
manage images are used. In content-based image retrieval, 

the images are retrieved on the basis of features such as 

color, texture, shape, and so on, which were derived from the 

images themselves. 

  So far, a variety of medical image retrieval systems have 

been developed using either method (text-based or content-

based) or combining two methods; a rough classi�cation of 

medical image retrieval methods is displayed in Figure 1.

 Therefore, we described two technological approaches for 

medical image retrieval - past development and present sta-

tus, and future perspectives. 

II. Text-Based Medical Image Retrieval

Text-based image retrieval system can be traced back to 

1970s. Text-based image retrieval system is prevalent in the 

search on the internet web browsers. Although text-based 

methods are fast and reliable when images are well anno-

tated, they cannot search in unannotated image databases. 

Moreover, text-based image retrieval has the following ad-

ditional drawbacks, it requires time-consuming annotation 

procedures and the annotation is subjective [2]. Text-based 

query commonly results in irrelevant images (Figure 2). 

�us, to support e³ective image searching, retrieval methods 

based on the image content were developed. 
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I. Introduction

With the widespread use of picture archiving and communi-

cation system (PACS) in the hospitals, the amount of medi-

cal image data is rapidly increasing. �us, the more e�cient 

and e³ective retrieval methods are required for better man-

agement of medical image information. 

  �ere are two ways that medical images are retrieved, text-

based and content-based methods [1]. In text-based image 

retrieval, the images are retrieved by the manually annotated 

text descriptions and traditional database techniques to 
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III. Content-Based Medical Image Retrieval

In content-based image retrieval systems, images are indexed 

and retrieved from databases based on their visual content 

(image features) such as color, texture, shape, etc. Com-

mercial content-based image retrieval systems have been 

developed, such as QBIC [3], Photobook [4], Virage [5], Vi-

sualSEEK [6], Netra [7]. Eakins [8] has divided these image 

features into three levels as followings: 1) Level 1 - Primitive 

features such as color, texture, shape or the spatial location 

of image elements. Typical query example is ‘find pictures 

like this’; 2) Level 2 - Derived attributes or logical features, 

involving some degree of inference about the identity of the 

objects depicted in the image. Typical query example is ‘�nd 

a picture of a ²ower’; 3) Level 3 - Abstract attributes, involv-

ing complex reasoning about the signi�cance of the objects 

or scenes depicted. Typical query example is ‘�nd pictures of 

a beautiful lady.’

  The majority of content-based image retrieval systems 

mostly offer level 1 retrieval, a few experimental systems 

level 2, but none level 3.

  Commonly used image features for content-based image 

retrieval were followings: 1) Color: color is one of the visual 

cues often used for content description, but most medical 

images are grayscale. Thus, color features are not used for 

medical image retrieval; 2) Texture: texture features mean 

spatial organization of pixel values of an image and used in 

standard transform domain analysis by tools such as Fou-

rier transform, wavelets, Gabor or Stockwell filters. In the 

medical images, texture features are useful because they can 

re²ect the details within an image structure; 3) Shape: shape 

feature has broad range of visual cues such as contour, curve, 

surfaces, and so on. Recently, many methods measures simi-

larity between images using shape features has been devel-

oped.Figure 1. Classification of medical image retrieval methods.

Figure 2. Text-based query commonly 

retrieves irrelevant im-

ages on the internet web 

browser. For user query 

“bike (bicycle),” irrelevantly 

retrieved images (not rel-

evant to bike) are shown 

because image annotations 

contain a word “bike” such 

as bike tour, school bike 

rack, water bike, abbrevia-

tion, etc. (upper two layers). 

Miscellaneous medical im-

ages retrieved by query of 

“Reconstruction and com-

puted tomography (CT)” are 

displayed in the lower 3rd 

layer of the figure (CT for 

image reconstruction, 3-di-

mensional reconstruction 

CT image, CT reconstruction 

algorithm, bone reconstruc-

tion with CT, breast recon-

struction using CT).
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  Formerly developed commercial content-based image re-

trieval systems characterized images by global features such 

as color histogram, texture values and shape parameters, 

however, for medical images, the systems using global im-

age features failed to capture the relevant information [9]. In 

medical images, the clinically useful information is mostly 

highly localized in small areas of the images, that is, the ratio 

of pathology bearing pixels to the rest of the images is small. 

�us, the global image features such as color, texture, shape, 

etc. cannot e³ectively characterize the content of the medical 

images. 

  Initially, medical images were included in the content-

based retrieval systems as a subdomain for trials [10,11]. 

Recent trials for content-based medical image retrieval were 

ASSERT system [12] for high resolution computed tomog-

raphy (CT) images of the lung and image retrieval for medi-

cal applications (IRMA) system [13] for the classification 

of images into anatomical areas, modalities and viewpoints. 

Flexible image retrieval engine (FIRE) system handles dif-

ferent kinds of medical data as well as non-medical data like 

photographic databases [14].

  In ASSERT system, the system lets the user extract pathol-

Figure 3. Image retrieval for medical 

applications (IRMA) con-

tent-based image retrieval 

results (http://irma-project.

org/).

Figure 4. Flexible image retrieval en-

gine (FIRE) content-based 

image retrieval results (http://

thomas.deselaers.de/fire/).
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ogy-bearing regions in lung images and these regions are 

then characterized by their grayscale, texture, and shape at-

tributes, which are used for image retrieval.

  �e IRMA system (Figure 3) is a generic web-based x-ray 

retrieval system. It allows the user to extract images from a 

database given an x-ray image query. Local features and sim-

ilarity measures are used to compute the nearest images. �is 

system also developed a classi�cation code for medical im-

ages to classify medical images based on four axes (modality, 

body orientations, body region, and biological system) [15]. 

�e local features are derived from the previously classi�ed 

and registered images that have been segmented automati-

cally. IRMA analyzes content of medical images using a six-

layer information model: raw data, registered data, feature, 

scheme, object, and knowledge. IRMA lacks the ability for 

finding particular pathology that may be localized in par-

ticular regions within the image.

  In FIRE system (Figure 4), query by example image is im-

plemented using a large variety of different image features 

that can be combined and weighted individually and rel-

evance feedback can be used to re�ne the result [16].

  The integration of content-based image retrieval system 

into the PACS system has been proposed [17,18]. However, 

an e³ective and precise medical image retrieval still remains 

a problem and recent researches aim at developing tech-

niques that overcome this point.

IV. Controlled Vocabulary-Based System 
for Medical Image Retrieval

Currently, work is underway to create tools to enable seman-

tic annotation of images using ontologies, providing an op-

portunity to enhance content-based image retrieval systems 

Figure 5. CliniClue Systematized Nomenclature of Medicine - 

Clinical Terms (SNOMED-CT) web browser (http://www.

cliniclue.com/).

Figure 6. Foundational model explorer 

browser (http://fme.biostr.

washington.edu/FME/index.

html/).
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with richer descriptions of images. �e suggested ontology 

systems are controlled terminologies such as Systematized 

Nomenclature of Medicine - Clinical Terms (SNOMED-CT) 

[19], Foundational Model of Anatomy (FMA) [20] and Ra-

diology Lexicon (RadLex) [21].

1. SNOMED-CT Terminology

SNOMED-CT aims to be a comprehensive terminology that 

provides clinical content and expressivity for clinical docu-

mentation and reporting [19]. The SNOMED hierarchy is 

easy to compute, which was the primary reason for selecting 

the terminology for the research. SNOMED-CT has approxi-

mately 370,000 concepts and 1.5 million triples i.e., relation-

ships of one concept with another in the terminology (Figure 5).

2. FMA

FMA is a reference ontology for the terms of anatomy and 

developed and maintained by the University of Washington 

Figure 8. An example of combined 

text and content-based 

medical image retrieval 

system - iPad, a plug-in to 

OsiriX, the application tool 

of Annotation and Image 

Markup Project [31].

Figure 7. Radiology Lexicon (RadLex) 

term browser (http://www.

radlex.org/).
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and the US National Library of Medicine [20]. It contains 

71,202 anatomical entities and more than 1,500,000 relations 

which form the machine processable standard vocabulary. 

FMA also provides definitions for conceptual attributes, 

part-whole, location, and other spatial associations of ana-

tomical entities (Figure 6).

3. RadLex Terminology

RadLex was developed to create a unifying source for 

medical imaging terminology by the Radiological Society 

of North America [22] and currently contains more than 

32,000 standardized terms used in radiology reports (Figure 7). 

It contains not only domain knowledge but also lexical in-

formation such as synonymy. RadLex terminology helps the 

analysis of radiological information, allows uniform index-

ing of image databases, and enables structuring medical im-

age information [23,24].

V. Combined Text and Content-Based 
Medical Image Retrieval

Considering the intrinsic difference between the text and 

image in representing and expressing information, there 

have been approaches to combine the text-based and con-

tent-based image retrieval. Techniques that perform the 

text-based method �rst [25,26] and two methods at the same 

time [27,28] were studied. 

  �e hybrid image retrieval systems to incorporate external 

knowledge that is encoded in lexicons, thesauri and ontolo-

gies were suggested [29].

  �e new project, Annotation and Image Markup (AIM) for 

medical image annotation and markup is being developed 

to make all the key semantic (Figure 8) content of images 

machine-readable using controlled terminologies (mainly 

RadLex) and image markup standards [30].

VI. Conclusion

In the domain of medical imaging informatics, a huge 

amount of image data is being produced. A lot of work has 

already been done to improve the image retrieval systems. 

One is text-based approach and the other is content-based. 

Each method has its own advantages and disadvantages. 

Text-based method is widely used and fast, but it requires 

precise annotation. Content-based approach provides se-

mantic retrieval, but effective and precise techniques still 

remains elusive. 

  Recently, a new controlled vocabulary, RadLex was devel-

oped to provide standardized terms for images and com-

bined text and content-based methods were developed. For 

improved semantic image retrieval, it is proposed that image 

retrieval techniques be effectively integrated with external 

knowledge, annotation tools, and image markup systems. 

  In the near future, it is expected that the semantic contents 

of medical images will be totally computationally-accessible 

and reusable by the application of ontology and the develop-

ment of new convenient tools
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