

(4)

with and being the entropy of and re-

spectively, their joint entropy, and and

the conditional entropy of given and of

given , respectively. , and are de-

fined as

(5)

(6)

(7)

with the conditional probability of given

. The entropy is known to be a measure

of the amount of uncertainty about the random variable

, while is the amount of uncertainty left in

when knowing . Hence, from (3), is the reduc-

tion in the uncertainty of the random variable by the

knowledge of another random variable , or, equivalently,

the amount of information that contains about . If

and are independent, and

, while if and are one-to-one related,

. It can be shown [20] that

mutual information is nonnegative ( ) for any

two random variables and . Some properties of mutual

information are summarized in Table 1 (see [114] for their

proof).

B. Mutual Information Registration Criterion

Multimodal images of the same scene represent measure-

ments of different properties of the objects in that scene. Al-

though the image intensities corresponding to the same ob-

ject may be very different between different modalities, in

general they are not independent observations as the under-

lying physical reality, i.e., the objects or tissues, are the same.

The intensity values in different images of the same scene at

image positions that correspond to the same location in 3-D

physical space, i.e., the same volume element of the same

Table 1

Some Properties of Mutual Information

object, are not independent quantities, but are statistically re-

lated measurements. Knowledge of the outcome of one mea-

surement provides some information about the underlying

physical reality from which it was obtained and, therefore, re-

duces the uncertainty about the outcome expected from other

measurements of that same reality. This is intuitively clear for

modalities that capture information which is linked directly

to anatomy, such as X-ray attenuation in CT or water content

in MR, but also holds for modalities that represent different

kinds of information, such as anatomy in MR and function

in PET.

If and are two images that are geometrically related by

the registration transformation with parameters such

that voxels in with intensity physically correspond

to voxels in with intensity , the statistical depen-

dence between and or the information that one value con-

tains about the other is measured by the mutual information

of the variables and

with , and the joint and marginal dis-

tributions of the pair ( ) and of and , respectively. Esti-

mates for these distributions can be obtained by simple nor-

malization of the joint and marginal histograms of the over-

lapping parts of both images. The relationship be-

tween and and, hence, their mutual information

depends on , i.e., on the registration of the images. The

mutual information registration criterion postulates that the

images are geometrically aligned by the transformation

for which is maximal

If both marginal distributions and can be

considered to be independent of the registration parameters

, the MI criterion reduces to minimizing the joint entropy
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[18]. If either or is independent of

, which is the case if one of the images is always com-

pletely contained in the other, the MI criterion reduces to

minimizing the conditional entropy or .

However, if both images only partially overlap, which is very

likely during optimization, the volume of overlap will change

when is varied and both marginal distributions and

and, therefore, also their entropies and

will in general depend on . The MI criterion takes this into

account explicitly, as becomes clear in (2), which can be in-

terpreted as follows [122]: “Maximizing mutual information

will tend to find as much as possible of the complexity that

is in the separate datasets (maximizing the first two terms)

so that at the same time they explain each other well (mini-

mizing the last term).”

For to be useful as a registration criterion and

well-behaved with respect to optimization, should

vary smoothly as a function of misregistration . This

requires , and to change smoothly

when is varied, which will be the case if the image intensity

values are spatially correlated [59]. Although the formulation

of the MI criterion suggests that spatial dependence of image

intensity values is not taken into account, such dependence is

in fact essential for the criterion to be well-behaved around

the registration solution.

The MMI registration criterion is illustrated in Fig. 2 for

the CT and MR brain images of Fig. 1. Fig. 2 shows the

2-D histogram of the image intensity values in a nonregis-

tered and in the registered position. If the images are properly

aligned, the high-intensity values in the histogram of the CT

image originating from the bone of the skull are most likely

to correspond to low-intensity values in the histogram of the

MR image, resulting in a peak in their 2-D joint histogram.

The uncertainty about the MR voxel intensity is, thus, largely

reduced if the corresponding CT voxel is known to be of high

intensity. This correspondence is lost in case of misregistra-

tion, resulting in a much more dispersed histogram. The mu-

tual information between both images is, therefore, larger in

the registered than in a nonregistered position. Fig. 3 shows

traces of MI of the images of Fig. 1 for translation and ro-

tation around the registered position. These illustrate the ro-

bustness and reliability of the MI criterion: within a large

range of to mm translation and to ro-

tation around the registered position there is only a single

strong optimum, which coincides with the correct registra-

tion solution.

Mutual information does not rely on the intensity values

directly to measure correspondence between different im-

ages, but on their relative occurrence in each of the images

separately and co-occurrence in both images combined. As

such it is insensitive to intensity permutations or one-to-one

intensity transformations and is capable of handling posi-

tive and negative intensity correlations simultaneously. Un-

like other voxel-based registration criteria, based on for in-

stance intensity differences or intensity correlation, the MI

criterion does not make limiting assumptions about the na-

ture of the relationship between the image intensities of cor-

responding voxels in the different modalities, which is highly

(a)

(b)

Fig. 2. Joint histogram of the volume of overlap of the CT and
MR images of Fig. 1: (a) before registration, I(CT;MR) = 0:52;
(b) after registration, I(CT;MR) = 0:86. Misregistration was
about 15 mm translation and 10 rotation.

data dependent, and does not impose constraints on the image

content of the modalities involved. This explains the success

of MMI for multimodal image registration in a wide range of

applications involving various modality combinations, some

of which are illustrated in Section IV.

While originally introduced for intermodality image reg-

istration, MMI has also been used successfully for in-

tramodality image registration, for instance of serial MR

images [43], fMRI time-series images [27], or SPECT

perfusion images [89]. In some studies, unimodal simi-

larity measures, relying on minimizing intensity differences

or maximizing intensity correlation, or measures specifi-

cally designed for particular modality combinations were

found to perform equally well or better than MMI [4],

[78], [110]. However, the underlying assumptions of these

methods, especially the assumption that the intensities of

corresponding voxels in unimodal images to be registered

are identical, may be violated in practice, for instance due

to imaging artifacts such as noise or intensity inhomo-

geneity, nonrigid tissue deformations not compensated for

by affine image registration, or local contrast changes, for

instance as a result of perfusion or brain activation. A sta-

tistical multimodal registration criterion such as MMI may,
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(a)

(b)

Fig. 3. Traces of MI of the CT and MR images of Fig. 1 for (a)
translation and (b) rotation around the registered position.

therefore, be preferred for unimodal registration as well

[43], [89].

Nevertheless, there are cases in which MMI fails as a reg-

istration criterion. Such failures occur due to insufficient mu-

tual information in the images, ambiguity about the intensity

relationship between both images if this is not spatially in-

variant, or inability to reliably estimate MI if the number of

image samples is small.

The fundamental assumption of MMI based registra-

tion that image intensities in both images are related to

corresponding objects that should be aligned by registra-

tion, may be invalid if the information in both images is

very different. A typical example is the co-registration of

anatomical information from CT and MR with functional

information from PET. MMI-based registration of CT

and MR images of the brain to the corresponding PET

brain images has been demonstrated to be feasible with

subvoxel accuracy [126], because in the brain the rigid body

assumption is usually well satisfied and the PET images

contain sufficient anatomical clues for the registration to

be successful. However, such clues are much less apparent

in PET emission images of other body regions, such as

the abdomen or the thorax, which are blurred by breathing

induced motion averaging and which typically only show

hot spots of functional activity against a fairly homogeneous

background as illustrated in Fig. 13. Consequently, correct

alignment of CT and PET emission images as in Fig. 13

may not coincide with a global or even local maximum of

MI and robust registration of thorax CT and PET emission

images directly using MMI is not feasible. Instead, PET

transmission images, aligned with the emission images and

showing similar anatomical content as the CT images but at

much lower resolution, have been used as intermediary as

described in Section IV-D [120].

Since MI is computed from the joint intensity probability

of both images that is estimated by pooling contributions

from everywhere in the image domain, the MMI criterion

implicitly assumes that the statistical relationship between

corresponding voxel intensities is identical over the whole

area of overlap. However, the photometric relationship be-

tween two multimodal images of the same scene may not be

spatially invariant if one of the images suffers from severe in-

tensity inhomogeneity. In particular, MMI is not well adapted

for registration involving images that show large shading ar-

tifacts, a typical example being MR images acquired using

surface coils [99], [107].

The MMI registration criterion assumes that the joint prob-

ability distribution of corresponding voxel intensities can be

estimated reliably at and near the registration solution. In

practice, this requires the volume of overlap at registration to

contain a sufficiently large number of voxels. For low-resolu-

tion images or if the region of overlap is small, the statistical

relationship between both images needs to be derived from a

small number of samples, which is not robust. In these cases,

the computed MI may show multiple local optima around the

correct registration solution or the registered position may

not coincide with a local maximum of MI [87], [106].

C. Registration Algorithm and Implementation Issues

We first describe the MMI registration algorithm as for-

mulated by Collignon and Maes et al. [17], [59]. Alternative

formulations, implementations, and extensions are discussed

in Section II-D.

The MMI registration criterion does not require any pre-

processing or segmentation of the images. With each of the

image volumes is associated a 3-D world coordinate frame in

millimeter units with its origin at the center of the volume and

its axes directed left/right, anterior/posterior, and inferior/su-

perior relative to the patient. The orientation of the image

can be retrieved automatically from the information in the

image header recorded by the scanner. Voxel indices in each

image are translated into coordinates in millimeter by taking

the pixel size and the interslice spacing of each image into

account. Anisotropy in voxel size and differences in voxel

size between both images are, thus, accounted for without re-

sampling the images first. One of the images to be registered

is selected to be the floating image from which samples

are taken and transformed by the geometric transfor-

mation with parameters into the reference image .
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Fig. 4. Graphical illustration of NN, TRI, PV, and PI interpolation
in 2-D. NN and TRI interpolation find the reference image intensity
value at position T s and update the corresponding joint histogram
entry, while PV and PI interpolation distributes the contribution of
this sample over multiple histogram entries using weights that are
smooth functions of the registration parameters �.

may include all voxels in or a subset thereof to increase

speed performance.

The joint image intensity histogram of the

volume of overlap of and is constructed

by binning the image intensity pairs ( , for all

. In order to do this efficiently, the floating and the

reference image intensities are first linearly rescaled to the

range [0, ] and [0, ] respectively,

being the total number of bins in the joint histogram, with

typically . In general, will not

coincide with a grid point of and interpolation of the

reference image is needed to obtain the image intensity value

. Several interpolation schemes are graphically

depicted in Fig. 4 [59]. Nearest neighbor (NN) interpolation

of is generally insufficient to guarantee subvoxel accu-

racy, as it is insensitive to translations up to 1 voxel. Other

interpolation methods, such as trilinear (TRI) or higher

order interpolation, may introduce new intensity values

which are originally not present in the reference image,

leading to unpredictable changes in the marginal distribution

of the reference image for small variations of . To

avoid this problem, an alternative approach, namely trilinear

partial volume distribution (PV) interpolation, was proposed

in [17] to update the joint histogram for each voxel pair

. Instead of interpolating new intensity values in ,

the contribution of the image intensity of the sample

of to the joint histogram is distributed over the intensity

values of all eight NNs of on the grid of , using the

same weights as for trilinear interpolation. Each entry in

the joint histogram is then the sum of smoothly varying

fractions of 1, such that the histogram changes smoothly

as is varied. PV interpolation results in a continuous and

a.e. differentiable registration criterion. A variant thereof,

trilinear partial intensity distribution (PI) interpolation, was

proposed in [58]: the image intensity value is

computed first by trilinear interpolation and the contribution

of the sample to the joint histogram is distributed over the

bins ( ) and ( ) with weights and

, respectively, with the largest integer that is not

larger than and .

Estimations for the marginal and joint image intensity dis-

tributions , and are obtained

by normalization of and the MI registration crite-

rion is evaluated using

with

(9)

(10)

(11)

The optimal registration parameters are found by max-

imization of . In [17], [59], Powell’s multidimensional

direction set method [88] is used to maximize (or min-

imize ). The images are initially positioned such that

their centers coincide and that the corresponding scan axes

of both images are aligned and have the same orientation.

Powell’s direction matrix is initialized with unit vectors in

each of the parameter directions. In [59], it is noted that

an appropriate choice for the order in which the parameters

are considered by Powell’s optimization method needs to be

specified, as this may influence optimization robustness. For

brain images, for instance, the horizontal translation and the

rotation around the vertical axis are more constrained by the

shape of the head than the pitching rotation around the left

to right horizontal axis. Therefore, it is suggested in [59] to

first align the images in the transversal plane by optimizing

the in-plane translation and rotation parameters first, in order

to facilitate the optimization of the out-of-plane parameters.

As the optimization proceeds, the Powell algorithm may in-

troduce other optimization directions and change the order in

which these are considered [88].

D. Alternative Implementations and Extensions

Various authors presented alternative optimization

schemes for maximization of . Studholme et al. [102],
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[104] use an heuristic search procedure in which the param-

eters are one by one iteratively changed by small amounts

such as to maximize MI. Meyer et al. [73] use a simplex

search method to optimize the parameters of an affine or thin

plate spline warped registration. Maes et al. [60] obtained

analytic expressions for the gradient of MI w.r.t. the affine

registration parameters, using partial volume distribution

interpolation, and compared multiple gradient and not

gradient based optimization strategies in terms of precision

and speed. Thévenaz and Unser [110] presented a gradient

based optimization strategy using analytic expressions for

the gradient of MI computed using cubic spline based image

interpolation and Parzen windowing of the joint intensity

histogram. Jenkinson and Smith [47] proposed a scheme

for global optimization of MI that combines a fast local

optimization method with an initial search phase, demon-

strating improved robustness of their scheme compared to

local search strategies in the context of affine intersubject

brain image registration.

Other schemes can be used to estimate the image inten-

sity distributions in (8), for instance by using Parzen win-

dowing [25] on a set of samples taken from the overlapping

part of both images. This approach was used by Viola et al.

[122]. In this approach, the image intensity probability densi-

ties are estimated as a mixture of Gaussian distributions from

a small number of samples by weighting each sample’s con-

tribution to the histogram with a Gaussian window function

. A first set of samples is used to estimate the densi-

ties , , and by Parzen windowing as

and a second set of samples is used to estimate mutual

information as the log likelihood

with typically . By replacing each of the

densities by a sum of Gaussians, analytic expressions are de-

rived for stochastic approximations of mutual information

and its gradient. Steepest gradient descent is then used to find

the optimal registration transformation by maximization of

. While stochastic sampling of the images increases speed

performance, the fact that only a limited number of samples

is used, is likely to introduce local optima in the registra-

tion criterion and reduce registration robustness. Wells et al.

[124] reported a 90% success rate of convergence to near the

correct solution for a single pair of CT and MR images of

the brain in 111 registration trials starting from a random-

ized initial position using translational and rotational offsets

for each axis uniformly selected in the range [ , 25] mm

and [ , ] around the registered position. Parzen win-

dowing was also used by Thévenaz and Unser [110] to esti-

mate the joint probability distribution, but using B-splines as

weighting functions instead.

Other information-theoretic registration measures can

be derived from the mutual information criterion pre-

sented above, such as the entropy correlation coefficient

[59] or the normalized mutual information

[106]:

(12)

(13)

with and . and

are one-to-one related by , such

that maximization of each of these measures is equivalent.

While Maes et al. [59] reported that they could not establish

a clear preference for versus MI for registration of full

brain CT, MR, and PET images, Studholme et al. [106] found

that maximization of is superior to MMI itself in case

the region of overlap of both images is relatively small at the

correct registration solution, as MMI may be biased toward

registration solutions with larger total amount of information

within the region of overlap.

Several authors have proposed adaptations of the MI mea-

sure to include spatial information that is contained in each

of the images separately, in order to increase registration ro-

bustness and accuracy in cases where the joint intensity his-

togram by itself is insufficient.

Butz and Thiran [8] applied MMI not to the original inten-

sities, but to an edgeness measure such as the gradient magni-

tude, indicative for the location of object surfaces. However,

the fact that a lot of intensity information is discarded and

due to the sparseness of edge features, the edgeness-based

MI shows more and more pronounced local maxima, neces-

sitating the use of a genetic optimization strategy to find the

global optimum.

In the approach of Pluim et al. [84], spatial information is

incorporated in the registration criterion by multiplying MI

with a gradient term that measures the coincidence of voxels

in both images with strong gradients of similar orientation,

which is considered to be indicative of alignment of tissue

transitions in both images. The combined measure was eval-

uated for rigid-body registration of CT, MR, and PET brain

images and was found to yield a smoother function than mu-

tual information or its normalized version, to be less affected

by interpolation artifacts and to perform better for low-reso-

lution images.

Studholme et al. [105] experimented with incorporating

additional information channels in the mutual information

criterion. In some difficult applications, such as registration

of pelvic MR and PET images, Studholme observes that reg-

istration on intensities alone may not provide a distinct op-

timum due to a lack of differentiation between spatially un-

connected regions in one modality which seem to be con-

nected in the other. Incorporation of region labeling infor-

mation is then useful to express region connectivity or higher

level anatomical information. In general, the mutual informa-

tion registration criterion can be straightforwardly extended

to the case in which two already registered images and
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have to be registered to a third one by expressing the mu-

tual information between the pair ( , ) and as

or as the sum of the information that contains about and

the additional information that contains about that is not

already contained in .

Rueckert et al. [94] considered the cooccurence of neigh-

boring voxel intensities in each of the images to be regis-

tered and defined second-order mutual information to assess

the correspondence of intensities of adjacent voxel pairs in

both images, explicitly taking the dependence of neighboring

voxel intensities into account. The method was evaluated for

nonrigid registration of brain MR images with simulated and

real intensity inhomogeneity, showing that higher-order mu-

tual information is much less sensitive to shading artifacts

than traditional mutual information.

Mutual information is only one example of

the more general -information measures of dependence

[114] with the set of joint probability

distributions and the set of joint proba-

bility distributions assuming and to be

independent. -information is derived from the concept of

-divergence, which is defined as

with and , with an

appropriate choice for and with suitable definitions when

. One example of -divergence is

with corresponding -information

with and and .

equals MI for . Several -information measures,

including for various , were investigated by Pluim et

al. [83], [86] and compared to MI in terms of accuracy of

their optimum, robustness with respect to initial positioning

and overall registration performance for rigid-body registra-

tion of CT, MR, and PET brain images with marker-based

gold standard registration (taken from the RREP study [50],

[126], see Section III-B). In some cases, these measures were

found to outperform MI in terms of accuracy when initiating

the optimization with the reference solution itself, but not in

overall registration performance when starting the optimiza-

tion from an initial position further off from the reference.

Inspired by the MMI registration criterion, Buzug et al.

[9] and Bro-Nielsen [5] experimented with alternative his-

togram based registration measures motivated by convexity

arguments and by the literature on grey-level cooccurence

matrices respectively, but their approaches lack the mathe-

matical elegance of the mutual information registration cri-

terion.

III. VALIDATION

A. Robustness

The robustness of the MMI registration algorithm was in-

vestigated by various authors with respect to implementation

issues such as (sub)sampling [59], [87], [104], optimization

[60], [110], and especially interpolation [59], [83], [85],

[110]. Thurfjell et al. [113] and Zhu and Cochoff [130]

adopted the approach of [59] and studied the influence

of several implementation options, such as interpolation

method, number of histogram bins, optimization approach

and multiresolution strategy in the context of MR and

SPECT brain image registration, tuning the algorithm to-

ward optimal performance in terms of registration accuracy,

robustness and speed.

Different interpolation schemes used for histogram bin-

ning show different behavior of the MI registration measure

in the neighborhood around the optimum, such that the sen-

sitivity of the registration solution to the initial positioning

of the images and to the optimization strategy used depends

on the choice of the interpolation method [59]. While NN

and TRI interpolation usually show many weak local optima

near the correct registration solution, PV interpolation yields

a smooth MI registration criterion with a large basin of at-

traction around the correct optimum [59]. However, PV in-

terpolation may introduce artifacts in the registration crite-

rion if the images to be registered have identical voxel grids

or if their voxel sizes are multiples of each other in one or

more dimensions [58]. Indeed, if the images are aligned such

that all or many of the voxels in both images coincide ex-

actly, many of the PV weights are zero and the histogram

dispersion introduced by the PV distribution scheme is less

at grid-aligning registration positions. Since PV histogram

dispersion increases again when moving away from such a

position in any direction, PV interpolation may yield a local

maximum of MI at these positions (especially with low reso-

lution images with low spatial intensity correlation such that

neighboring voxels in the reference image are more likely to

contribute to different histogram bins). If the true registration

solution is sufficiently far away from a grid-aligning position

(for instance, if it involves significant rotation of one image

relative to the other) and has a broad attraction range, these

local maxima are unlikely to have an impact on the optimiza-

tion process and it usually suffices to start the optimization

from an initial position in which the grids are not aligned (for

instance, by specifying a nonzero initial rotation around one

or more axes). However, if the true registration differs very

little from a grid-aligning position, the optimization is likely

to be attracted by the local maxima introduced by the PV

interpolation scheme itself, such that these PV interpolation
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artifacts are very likely to deteriorate registration robustness.

Especially for recovering subvoxel small displacements of

images with identical grids (e.g., motion correction of fMRI

time series images) TRI interpolation is to be preferred [58].

The impact of PV interpolation induced artifacts on mu-

tual information based registration of clinical images was in-

vestigated extensively by Pluim et al. [85], who also showed

the occurrence of artifacts for TRI interpolation. While PV

interpolation yields local maxima of MI at grid-aligning po-

sitions, TRI interpolation yields local minima at these po-

sitions. This is explained in [85] by the fact that TRI inter-

polation blurs the reference image, making noise and other

small scale structures disappear and therefore reducing his-

togram dispersion. At grid-aligning positions, however, no

blurring is applied and the joint entropy can, therefore, be

higher (and, hence, MI smaller) for grid-aligning transforma-

tions than for nongrid-aligning transformations. An example

illustrating PV and TRI interpolation artifacts is shown in

Fig. 5. Pluim et al. [85] also showed that a small resampling

of one of the images, such that the voxel sizes of both im-

ages are no longer equal and grid alignment therefore cannot

occur, largely removes the interpolation artifacts and vastly

increases the smoothness of the registration function. The

impact thereof on registration accuracy was evaluated for

registration of CT and MR brain images with identical inter-

slice distance (taken from the RREP study [50], [126], see

Section III-B), but no significant difference in accuracy for

registration of CT to the original and to the resampled MR

images was found.

It has been shown that for high-resolution images sub-

sampling of the floating image can be applied without

deteriorating optimization robustness of the MMI registra-

tion criterion [60], [87]. Important speedups can, thus, be

realized by using a multiresolution optimization strategy,

starting with a coarsely sampled image for efficiency and

increasing the resolution as the optimization proceeds for

accuracy [104], [110]. Multiple multiresolution strategies,

involving different subsampling factors and number of

resolution levels and using various optimization methods,

were compared in [60], demonstrating possible speedups up

to a factor of three over the original method of [59] with

similar precision and without loss of robustness. Pluim et

al. [87] found that the use of a multiresolution optimization

strategy for MMI registration of low-resolution images, with

and without resolution-dependent image blurring at each

resolution level, merely increased computation time without

improving registration robustness.

Studholme [103], [104] investigated the influence of the

initial positioning of the images on the registration result,

comparing his implementation of the MMI criterion with

other voxel based similarity measures, such as Collignon’s

entropy measure [18], Hill’s third-order moment [42], cross-

correlation and Wood’s variance of intensity ratios measure

[129]. Multistart experiments reported in [104] for a single

CT and MR dataset of the brain showed that the standard

deviation in the registration solutions was smaller than 0.1

mm for translation and 0.15 for rotation and that clustering

(a)

(b)

Fig. 5. Traces of MI between an MR brain image and itself
translated in the slice direction. (a) Range from �5 to +5 voxels
around the registered position. (b) Detail of (a). Note the local
minima and maxima for TRI and PV interpolation respectively at
grid-aligning positions at multiples of one voxel displacements. NN
interpolation is insensitive to translations up to one voxel, which
explains the staircase pattern.

of the results was significantly better for the MMI criterion

than for the other criteria.

Studholme [104] also verified the impact of partial overlap

on registration robustness and found that clustering of regis-

tration results obtained in his multistart experiments was best

if the skull base was included in the registration and worse if

only the upper half of the CT dataset was used. In [59], it was

reported that registration of a single dataset of high resolution

CT and MR images of the brain using either the full images

spanning the entire head or using only part of the datasets has

only subvoxel influence on the registration result.

The robustness of the MMI criterion with respect to image

degradations, such as noise, intensity inhomogeneity or geo-

metric distortion, was illustrated in [59] by inspecting the

behavior of the MI criterion for registration of an original

MR image and its artificially degraded version. Different

degradations of the original image intensities were created
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Table 2

Quantitative Validation of Registration Accuracy of Various Registration Algorithms by Comparison
With External Marker Based Registration for Registration of CT, MR, and PET Images of the Brain
[126]. Registration Features are: Point Landmark Based (PB), Surface Based (SB), and Voxel Based
(VB). The Worst Case Median Error (in millimeters) for CT to MR and PET to MR Registration
Over All Six MR Scans Available per Patient as Reported in and Three in [126] and on the RREP
Website [50] (n:a = no results available). The Various Approaches Using Mutual
Information Differ in Implementation Issues and in the use of Mutual Information Versus
Normalized Mutual Information as Defined in (13).

by superimposing zero-mean Gaussian noise, by multiplica-

tion with a 2-D radially symmetric quadratic bias field and

by simulating geometric distortion along one coordinate axis

using the magnetic field inhomogeneity model of [74]. In

these simulations, the MMI registration solution was not af-

fected by noise or (mild) intensity inhomogeneity: MI de-

creased when the degradation was more prominent, but in all

experiments the location of its maximum was identical to the

case when no degradation was applied. In the simulations in-

volving geometric distortion, the registration solution shifted

in the same direction and over a distance proportional to the

average distortion applied.

B. Accuracy

The accuracy of the MMI registration algorithm was vali-

dated within the framework of the RREP conducted by Fitz-

patrick et al. at Vanderbilt University [50] and reported in

West et al. [125]–[127]. The primary objective of this study

was “to perform a blinded evaluation of a group of retrospec-

tive image registration techniques using as a gold standard a

prospective, marker-based registration method.” Image vol-

umes of three modalities (CT, MR, and PET) were obtained

from nine patients undergoing neurosurgery. Up to six dif-

ferent MR images were available for each patient: T1, T2,

and proton density weighted images and geometric distor-

tion corrected versions thereof. A stereotactic frame and ad-

ditional bone-implanted fiducial markers, designed to be vis-

ible in CT, MR, and PET, were rigidly mounted to the skull

of each patient. The centroid of each marker was detected in

each of the images using the fiducial localization technique

described by Wang et al. [123]. The CT and PET images

were registered to the MR images by calculating the rigid
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body transformation that minimizes the mean square distance

between corresponding marker positions in the two images.

The rigid body assumption is well satisfied inside the skull

in 3-D scans of the head if scanner miscalibration, geometric

distortion of the images and patient related changes, for in-

stance due to interscanning interventions, can be neglected.

These marker-based transformations were used as the gold

standard for evaluation of the retrospective methods. The ac-

curacy of this reference was estimated by numerical estima-

tions to be 0.4 mm for CT to MR and 1.7 mm for PET to

MR registration [72], [126]. To ensure blindness of the study,

the frame and the fiducial markers were removed from the

images by manual editing, approximately reconstructing the

image background in manually outlined regions containing

these structures. The gold standard results were not commu-

nicated to the participants in the study until after their results

had been submitted. The transformation differences between

the reference and the submitted transformations were evalu-

ated at 10 anatomically relevant volumes of interest (VOI) in

the brain. Since results for different VOIs were all very sim-

ilar, results were pooled over all VOIs. The median and max-

imal error over all sites and all patients were reported in [126]

for each method that participated in the study. These results

are summarized in Table 2, together with results by some

other groups on the same data sets that were submitted after

the initial publication [126] and that are publicly available on

the RREP website [50]. Although the number of registration

experiments performed in this study was too small to draw

statistically significant conclusions regarding relative perfor-

mance of different methods, it is clear that some methods

performed better than others. Two groups that participated in

the initial RREP study [126] (Hill and Collignon in Table 2)

submitted registration results computed with (different im-

plementations of) the MMI registration criterion. The RREP

evaluation shows that the results submitted by both groups

differ almost always by less than a voxel from the external

marker based registration solution, both for CT/MR and for

PET/MR registration, which provides strong evidence for the

subvoxel accuracy of the MMI approach.

While the CT and MR images in the original RREP study

as reported in [126] had an interslice distance of 4 mm, a

second series of nine patient data sets with higher resolution

CT and MR images and their gold standard reference regis-

tration solution has been made available by Vanderbilt Uni-

versity [50]. Each set includes one CT image (3-mm slice dis-

tance) and up to four MR images (T1, T2, and PD weighted,

3-mm slice distance; and T1 weighted, 1.25-1.66-mm slice

distance). We measured the difference between the reference

registration solution and the MMI registration result obtained

with the algorithm of Maes et al. [59] at eight points located

near and well distributed over the brain surface to obtain an

upper bound for the MMI registration error within the brain.

Mean errors over all cases ranged from 0.5 to 1.7 mm for

the high resolution MR images and from 1 to 3.1 mm for the

lower resolution MR images [58]. All errors are thus smaller

than or at most as large as one CT voxel.

Fig. 6 shows a visual comparison between the RREP

marker-based reference registration transformation and the

Fig. 6. Visual comparison between the marker-based reference
registration transformation (top) and the MMI registration solution
(middle) for CT to MR registration, showing the same orthogonal
MR slices and similar iso-intensity contours extracted from the
corresponding reformatted CT slices after registration with either
of both transformations. Overlay of both sets of contours (bottom)
and comparison of the contours on the axial and sagittal slices seem
to indicate that the accuracy of the MMI solution is superior to
that of the reference transformation itself. However, this ignores
the possibility of geometric distortion of the images that may affect
the registration result (see text for discussion). This image was
generated with the multipurpose imaging tool (MPITool) developed
by Uwe Pietrzyk and colleagues at the Max-Planck-Institut für
neurologische Forschung in Köln [79]–[81].

MMI registration result for one set of CT and PD weighted

MR images (RREP patient 101). The figure shows three

orthogonal slices from the MR image with the outline of

the skull overlaid, extracted by intensity thresholding from

the geometrically corresponding slices from the registered

and reformatted CT image. In the first set of MR images in

Fig. 6, the CT image was registered to the MR image using

the reference registration transformation, while the contours

on the second set of MR images in Fig. 6 were obtained

with the MMI registration solution. In both cases the same

CT intensity threshold was used to define the contours. The

third set of images in Fig. 6 shows both contours overlaid to

mark the difference between both. The difference between

the RREP reference and the MMI rigid-body registration

transformation in this case was found to be small in the

right/left and inferior/superior direction (0.08 and 0.34

mm, respectively), but much larger in the anterior/posterior

direction (2.92 mm or about 3.5 pixels). When visually

comparing the contours on the axial and on the sagittal

slices obtained with both transformations, it seems that the

reference registration transformation places the skull in the

CT image too much anterior relative to the skin visible in the

MR image, aligning the outer surface of the skull in CT with

the outer surface of the skin in MR. The MMI registration

solution on the other hand seems to correctly align both the

inner and the outer CT skull surface to the MR brain and
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skin surface, respectively, and, at first sight, seems more

accurate than the marker-based reference transformation in

this case. A similar misregistration of 2.3 mm on average in

the same direction is observed for CT/MR registration using

MMI involving the other PD images in the study (RREP

patients 101-104).

However, a possible explanation for the observed discrep-

ancy between both registration solutions may be the pres-

ence of geometric distortion in the MR image, caused for in-

stance by magnetic field inhomogeneity, gradient nonlinear-

ities, magnetic susceptibility, or chemical shift artifacts [74],

[109]. Such distortion is most apparent in the direction of

the readout gradient, which coincides with the anterior/pos-

terior axis for the RREP images [71]. Different sources of

geometric distortion may have a different impact on both the

extrinsic, marker-based, and intrinsic, image-feature-based

registration [22], [38], [71], [108], each being more sensi-

tive to some particular distortion sources and rather insen-

sitive to others. The accuracy of marker-based registration

may be affected for instance by displacement of the marker

position as observed in the images due to magnetic suscepti-

bility artifact at the air/skin interface [22]. Voxel-based reg-

istration, on the other hand, may be biased for instance by

displacement of the skin relative to the skull in the direction

of the readout-gradient due to chemical shift between fat and

water at the skin/skull interface. (While chemical shift arti-

facts in MR imaging can be effectively suppressed by a va-

riety of measures [74], [108], they can not be neglected in the

RREP images due to the small readout gradient used. From

the imaging parameters mentioned in [126] and using [74,

(18)], the expected displacement between fat and water in

these images is 3.5 mm, which is of the same order as the

MMI registration error). Visual inspection of registration dif-

ferences as in Fig. 6 is, therefore, not a reliable approach for

evaluating absolute registration accuracy.

The effect of geometric distortion correction on registra-

tion accuracy [38], [71] was investigated in the initial RREP

study [126] by also providing MR images that were corrected

for geometric distortion using the image rectification tech-

nique of Chang and Fitzpatrick [12]. A significant decrease

in registration error was reported only for Collignon’s MMI

registration of CT and T2–weighted MR images. Maes [58]

observed a clear tendency toward lower registration errors

and a significant increase of MI at registration for registra-

tion of CT and PET to the corrected instead of the original

MR images, indicating that the applied geometric distortion

correction indeed globally improves the geometric similarity

of both images and, hence, the registration accuracy. In ap-

plications where accurate registration is crucial, such as for

instance the use of MR images for target identification and

trajectory planning in stereotactic neurosurgery [33], opti-

mization of the MR imaging protocols is needed to minimize

confounding effects of geometric distortion artifacts on the

registration result [74].

IV. APPLICATIONS

Because of its reliability and generality and because of its

full automation, image registration by MMI has large poten-

(a) (b) (c)

Fig. 7. Registered and reformatted CT and MR images of
the brain of a patient showing a lesion. After registration and
reformatting, the images can be jointly visualized and use of a
linked cursor allows to delineate contours in one image and transfer
these to the other for comparison. (a) CT. (b) MR. (c) Blending of
the skull from CT with the brain tissues from MR demonstrates the
high quality of the registration result.

tial for routine use in clinical practice in a variety of applica-

tions, involving various organs and imaging modalities. We

illustrate some of these applications here.

A. Within-Subject Registration of CT, MR, and PET Images

of the Brain

The MMI criterion has been demonstrated to consistently

and robustly match CT to MR and PET to MR images

with subvoxel accuracy [126]. We have applied the method

successfully in a large number of experiments (more than

500) involving low- and high-resolution MR images (5-

to 1-mm slice thickness) with multiple orientations (axial,

coronal, and sagittal) and acquired with various imaging

protocols (T1 and T2 weighted, proton density, gadolinium

enhanced, diffusion weighted), high resolution MR angiog-

raphy (MRA) images, conventional and spiral CT images,

PET and SPECT images. Clinical applications of MMI

based image registration we have experience with include:

planning of stereotactic surgery from CT and MR images;

diagnosis of brain tumors from MR and PET images;

assessing MS lesion evolution over time from MR time

series images; brain morphometry from multiprotocol MR

images; and motion correction in the analysis of functional

MRI (fMRI) time series and MR perfusion imaging. Some

selected results are shown in Figs. 7–9.

B. Template-to-Patient Registration of MR Brain Images

Correlation of functional MRI data obtained from dif-

ferent individuals can be achieved by registration of the

corresponding anatomical MR images with a fixed template

image, for instance using the Statistical Parameter Mapping

(SPM) software package developed by Friston et al. [28],
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Fig. 8. Registered and reformatted T2-weighted MR images of
the brain of an MS patient at four different time points over a period
of one year. Registration of such MR time series images allows to
assess the evolution of typical MS white matter lesions over time.

Fig. 9. Registered and reformatted MR images of the brain of an
MS patient at a single time point. (a) T1 weighted. (b) T2 weighted.
(c) Proton density. (d) Fluid attenuated inversion recovery (FLAIR)
image. Availability of such coregistered multispectral MR brain
images facilitates the segmentation of white and gray matter tissue
and of the white matter lesions by (semi-)automated intensity-based
classification algorithms.

[29]. The template provided by SPM has been normalized

to Talairach space, such that after registration of each of

the study images to the template, functional measurements

from different individuals can be compared using Talairach

coordinates. SPM also provides a statistical atlas of the

distribution of white matter, gray matter, and CSF within the

brain that is co-registered with the template. Template-to-pa-

Fig. 10. Registration of PET and MR images of the brain of
a patient undergoing stereotactic surgery. The MR image was
acquired with the patient wearing the stereotactic reference frame
with external markers attached. Intensity-based registration of the
previously acquired PET image with the MR image using MMI
allows to transfer the PET image into the stereotactic space and to
plan the surgical intervention based on MR and PET information
combined.

(a) (b) (c)

Fig. 11. Alignment of a template brain image to a patient MR
brain image by affine image registration: (a) axial; (b) coronal; and
(c) sagittal slice of the template overlaid on the registered patient
image.

tient image registration allows to map the information of the

atlas onto the image. Each voxel in the patient image can,

thus, be assigned an a priori probability for tissue type that

can be used to guide intensity-based tissue classification

[118].

Since the MMI registration criterion is multimodal and

highly robust with respect to contrast differences, the

method is well suited to co-register MR images acquired

using different protocols to a single template, without need

for tuning the algorithm each time or without having to

specify different templates. A typical result is shown in

Fig. 11. The template has 2-mm cubic voxels and size

91 109 91. The patient MR image has 1-mm cubic

voxels and dimensions 256 256 160. The registration is

computed from the template to the patient image using a full

12-parameter affine transformation. Fig. 11 shows overlays

of an axial, coronal, and sagittal slice of the template on

the registered MR image. Because of the variability of the

brain topology, the rigid body assumption is not satisfied

in this case, but the MMI criterion succeeds at finding such

an affine transformation that on average very well matches

corresponding structures in both images. Visual inspection

of the registration results on a large number of cases demon-

strated the excellent performance of the MMI registration

criterion for affine template-to-subject registration in the

context of atlas-based brain tissue segmentation [119].
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C. Registration of CT and MR Images of the Prostate

Target delineation and dose distribution computation in

the planning of radiotherapy treatment of prostate cancer

is usually performed on CT images. However, there is

some indication that the prostate, and especially its apex,

can be more reliably and accurately delineated on MR

images, especially when both transversally and coronally

oriented MR cross-sections are considered (see [23] and the

references therein). Registration of both scans allows to map

the boundary contours of the objects of interest delineated

in the MR images onto the corresponding locations in the

CT image, such that the relevant information of both scans

(object discrimination in MR, tissue density in CT) can be

effectively combined during planning.

In an initial study involving ten patients [23], spiral CT

images (512 512 matrix, 50 slices, 0.7-mm pixel size,

5-mm slice thickness) were acquired in radiation position,

while MR images (512 512, 22 slices, 0.7-mm pixel

size, 5-mm slice thickness) were acquired using a standard

abdominal imaging protocol. Care was taken to have all

the image acquisition done with empty bladder and rectum.

The time between both acquisitions was kept at a minimum,

such that intestinal and bladder filling differences between

both scans were small. The images were aligned with a

rigid-body registration transformation, which was computed

completely automatically using MMI without user interven-

tion. After registration, the images were reformatted and

visualized together and the registration result was visually

inspected by assessing the alignment of corresponding rigid

structures in both images, such as the pelvic bone. In all

cases, the registration result was judged to be excellent

by radiologists. The study [23] concluded that the addi-

tional use of axial and coronal MR scans, in designing the

treatment plan for localized prostate carcinoma, improves

substantially the localization accuracy of the prostatic apex

and of the anterior aspect of the rectum, resulting in a better

coverage of the prostate and a potential to reduce the volume

of the rectum irradiated to a high dose.

A typical registration result is illustrated in Fig. 12(a). De-

spite the presence of large local nonrigid deformations of soft

tissues, such as skin, fat and muscles, induced by the dif-

ferent table shape of both scanners, the MMI criterion in this

case succeeded at aligning corresponding rigid structures in

the images without being confused by structures that can not

be aligned by a rigid-body transformation. Nevertheless, in

order to minimize the possible impact of such large tissue dis-

tortions on registration robustness when applying the method

in clinical routine, it is recommended to avoid large differ-

ences in patient positioning, for instance by placing a board

on the CT table to mimic the flat shape of the MR table

[Fig. 12(b)].

D. Registration of PET and CT Images of the Thorax

Joint interpretation of PET and CT images of the thorax

aids the detection and staging of metastatic mediastinal

lymph nodes (MLN) in patients with lung cancer [120].

PET is more accurate for detecting MLN than CT thorax,

Fig. 12. Registered and reformatted CT and MR images of the
prostate used for radiotherapy planning. The CT image (left)
is needed for dose distribution simulation, while the target
volume and organs at risk can be more accurately delineated in
the corresponding MR image (right). The central part of either
image has been shown in overlay on top of the other for visual
inspection. (a) This example illustrates the robustness of the mutual
information criterion to local nonrigid deformations, in this case
induced by the different table shape of both scanners. The rigid
bony structures are matched correctly, despite the presence of large
deformations of the soft tissue structures. (b) In clinical practice,
a board is placed on the CT table to mimic the MR table shape,
avoiding large local tissue distortions between both scans.

but localization of lesions, essential for adequate staging,

is difficult due to the little anatomic references on PET

images. Registration of the PET and CT images allows

to effectively combine the information contained in both

modalities, i.e., to detect the metastatic nodes in PET and

locate them anatomically in CT.

Spiral CT images of the thorax are acquired using a stan-

dard imaging protocol with a matrix of 512 512 pixels, typ-

ically 50 slices and 5-mm slice thickness, while the PET im-

ages have a 128 128 matrix, typically 30 slices and 6-mm

slice thickness. The patients are positioned similarly for both

acquisitions with the arms beside the body. PET transmis-

sion images are acquired prior to the FDG emission images

in the same session without the patient leaving the scanner

table. The transmission images contain more anatomical in-

formation than the emission images and are therefore more

suited for registration with CT. The PET transmission and

CT images are registered completely automatically with the

MMI registration algorithm without any preprocessing of the

images. After registration, the PET transmission images are

reformatted to the CT image grid to make use of the full res-

olution of the CT. The quality of the registration is visually

inspected by radiologists using the carina, the trachea and the

lung contours as anatomical landmarks. The same reformat-

ting is applied to the PET emission images, assuming that

the emission and transmission images are aligned by acqui-

sition. The registered CT and PET emission images are then

used for localization of MLN. A typical result is shown in

Fig. 13.

To investigate the benefit of PET/CT registration for lung

cancer staging, a study has been conducted at our institu-
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(a) (b) (c)

Fig. 13. Registration of PET and CT images of the thorax for
mediastinum cancer staging. (a) CT image. (b) PET transmission
image. (c) PET emission image. Top: axial cross-section. Middle:
coronal cross-section. Bottom: sagittal cross-section. The PET
transmission image was matched to the CT image, assuming
alignment at acquisition of the PET transmission image with
the corresponding emission image. The PET images have been
reformatted to the CT grid to make use of the higher resolution of
the CT image. Hot spots detected in the PET emission image can
easily be located and anatomically identified in the CT image using
a linked cursor.

tion involving 50 patients [120]. Registration of the medi-

astinum was considered very good and clinically relevant in

all cases. The efficiency of the automated and highly reliable

MMI registration algorithm has now changed the whole diag-

nostic procedure. Currently, at our institution, PET-CT reg-

istration is used in clinical routine to decide on lung cancer

treatment for two patients a week. Weekly clinical sessions

are organized in which the available image information, after

registration and after post-processing to indicate the relevant

structures, is studied jointly by pneumologists, thorax sur-

geons, nuclear medicine experts, and radiologists.

E. Registration of Pre- and Post-Operative CT Images

Complicated bone surgery procedures can be planned and

simulated using pre-operatively acquired CT images. The

outcome of the intervention can be evaluated by comparing

post-operatively acquired CT images with the pre-operative

planning, after proper registration of pre- and post-operative

images. One such application is illustrated in Fig. 14. In this

study, the value of spiral CT imaging was investigated in

planning and evaluation of chin bone grafts in alveolar cleft

patients. Pre- and post-operative CT images were acquired

two weeks before and nine months after the operation. Reg-

istration of pre- and post-operative images allowed to define

the cleft region in the pre-operative image and localize the

same area in the post-operative image, such that the condi-

tion of the transplant can be followed over time.

The procedure was applied to eight patients, all chil-

dren between eight and ten years old. Spiral CT images

(512 512, 40-70 slices, 0.2-mm pixel size, 1-mm slice

thickness were acquired using standard imaging protocols

(a) (b)

Fig. 14. Matching of pre- and post-operative CT images of the
lower jaw of a child with an innate alveolar cleft in the jawbone after
bone graft transplantation. (a) Pre-operative image. (b)Registered
and reformatted post-operative image. Contours delineated on
the co-registered images using a linked cursor allow to evaluate
registration accuracy. Although morphological changes due to bone
growth are clearly present, these do not impair the algorithm from
finding the globally best rigid transform between both images.

pre- and post-operatively. The images were registered com-

pletely automatically and without pre-processing using the

MMI registration criterion. After registration, the pre-op-

erative image was reformatted to match the post-operative

image and the result was visually inspected by a radiologist.

A typical result is shown in Fig. 14. Contours delineated

in one image and transferred to the other allow to inspect

the registration accuracy. Note that in the nine month

period between both acquisitions morphological changes

have occurred due to bone growth, teeth movement, and

surgery. However, these nonrigid movements do not impair

the registration algorithm to find the rigid transform that

globally very well aligns both images.

V. NONRIGID IMAGE MATCHING USING MMI

Nonrigid registration or matching of 3-D images involves

finding a 3-D field of 3-D deformation vectors that maps

each point in one image onto the corresponding point in the

other image. Nonrigid image to image registration warps one

image toward a second one such that all objects in the warped

image precisely coincide with the corresponding objects in

the target image. In contrast with affine registration, which

only allows for translation, rotation, scaling or skew of one

image relative to another in order to establish global align-

ment of both images all over the image domain as illus-

trated in Section IV, nonrigid registration allows displace-

ment of individual voxels such that local, regional distortions

between both images can be corrected for up to voxel scale.

Various approaches for multimodal nonrigid image regis-

tration using MMI have been proposed that differ in their reg-

ularization of the deformation field and in the way the vari-

ation of MI with changes in the deformation parameters is

computed.

A. Regularization of the Deformation Field

While the affine registration transformation is defined by

not more than 12 parameters or degrees of freedom, non-

rigid registration typically requires much more degrees of

freedom in order to make the deformation field sufficiently

flexible to correctly match both images everywhere in the

MAES et al.: MEDICAL IMAGE REGISTRATION USING MUTUAL INFORMATION 1715



image domain. In its most general form, nonrigid image

registration allows each voxel to be displaced independently

from its neighbors with as much as 3 degrees of freedom per

voxel if no additional constraints are specified. For nonrigid

matching of 2 high resolution 256 256 128 images of

the brain for instance with more than 8 million voxels each,

more than 25 million parameters need to be determined to

define the deformation field when allowing unconstrained,

free-form deformation of all voxels individually. However,

3-D displacement of all voxels independently is undesirable,

as it is likely to result in a deformation field that is not

consistent with deformations of real materials, for instance

implying folding of the coordinate system causing adjacent

structures to “cross over” one another [15]. Moreover, the

nonrigid image registration problem is ill-posed because the

images most often do not contain the necessary information

to uniquely define the nonrigid registration solution in every

voxel in the image domain, for instance inside regions with

homogeneous intensity or along smooth object boundaries.

Regularization of the registration problem is, therefore,

required to constrain the solution space to include only

deformation fields that are physically acceptable and to

smoothly propagate or extrapolate the registration solution

from sites with salient registration features (e.g., object

boundaries) toward regions where registration clues are

absent or ambiguous (e.g., object interior). The deformation

field to be recovered is typically assumed to be a home-

omorphism, i.e., a continuous, one-to-one and topology

preserving mapping [15]. The assumption that there exists

a one-to-one mapping between the images to be registered

may be violated in case of important variability in topology

between corresponding objects, for instance in the sulcal

and gyral patterns of the cortex [19].

One approach for regularization of the nonrigid registra-

tion solution is the representation of the deformation field

as a weighted sum of smooth basis functions. The basis

functions can have global support, i.e., spanning the entire

image domain such as thin plate spline [73], polynomial

[45], Gaussian [53] or trigonometric functions [1], or local

support, i.e., being nonzero in a subregion only, such as

B-splines [96], [101] or localized radial basis functions [92].

When using basis functions such as splines, the number

and distribution of spline control points determines the

elasticity of the deformation and the number of degrees

of freedom. This can be much smaller than the number of

voxels, especially when using a multiresolution strategy

with a small number of sparsely distributed control points at

coarse resolution levels and a larger number of more densely

distributed control points at finer resolution levels. Some

strategies have also been presented to adaptively refine the

control point grid depending on the local misregistration in

the image [92], [97]. Smoothness of the deformation field

is intrinsic to the parameterization at scales smaller than the

control point spacing and may be imposed at larger scales

by penalizing high spline curvature [96]. Spline-based

approaches can correct for gross shape differences, but a

dense grid of control points is required to characterize the

deformation at voxel level detail, implying high computa-

tional complexity, especially when using basis functions

with global support.

Free-form nonrigid registration approaches, using a

nonparameterized expression for the deformation field, are

in general more flexible than representations using basis

functions, but need appropriate smoothness constraints for

spatial regularization of the resulting vector field. Such con-

straints can be imposed by including additional cost terms in

the similarity metric that penalize nonsmooth deformations

[36], [52] or by modeling the deforming image as a linear

elastic [3], [31] or viscous fluid [14] material. Elasticity

constraints are suitable when displacements can be assumed

to be small, while a viscous fluid model is more appropriate

when large deformations need to be recovered. Tissues

deform under the influence of local image-derived forces,

defined such that the resulting displacements optimize

the registration criterion. Smoothness of the deformation

field is imposed by the elasticity or viscosity terms of the

Lagrangian partial differential equation (PDE) that governs

tissue motion. Numerical schemes for solving this equation

iteratively at voxel resolution over the entire 3-D image

domain are computationally demanding, especially with

fluid models allowing large deformations [14]. Much faster,

simplified schemes have been presented that approximate

the PDE regularization by Gaussian filtering of the force

field [111], [112], [6], [128]. Free-form nonrigid registration

methods using MMI have been proposed using elastic [39]

and viscous fluid [21] models.

Rather than using a purely mathematical approach, an

appropriate deformation model can also be constructed by

statistical analysis or be inspired by physics-based [101]

or biomechanical arguments. Regional morphological vari-

ability in the image and correlations between deformations

in different image regions can be learned from a set of

similar images that are all registered to the same template

by statistical analysis of the parameters of their deformation

fields [95]. The deformation field of new, similar cases to be

registered can then in principle be constrained by the modes

of variation observed in the training set, provided that the

training set is sufficiently representative. Biomechanical

models on the other hand take material properties of the

various tissues into account to impose tissue specific defor-

mation constraints. These methods are often implemented

using a finite element model defined on the voxel grid [34]

or on a volumetric meshing of the objects of interest [26],

after appropriate segmentation of the various tissue classes.

We are not aware of any works using MMI for nonrigid

image registration in combination with a biomechanical

deformation model.

B. Registration Criterion

Affine registration parameters have a global effect on reg-

istration quality all over the image domain and can there-

fore be estimated from registration evidence gathered from

the entire region of overlap of the images to be registered. In

contrast, a change in one of the nonrigid registration param-

eters typically changes the deformation field within a subre-
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gion only, the size of which depends on the parameterization

of the deformation field, such that the impact on registration

quality of each such local deformation parameter can only be

observed within its region of support. This may be problem-

atic for a statistical measure such as MMI: especially when

small scale, highly localized deformations need to be recov-

ered, the number of samples within each parameter’s region

of support may be too small to reliably estimate its impact

on the joint intensity probability and hence on the registra-

tion criterion.

For each realization of the deformation field, MI can be

computed globally over the entire image domain using a

single, discrete joint histogram that is constructed by map-

ping all voxels of the warped image into the target image and

binning of corresponding voxel intensities after appropriate

interpolation of the target image. This approach is typically

used with spline-based representations of the deformation

field. The effect on the registration criterion of a change

in any of the deformation parameters can be evaluated by

recomputing the mapping and updating the joint histogram

accordingly, which can be performed efficiently if each

parameter has only local support and only a subregion

of the image has to be considered each time [96]. With a

nonparametric representation of the deformation field, a

block matching strategy can be used whereby the image is

subdivided in a number of regions that are each iteratively

displaced individually such as to maximize MI globally

[30], [52]. The obtained displacements located at the region

centers are regularized and propagated to all voxels in the

image, for instance by convolution with a Gaussian kernel.

When evaluating MI globally over the entire image domain,

a local update of the deformation field affects the registration

everywhere in the image through its impact on the joint

intensity histogram. Hence, in contrast with registration

criteria that are evaluated in each voxel separately and

independently of all others, such as minimizing the sum of

squared differences of corresponding voxel intensities [14],

[111], [112], registration evidence at one site is propagated

to other sites because of the statistical nature of the MMI

criterion.

Instead of computing MI globally over the entire image

domain for each change in the deformation parameters, some

approaches have been presented that compute and optimize

MI locally over subregions of the image domain only, re-es-

timating the joint histogram for each region separately [35],

[36], [63], [56], [76], [53]. A multiresolution strategy is usu-

ally adopted whereby initially a small number of larger re-

gions is considered for coarse scale matching whose size is

decreased and number increased at later stages of the opti-

mization for matching at finer scales. Regularization of the

deformation field can be achieved by imposing local smooth-

ness [36], [53], [76] or elasticity [35] constraints or local con-

sistency criteria [56], while spline interpolation [56], [76] or

Gaussian convolution [53] can be used to propagate the de-

formation field over the entire image domain. However, local

computation of MI within small image regions is ill-condi-

tioned due to the small number of samples available from

which to estimate the local joint image intensity distribution.

Relatively large regions are required for the local MI estimate

to be reliable, such that small scale deformations are difficult

to recover. Some measures have been proposed to overcome

this problem, for instance by taking also the global intensity

distribution into account [63], [56].

Free-form deformation approaches based on physical

models require an appropriate definition for the force field

at each voxel in the warped image that drives the defor-

mation such that MI is maximized. Such force field can

be derived from the gradient of MI with respect to each

voxel’s deformation vector. This gradient can be computed

empirically, by displacing a region of interest of appropriate

size around each voxel [30], [52], or analytically, using

Parzen windowing to construct a joint intensity histogram

that is differentiable with respect to the deformation field

[39], [21].

C. Applications

Several authors have demonstrated the use of nonrigid

image registration using MMI for unimodal and multimodal

intrasubject image registration, to quantify or compensate

for tissue motion or deformation or to correct for imaging

distortion. Meyer et al. [73] demonstrated the accuracy

and clinical versatility of mutual information for automatic

multimodality image registration using affine and thin-plate

spline warped geometric deformations, including thoracic

PET/CT and abdominal SPECT/CT image registration.

Rueckert et al. [96] evaluated their free-form deformation

registration algorithm based on B-splines for nonrigid

motion correction of 3-D MR breast images. Holden et al.

[44] used the algorithm of [96] to quantify small changes in

brain ventricular volume in serial MR images of a patient

and a control group. The same method was applied by Hill

et al. [41] for nonrigid registration of pre- and post-resection

interventional MR brain images to quantify intraoperative

brain deformation. D’Agostino et al. [21] applied their

viscous fluid based nonrigid MMI approach for correction

of breathing-induced deformations in MR lung ventilation

images. Studholme et al. [101] used a method similar to [96]

to correct for geometric distortion of functional MR images

acquired using echo planar imaging (EPI).

Nonrigid intersubject registration using MMI has been ap-

plied for the construction of atlas templates by Rueckert et al.

[95] and for the detection and quantification of morpholog-

ical differences between subjects by Studholme et al. [100].

Atlas-based segmentation using MMI driven nonrigid atlas

to patient registration has been applied by Castellano-Smith

et al. [11] for brain segmentation and by D’Agostino et al.

[21] for brain tissue classification (Fig. 15). Kjems et al.

[52] compared various registration measures and alignment

schemes, including nonrigid registration using MMI, for in-

terindividual registration of PET activation studies.

VI. CONCLUSION

Image registration by maximization of mutual information

considers all voxels in the images to be registered to estimate
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(a) (b) (c)

Fig. 15. Illustration of nonrigid atlas to patient matching for
brain tissue segmentation using the method of Van Leemput
et al. [119]. The segmentation method uses an atlas with prior
probability maps of the distribution of the various tissue classes to
initialize an iterative intensity-based pixel classification scheme,
assuming a Gaussian intensity distribution for each class. (a)
T1-weighted MR image of a patient showing enlarged ventricles.
(b) CSF segmentation obtained with affine atlas registration. (c)
CSF segmentation obtained with nonrigid atlas matching. Affine
atlas matching fails to properly initialize the classification and the
intensity parameters of each tissue class due to the poor overlap
between the ventricles in the patient and in the atlas image. These
morphological differences are compensated for by nonrigid atlas
matching, yielding a much improved segmentation result.

the statistical dependence between corresponding voxel in-

tensities, which is assumed to be maximal when the images

are correctly aligned. The MMI criterion is histogram based

rather than intensity based and does not impose limiting as-

sumptions on the specific nature of the relationship between

corresponding voxel intensities, making it applicable to a

large variety of multimodality image combinations of various

body regions. Since its introduction in 1995 by Collignon et

al. [17] and by Viola and Wells [122] in the medical imaging

research community, MMI has attracted large interest within

this field and has sparked a fury of publications on multi-

modal medical image registration and its clinical applica-

tions. Its mathematical elegance and algorithmic simplicity

made it easy for other groups to quickly adopt and imple-

ment the new approach. The success of MMI for multimodal

image registration can be explained by the fact that it got rid

of the need for image segmentation or preprocessing as re-

quired with previous registration algorithms and that it allows

for completely automated registration without need for user

interaction, making the method very well suited for applica-

tion in clinical practice. In the mean time, MMI has become

a standard in the field and is the method of choice for multi-

modal image registration in a wide range of applications. The

validity of the method was demonstrated for rigid body reg-

istration of CT, MR, and PET brain images by comparison

with external marker based registration. New applications,

involving affine registration of multimodal images of other

organs such as the thorax or the pelvis, have successfully

been dealt with using MMI. Apart from intra-subject regis-

tration, MMI has also been found to be well suited for affine

registration of MR images of the brain of different subjects in

the context of atlas-based image analysis. Several approaches

have been presented for extension of the MMI criterion to

nonrigid image matching in the context of image rectifica-

tion, shape normalization, motion estimation or tissue defor-

mation correction, which is still an active area of research.
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