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Medical image segmentation is a key technology for image guidance. 1erefore, the advantages and disadvantages of image
segmentation play an important role in image-guided surgery. Traditional machine learning methods have achieved certain
beneficial effects in medical image segmentation, but they have problems such as low classification accuracy and poor robustness.
Deep learning theory has good generalizability and feature extraction ability, which provides a new idea for solving medical image
segmentation problems. However, deep learning has problems in terms of its application to medical image segmentation: one is
that the deep learning network structure cannot be constructed according to medical image characteristics; the other is that the
generalizability y of the deep learning model is weak. To address these issues, this paper first adapts a neural network to medical
image features by adding cross-layer connections to a traditional convolutional neural network. In addition, an optimized
convolutional neural network model is established. 1e optimized convolutional neural network model can segment medical
images using the features of two scales simultaneously. At the same time, to solve the generalizability problem of the deep learning
model, an adaptive distribution function is designed according to the position of the hidden layer, and then the activation
probability of each layer of neurons is set.1is enhances the generalizability of the dropout model, and an adaptive dropout model
is proposed. 1is model better addresses the problem of the weak generalizability of deep learning models. Based on the above
ideas, this paper proposes a medical image segmentation algorithm based on an optimized convolutional neural network with
adaptive dropout depth calculation. An ultrasonic tomographic image and lumbar CTmedical image were separately segmented
by the method of this paper. 1e experimental results show that not only are the segmentation effects of the proposed method
improved compared with those of the traditional machine learning and other deep learning methods but also the method has a
high adaptive segmentation ability for various medical images. 1e research work in this paper provides a new perspective for
research on medical image segmentation.

1. Introduction

At present, the demand for medical imaging in image-
guided radiotherapy, image-guided surgery, image-guided
interventional therapy, and image-guided navigation is in-
creasing, which promotes the research and development of
medical imaging technology and image processing tech-
nology [1, 2]. 1e accuracy and efficiency of image-guided
surgery is much higher than that of traditional surgical

procedures, and it can reduce the risk of surgery. Medical
image segmentation is the key technology for image guid-
ance. 1e advantages and disadvantages of image segmen-
tation play an important role in image-guided surgery [3–5].
Medical image segmentation is a complex and critical step in
the field of medical image processing and analysis. Its
purpose is to depict the anatomical structure of interest or
the area of a particular tissue as accurately as possible.
Although there are many kinds of medical image
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segmentation methods, medical image segmentation
methods are mainly divided into the following two cate-
gories: medical image segmentation methods based on
traditional machine learning and medical image segmen-
tation methods based on deep learning [6–9].

1e medical image segmentation methods based on
traditional machine learning mainly include the following:
Rodrigues et al. [10] proposed to use the support vector
machine method to detect the region of interest and then
used the Adaboosting weak classifier to select the features on
the region of interest. Finally, the segmentation task is
completed based on the active contour model, which ach-
ieves certain effects. However, the feature extraction effect of
the machine learning method is poor, which affects the
image segmentation effect in the later stage. Anter et al.
[11, 12] proposed a medical image segmentation method
based on fuzzy mean, which achieved good results in
medical image segmentation experiments. However, such
methods have weak adaptive capabilities. Huang et al. [13]
proposed a graph-based breast ultrasound segmentation
method that combines regional statistical information. It has
achieved certain effects in breast ultrasound image seg-
mentation, but its stability is poor. Yu et al. [14] proposed
different forms of 3DGrabCut to perform three-dimensional
breast ultrasound segmentation tasks and achieved good
results in the correlation of breast ultrasound image seg-
mentation, but the adaptive ability was weak. Guo et al. [15]
proposed a deformation method based on dictionary
learning, which improved the learning strategy on the
existing dictionary learning model and then performed
image segmentation. It has achieved certain effects in
medical image segmentation, but the classification accuracy
is low.

Due to the above problems for medical image seg-
mentation methods based on traditional machine learning,
many scholars continue to explore new medical image
segmentation methods. In recent years, deep learning
[16, 17] has received extensive attention in many applica-
tions of artificial intelligence. It has achieved a quantum leap
in precision in a variety of applications. It provides a feasible
way to solve the above problems. It is in this technical
background that a second type of medical image segmen-
tation method based on deep learning was proposed.
Ronneberger et al. [18] proposed a computational seg-
mentation model based on a full convolutional network. It
reconstructs the reduced-dimensional image by deconvo-
lution and combines the information of the corresponding
layer of the convolutional dimension reduction to the in-
verse by means of hopping. Each convolution layer corre-
sponds to a deconvolution layer. 1erefore, automatic
segmentation of medical images is achieved. Milletari et al.
[19] calculated the improvement of U-Net and studied the
use of three-dimensional convolution. It has achieved good
segmentation results in medical image segmentation. Xu
et al. [20] proposed a multitissue target segmentation of
breast tumors based on convolutional neural networks,
which includes skin, fibrous tissue, tumor, and adipose
tissue. Kumar et al. [21] proposed a segmentation and de-
tection task for breast tumor mass based on a full

convolutional network model. Ahmad et al. [22] proposed
the use of deep stacking automatic encoder for liver seg-
mentation of CT images. 1e classification accuracy of liver
segmentation is 91%. Tang et al. [23] proposed using a fast
convolutional neural network to segment the liver image.
First, the rapid convolutional neural network was used to
locate the liver region, and then the detection results were
input into the depth frame to segment the liver image. Hu
et al. [24] proposed a new automatic liver segmentation
method based on a deep three-dimensional convolutional
neural network and global optimization of the surface
evolution. Yang et al. [25] used 2D generation to constrain
the network to segment the liver image. To further improve
segmentation accuracy, Li et al. [26] proposed the use of the
3D method to segment the liver and liver tumors, combined
with the 3D fully convolutional network and graph cut
algorithm to achieve automatic segmentation in CT images.
Sun et al. [27] used multiple criteria to enhance different
features of CT images and proposed multicore fully con-
volutional network (MK-FCN) automatic liver tumor seg-
mentation. 1is technique uses multiple ratios to enhance
different features of CT images for multiphase high-order
feature fusion. In [28], a method of combining traditional
deformation models and convolutional networks was pro-
posed to achieve accurate segmentation of the prostate. To
make full use of the global spatial information of the image
and overcome the large computational complexity of the
patch-based segmentation algorithm, Karimi et al. [29] used
fully convolutional network training to achieve prostate
segmentation. Milletari et al. [19] proposed a new fully
convolutional network based on the traditional fully con-
volutional network. 1is network model introduces the
residual network idea in the feature extraction layer of the
U-Net network and solves the sample imbalance problem
with the similarity coefficient. Yu et al. [30] proposed a
convolutional model based on residual thought. 1e long
and short residual connection method not only integrates
local and global feature information well but also improves
the model training efficiency and recognition ability.
However, it has a more serious overfitting problem. For the
above reasons, the deep learning model has been deeply
applied and popularized in medical image segmentation.
However, the deep learning method has the following
problems in the application process. (1) Deep learningmodel
network structure optimization problem: in a standard
convolutional neural network, each hidden layer can only
obtain input from its neighboring previous layer and then
pass its output to the next lower layer. 1is not only limits
the flexibility of the convolutional neural network structure
but also does not comprehensively utilize multiscale feature
information. (2) Overfitting problem: the overfitting phe-
nomenon severely reduces the effectiveness of the deep
learning model in learning heterogeneous data features,
which reduces the classification accuracy of the heteroge-
neous data by the depth calculation model. At the same time,
the overfitting phenomenon limits the number of hidden
layers in the deep learning model. 1e traditional dropout
method can reduce the occurrence of overfitting. However, it
limits the generalization ability of deep learning models
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[31–35]. In view of this, to better solve the network structure
problem of deep learning model, this paper establishes an
optimized convolutional neural network model by adding
cross-layer connections in traditional convolutional neural
networks. In the optimized convolutional neural network
model, features from different scales can be used simulta-
neously for segmentation. At the same time, in order to solve
the problem that the traditional dropout method reduces the
generalizability of the deep learning model, this paper
proposes an adaptive dropout model. According to the
position of the hidden layer, an adaptive distribution
function is designed to set the probability that the neurons of
each layer are activated. It further enhances the general-
ization capabilities of the dropout model. 1en, the adaptive
distribution function is applied to the deep learning model,
and a deep learning model based on adaptive dropout is
proposed. Based on the above ideas, this paper proposes a
medical image segmentation algorithm based on optimized
convolutional neural network-adaptive dropout depth
calculation.

Section 2 of this paper focuses on the optimization of the
convolutional neural network framework model. Section 3
systematically describes the depth calculation model based
on adaptive dropout proposed in this paper. Section 4 in-
troduces a medical image segmentation algorithm based on
optimized convolutional neural network-adaptive dropout
depth calculation. Section 5 analyzes the medical image
segmentation algorithm proposed in this paper and com-
pares it with the mainstream medical image segmentation
algorithm. Finally, the paper is summarized and discussed.

2. Optimized Convolutional Neural
Network Model

2.1. Optimized Convolutional Neural Network Model
Framework. 1e optimized convolutional neural network
model framework proposed in this section includes an input
layer, an s-group interleaved convolutional layer and
pooling layer, a fully connected layer, and an output layer.
1e fully connected layer is obtained by splicing these
convolutional layers and pooling layers with a cross-layer
connection, as shown specifically in Figure 1.

1e input x is a 3-dimensional array of size h×w× n,
where h and w are spatial dimensions, n is the channel
dimension, n� 3 represents a color image, and n� 1 rep-
resents a grayscale image. We use “∗” to indicate the con-
volution operation and “f” to indicate the activation
function, and the convolutional layer is calculated as follows:

hl2k− 1,j � c
l
k,j � f ul2k− 1,j( ) � f ∑

i

hl2k− 2,i ∗W
2k− 1
ij + b2k− 1j

 , 1≤ k≤ s,

(1)
where W2k− 1

ij represents a weight matrix between the ith
feature face of the (2k − 2)th hidden layer and the jth feature
face of the (2k − 1)th hidden layer. b2k− 1j represents the offset
of the jth feature plane of the (2k − 1)th hidden layer. clk,j
represents the jth feature plane of the kth convolutional
layer. hl2k− 1,j and h

l
2k− 2,i represent the ith feature face of the

(2k − 2)th hidden layer of the 1st sample and the jth feature
face of the (2k − 1)th hidden layer, respectively. 1e ac-
tivation function f can be a sigmoid or a modified linear
unit. Here, let hl0 � x

l.
In each pooled layer, a fixed step size is used for all

feature faces. 1e pooling function can be expressed as

hl2k,j � t
l
k,j � pooling hl2k− 1,j{ }, 1≤ k≤ s. (2)

In the formula, pooling{∙} can be average pooling or
maximum pooling. hl2k,j and h

l
2k− 1,j represent the jth feature

face of the (2k − 1)th hidden layer of the lth sample and the
jth feature face of the 2kth hidden layer, respectively. tlk,j
represents the jth feature plane of the kth pooling layer of the
lth sample.

A fully connected layer is a splicing obtained by the
activation of two or more convolutional layers and a pooled
layer through a cross-layer connection. It can form the entire
multiscale feature discriminant vector. In fact, the fully
connected layer has the following form:

hl2s+1 � a1h
l
1, a2h

l
2, · · · , a2kh

l
2k, · · · , a2sh

l
2s( ), (3)

where hl2k− 1 and h
l
2k represent the (2k − 1)th hidden layer and

the 2kth hidden layer of the lth sample, respectively. Let the
binary string SI� a1, a2, . . ., a2s− 1 denote a crossover indi-
cator that indicates how the cross-layer connection is made.
For example, the cross-layer connection method indicated
by SI� 111...1 is that all 2s− 1 convolution layers and pooling
layers are connected to the fully connected layer. 1e cross-
layer connectionmethod indicated by SI� 100...0 is that only
the first convolutional layer is connected to the fully con-
nected layer. 1e cross-layer connection method indicated
by SI� 000...0 is that there is no cross-layer connection, and
this is the standard CNN. 1e actual output is a C-di-
mensional softmax, which predicts the probability distri-
bution of C different categories, expressed as

ol � softmax ul( ) � softmax W2s+2hl2s+1 + b
2s+2( ), (4)

whereW2s+2 and b2s+2 represent the weight and offset of the
output layer, respectively, and
softmaxi(x) � exp(xi)/∑jexp(xj).
2.2. Learning Algorithm for Optimizing Convolutional Neural
Network Framework. For the lth sample, the optimized
convolutional neural network algorithm proposed in this
paper uses the following formula to sequentially calculate the
activation of all convolutional and pooled, fully connected,
and output layers:

hl2k− 1,j � f ul2k− 1,j( ) � f ∑
i
hl2k− 2,i ∗W2k− 1

ij + b2k− 1j( ), 1≤ k≤ s,

hl2k,j � pooling hl2k− 1,j{ }, 1≤ k≤ s,

hl2s+1 � a1h
l
1, a2h

l
2, · · · , a2khl2k, · · · , a2shl2s( ),

ol � softmax ul( ) � softmax W2s+2hl2s+1 + b2s+2( ).


(5)
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Let yl�(y1l, y2
l, . . ., yC

l)T denote the desired output.
ol�(o1l, o2l, . . ., oCl)T represents the actual output. We use
cross entropy loss as the objective function, specifically:

LN yl, ol( ) � − ∑N
l�1
∑C
c�1
ylclog o

l
c( ). (6)

First, we calculate the sensitivity δlk, 1≤ k≤ 2s + 1 of each
hidden layer and the sensitivity δl of the output layer,
specifically:

δl � ol − yl,

δl2s+1 � W2s+2( )Tδl[ ] ∘ softmax′ ul2s+2( ),
δl1,FC, δ

l
2,FC, · · · , δ

l
2k,FC, · · · , δ

l
2s,FC( ) � δl2s+1, 1≤ k≤ s,

δl2s � δl2s,FC,

δl2k− 1,j � f′ ulk,j( ) ∘ uppooling δl2k,j{ } + a2k− 1δl2k− 1,FC,j,
δl2k,j � δl2k+1,j ∗ rot180 W2k+1( ) + a2kδl2k,FC,j,


(7)

where δl represents the sensitivity of the output layer. δl2k− 1
and δl2k represent the sensitivity of the (2k − 1)th hidden
layer and the 2kth hidden layer, respectively. δl2k− 1,FC and
δl2k,FC are part of the (2k+ 1)th hidden layer, that is, the fully
connected layer, corresponding to the (2k − 1)th and the
2kth hidden layer, respectively. In addition, uppooling{∙} is
an upsampling function of the pooling function defined by
equation (2). Softmax’(∙) represents the derivative of the soft
maximum function. rot180(∙) indicates horizontal and
vertical flipping operations on the matrix. 1e symbol “°”
indicates the Hadamard product.

1e weights of the optimized convolutional neural
network model and the inverse of the offset can be calculated
by formulas (6) and (7), as follows:

zLN
zW2s+2 �∑N

l�1
δl hl2s+1( )T,

zLN
zb2s+2

�∑N
l�1

δl,

zLN
zW2k− 1

ij

�∑N
l�1

δl2k− 1,j ∗ h
l
2k− 2,i,

zLN
zb2k− 1j

�∑N
l�1

δl2k− 1,j,

1≤ k≤ s.



(8)

Based on formulas (5) to (8), this paper proposes a
gradient descent learning algorithm that conforms to the
optimized convolutional neural network model proposed in
this section. 1at is, the cross-layer backpropagation algo-
rithm of the convolutional neural network model is
optimized.

1is section proposes a stitching framework for cross-
continuous convolutional neural networks. 1e framework
consists of an input layer, a convolutional layer, a pooling
layer, a fully connected layer, and an output layer. In this
framework, the fully connected layer is obtained by concat-
enating one or more convolutional layers and pooling layers
in front of it using a fixed weight cross-layer connection. 1e
framework uses the features of the nonhighest convolutional
layer or pooling layer and then stitches to obtain multiscale
features for segmentation or recognition. It has good stability
to different pooling mechanisms, initialization methods,
optimization methods, activation functions, and convolution
kernels of different numbers and sizes.

…
…

…

…

Input CL PL

x h2s–1(cs)

CL PL FCL Output

h2(t1) h2s(ss) h2s+1
oh1(c1)

Figure 1: Splicing a convolutional neural network. In the framework, the features of different convolutional layers and pooled layers are
spliced to obtain a fully connected layer, and the fully connected layer is directly input to the output layer.
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2.3. Description of Image Analysis with Full Connection

(1) Conversion idea of fully connected layer and con-
volutional layer

1e difference between the fully connected layer and
the convolutional layer is that the neuron in the
convolutional layer is only connected to a local re-
gion in the input data, and the neurons in the
convolutional column share parameters. But in these
two types of layers, neurons calculate dot products.
So, their functional form is the same. 1erefore, the
two can be transformed into each other.

For any convolutional layer, it has a fully connected
layer with the same forward propagation function.
1e weight matrix is a huge matrix, except for some
specific blocks, and the rest are zero. 1e elements in
most of the blocks are equal. Similarly, any fully
connected layer can be converted into a convolu-
tional layer. For example, for a fully connected layer
with K� 2048, the input size is 7× 7× 256. 1e fully
connected layer can be regarded as a convolutional
layer with F� 7, P� 0, S� 1, K� 2048. So, it can
directly analyze or manipulate the image.

(2) An example of the conversion of a fully connected
layer to a convolutional layer

Suppose that an input image of 224× 224× 3 of a
convolutional neural network, a series of convolutional
layers, and downsampling layers transform the image data
into an active data volume of size 7× 7× 512. Here, two fully
connected layers of size 2048 can be used, and the last fully
connected layer with 1000 neurons is used to calculate the
image segmentation. It can convert any of these three fully
connected layers into a convolutional layer. 1e specific
steps are as follows:

(1) For the fully connected layer whose first connection
area is (7× 7× 256), let its filter size be F� 7. In this
way, the output data volume is (1× 1× 2048).

(2) For the second fully connected layer, let F� 1. In this
way, the output data volume is (1× 1× 2048).

(3) Perform the similar operation for the last fully
connected layer; let F� 1. 1e final output is
(1× 1× 1000).

3. Depth Calculation Model Based on
Adaptive Dropout

Two key problems in the design of adaptive dropout depth
calculation model are adaptive distribution function design
and adaptive high-order backpropagation algorithm design.

3.1. Adaptive Distribution Function Design. In this paper, an
adaptive distribution function is designed to hide the po-
sition of the layer as an independent variable and to hide the
activation probability of the layer neurons as the dependent
variable. 1e probability of neuron activation for each
hidden layer is set according to the position of the hidden
layer. 1rough the above analysis, the adaptive distribution
function monotonically decreases with the increase of the
hidden layer position [31, 32]. In addition, the dropout
model proposed by Hinton shows that the activation
probability of neurons in each layer should be around 0.5.
1is ensures that enough activation neurons are retained. At
the same time, enough neurons are discarded to improve the
generalization ability of the depth calculation model. Finally,
the value of the dropout rate for each layer needs to be in the
interval (0, 1). 1erefore, the adaptive distribution function
designed in this paper is as follows:

ρ � f(l) �

1 − 1

σ
���
2π

√ ∫l
− ∞

exp − (1 − n/2)
2

2σ2
( )dl, n � 2k k ∈ N+( ),

1 − 1

σ
���
2π

√ ∫l
− ∞

exp − (l − (n + 1)/2)2

2σ2
( )dl, n � 2k + 1 k ∈ N+( ),


(9)

where the dropout rate is given, l represents the position of
the hidden layer, n represents the number of layers of the
depth calculation model, and σ represents the parameter
used to control the range of the dropout rate. 1e adaptive
function ρ� f(l) has the following properties:

(1) When the hidden layer position increases, the
probability of the activation of neurons is reduced.

1e proof is as follows.

1e derivative of the function f(l) versus l is as
follows:

f′(l) � dρ
dl

− 1

σ
���
2π

√ e (ln/2)2/2σ2( ) < 0, n � 2k k ∈ N+( ),

− 1

σ
���
2π

√ e− (l(n+1)/2)2/2σ2( ) < 0, n � 2k + 1 k ∈ N+( ).


(10)

Since f’(l)< 0, ρ� f(l) is a monotonically decreasing
function.
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(2) 1e probability of the activation of neurons in the
middle hidden layer is 0.5.

1e proof is as follows.

When the number of hidden layers is even, that is,
n� 2k(k ∈N+), we obtain

ρ � f(n/2) � 1 − ∫n/2
− ∞

1

σ
���
2π

√ exp − (l − n/2)
2

2σ2
( )dl � 0.5.{

(11)

When the number of hidden layers is odd, that is,
n� 2k+ 1(k ∈N+), we obtain

ρ � f((n + 1)/2) � 1 − ∫(n+1)/2
− ∞

1

σ
���
2π

√ exp − (l − (n + 1)/2)2

2σ2
( )dl � 0.5.{

(12)

1erefore, the activation probability of each neuron
in an intermediate hidden layer is 0.5.

(3) ρ ∈ (0, 1), that is, the probability that each neuron is
activated is between (0, 1).

1e proof is as follows.
f(l) is a strictly monotonically decreasing function, so we

have

f(n)<f(l)<f(1). (13)

When the number of hidden layers is even, that is,
n� 2k(k ∈N+), we obtain

ρmax � f(l) � 1 − ∫1

− ∞

1

σ
���
2π

√ exp − (l − n/2)
2

2σ2
( )dl

� 1 − lim
x⟶− ∞

1

2
erf

�
2

√
(− 2l + n)
4σ

( ) − 1

2
erf

�
2

√
(− 2 + n)
4σ

( )( )( )< 1,
(14)

ρmin � f(n) � 1 − ∫n
− ∞

1

σ
���
2π

√ exp − (l − n/2)
2

2σ2
( )dl

� 1 − lim
x⟶− ∞

1

2
erf

�
2

√
(− 2l + n)
4σ

( ) + 1

2
erf

n
�
2

√

4σ
( )( )( )> 0. (15)

When the number of hidden layers is odd, that is,
n� 2k+ 1(k ∈N+), we obtain

ρmax � f(l) � 1 − ∫1

− ∞

1

σ
���
2π

√ exp − (l − (n + 1)/2)2

2σ2
( )dl

� 1 − lim
x⟶− ∞

1

2
erf

�
2

√
(− 2l + n + 1)

4σ
( ) − 1

2
erf

�
2

√
(− 1 + n)
4σ

( )( )( )< 1,
(16)

ρmin � f(n) � 1 − ∫n
− ∞

1

σ
���
2π

√ exp − (l − (n + 1)/2)2

2σ2
( )dl

� 1 − lim
x⟶− ∞

1

2
erf

�
2

√
(− 2l + n + 1)

4σ
( ) + 1

2
erf

(n − 1)
�
2

√

4σ
( )( )( )> 0. (17)

From formulas (14) to (17), it can be seen that for any l,
f(l) ∈ (0, 1) has a probability of each neuron being activated
that is in (0, 1).

3.2. Depth Calculation Model Based on Adaptive Dropout.
Let L denote the total number of layers based on the adaptive
dropout depth calculation model. 1e number of hidden

6 Complexity



layers is L − 2, and l ∈ {0, 1, . . ., L − 1} is the index number of
each layer, that is, l� 0. For the input layer, l� 1 is the first
hidden layer, so l� L − 1 is the output layer. For the depth
calculation model represented by the Nth order tensor of
each layer, it is assumed that z(l)j1j2 ···jN is the input of the first-

layer neurons j1, j2, . . ., jN, and y
(l)
j1j2 ···jN is the output of the

first-layer neurons j1, j2, . . ., jN. y
(0)� x is the input data and

the output of the y(L− 1) model. W(l) and b(l) are the weight

tensor and offset tensor of the lth layer, respectively.
1erefore, the forward propagation process of this depth
calculation model is as follows:

z(l+1)j1j2 ···jn �W
(l)
α ⊙Y

(l) + b(l)j1j2 ···jn ,

α � jn +∑N− 1
i�1 ji − 1( )∏N

t�i+1
Jt,

(18)

y(l+1)j1j2 ···jn � f z(l)j1j2 ···jn( ), (19)

where ⊙ denotes the multipoint product of two tensors; let
H ∈ RJ1×J2×···×JN , J1 × J2 × · · · × JN � α denote the result of
the multipoint product of W ∈ Rα×J1×J2×···×JN and tensor
A ∈ RJ1×J2×···×JN . Each element in H is defined as follows:

hj1j2 ···jn �Wβ · A, β � jn +∑ jt − 1( ) ∏N
t�i+1

Jt, (20)

where f is the activation function. 1e depth calculation
model based on adaptive dropout proposed in this paper
uses the sigmoid function as the activation function of
neurons; that is, f(x)� 1/(1 + exp(− x)).

1e forward propagation process for the depth calcu-
lation model based on adaptive dropout is as follows:

r(l)j1j2 ···jN ∼ Bernoulli ρ(l)( ), (21)

ỹ(l)j1j2 ···jN � r
(l)
j1j2 ···jN · y

(l)
j1j2 ···jN , (22)

z(l+1)j1j2 ···jN �W
(l)
α ⊙Ỹ

(l) + b(l)j1j2 ···jn ,

α � jn +∑N− 1
i�1 ji − 1( )∏N

t�i+1
Jt,

(23)

y(l+1)j1j2 ···jN � f z(l)j1j2 ···jN( ), (24)

where ρ(l) is the activation probability of each hidden layer
neuron in the lth layer. r(l)j1j2 ···jN obeys a Bernoulli distribution,
and its probability ρ(l) takes a value of 1. For the depth
calculation model based on adaptive dropout, the probability
of activation of each hidden layer neuron is set by an adaptive
function, and a submodel of a depth calculation model can be
obtained for each training. 1e adaptive dropout model
enhances the generalizability of the deep computation model
by training multiple submodels with shared weights.

3.3. Adaptive High-Order Backpropagation Learning
Algorithm. 1e reconstruction error function based on the

adaptive dropout depth calculation model is defined as
follows:

JTAE(θ; l) � 0.5 hW,b ỹ
(l− 1)( ) − ỹ(l− 1)( )TG hW,b ỹ

(l− 1)( ) − ỹ(l− 1)( ),
(25)

where θ � W(l− 1), b(l− 1);W(l− 1)’, b(l− 1)’{ } is a parameter and
ỹ(l− 1) is an expansion vector corresponding to the output
tensor of the activated neurons of the l− 1 th layer.

As with the basic depth calculation model, the depth-
difference calculation model based on the adaptive dropout
uses the gradient descent method to update the parameters
of the model. However, for each step of the training process
based on the adaptive dropout depth model, forward
propagation and backpropagation are trained on a submodel
set by the adaptive distribution function. 1erefore, when
calculating the parameter gradient, only the activated
neurons are calculated.

4. Medical Image Segmentation Algorithm
Based on Optimized Convolutional Neural
Network-Adaptive Dropout Depth
Calculation and Example Analysis

4.1. Medical Image Segmentation Algorithm Based on Opti-
mized Convolutional Neural Network-Adaptive Dropout
DepthCalculation. Based on the analysis in Sections 2 and 3
of this paper, this section constructs a medical image seg-
mentation algorithm based on an optimized convolutional
neural network with adaptive dropout depth calculation.
First, this paper establishes an optimized convolutional
neural network model by adding cross-layer connections in
a traditional convolutional neural network. 1is can effec-
tively solve the problem of network structure flexibility in a
deep learning model. At the same time, this paper proposes
an adaptive dropout model, which can effectively enhance
the generalizability of the dropout method to reduce the
deep learning model. Based on the above analysis, this paper
proposes a medical image segmentation algorithm based on
an optimized convolutional neural network with adaptive
dropout depth calculation. 1e basic idea of the proposed
medical image segmentation algorithm is shown in Figure 2.
1e basic steps corresponding to this idea are as follows:

(1) First, the medical image data to be segmented are
subjected to preprocessing such as denoising, add-
ing, and expanding.

(2) To better solve the problem of network structure of
deep learning model, this paper establishes an op-
timized convolutional neural network model by
adding cross-layer connections in traditional con-
volutional neural networks. 1e optimized con-
volutional neural network model can simultaneously
use two scale features for segmentation, which can
better position medical image segmentation services.

(3) 1is paper proposes an adaptive dropout model.
According to the position of the hidden layer, an
adaptive distribution function is designed to set the
activation probability of each layer of neurons, which
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further improves the generalizability of the dropout
model. 1is solves the problem of the general
dropout method reducing the generalizability of the
deep learning model. It can further enhance the
generalizability of the deep learning model and re-
duce the risk of overfitting.

(4) 1e method of step (3) is introduced into step (2),
and a medical image segmentation algorithm is
established based on an optimized convolutional
neural network with adaptive dropout depth cal-
culation through steps (1)–(3). 1e algorithm is used
to analyze related examples and compare and ana-
lyze with other mainstream medical image seg-
mentation methods.

4.2. Ultrasonic Tomography Dataset Experiment. To verify
the segmentation effect of the proposed algorithm on
medical images, this section will describe segmentation tests
on a dataset composed of ultrasonic tomographic images
from Delphinus Medical Technologies, USA [36, 37], and
compare the proposed algorithm with mainstream medical
image segmentation algorithms.

4.2.1. Dataset and Segmentation Process Description. 1e
dataset images for this experiment were derived from ul-
trasound tomography (UST) volume images from Delphi-
nus Medical Technologies, USA.1e resolution of all images
is 0.5× 0.5× 2.0mm3, and the matrix size of the coronal
plane is 512× 512. All UST images meet the requirements of
clinical diagnosis. In this experiment, 50 UST volume data
were used, and each volume data contains 36 slice images.
Some examples are shown in Figure 3.

1e deep learning model used in this experiment was
based on the Pytorch implementation and was trained on a

Titan-X GPU.1e network architecture in the deep learning
model is the network architecture proposed in Section 2 of
this paper. 1e overfitting processing method of the deep
learning model is the adaptive depth-based deep computing
model proposed in Section 3.1e initial learning rate was set
to 0.01, and the learning rate was reduced to one-tenth of the
original rate when training progressed to 80 and 120 epochs.
1e training lasted for 200 epochs. In all training sessions,
the model proposed in this paper is trained based on the
stochastic gradient descent method, and the number of
samples per batch is set to 32.

In this experiment, the Dice coefficient (D), Jaccard
coefficient (J), and number of false positives (FPs) were used
to evaluate the effect of breast segmentation. 1e specific
evaluation indicators are described in [38].

4.2.2. Segmentation Results and Analysis. 1e image seg-
mentation algorithm proposed in this paper is used to
segment the experimental dataset image separately from
other mainstream medical image segmentation algorithms.
1e partial image segmentation results are shown in
Figure 4.

Figure 4 shows the segmentation effect of the partial
segmentation algorithm, and Figures 4(a)–4(e) represent the
reference image, the segmentation results of the methods in
[39–41], and the segmentation result of the proposed
method, respectively. As seen from Figure 4, methods
[39, 40] have segmentation errors, which are marked with
blue and red circles, respectively. Visually, there is no sig-
nificant difference between method [41] and the method of
this paper. For better comparison and analysis, Table 1 gives
the index comparison data for the specific segmentation
results in [39–43].

It can be seen from Table 1 that the segmentation effect
of the medical image segmentation algorithm based on the
optimized convolutional neural network-adaptive dropout
depth calculation is better than that of the traditional ma-
chine learning segmentation algorithms proposed in [39, 40]
and has a large increase over the segmentation effect of the
deep learning algorithms proposed in [41–44]. 1is illus-
trates the unique advantages of the algorithm proposed in
this paper. Specifically, the traditional machine learning
methods proposed in [39, 40] have the lowest Dice values
after image segmentation, 0.8397 and 0.8485, respectively,
and the Jaccard indexes are lower than 0.8, while the FP
indexes are higher than 0.1. 1is shows that the machine
learningmethod is one of the worst-case methods among the
above-listed methods. 1e image segmentation method
proposed in [41] without optimized convolutional neural
network model and improved dropout deep learning model
has Dice index higher than 0.9, Jaccard index higher than
0.85, and FP index lower than 0.06. It shows that the
convolutional neural network model that has not been
optimized has a significant improvement over traditional
machine learning methods. 1is is mainly because the deep
learning model can better train the experimental data and
obtain a more reasonable and reliable image segmentation
model. It shows that the deep learning method is suitable for

Begin

Image data 
preprocessing

Establish an optimized convolutional neural 
network model framework

Depth calculation model based on adaptive 
dropout

Medical image segmentation algorithm based 
on optimized convolutional neural network-

adaptive dropout depth calculation

Test model

Figure 2: Basic idea of medical image segmentation algorithm
based on optimized convolutional neural network-adaptive
dropout depth calculation.
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(a) (b)

Figure 3: UST image part example.

(a) (b) (c) (d)

(e)

Figure 4: Partial image segmentation results. (a) Datum image. (b) [39]. (c) [40]. (d) [41]. (e) Ours.

Table 1: Comparison of ultrasonic tomographic image dataset segmentation results.

Segmentation method Dice Jaccard FP

[39] 0.8397 0.7826 0.1337
[40] 0.8485 0.7932 0.1191
[41] 0.9132 0.8557 0.0582
[42] 0.9307 0.9018 0.0311
[43] 0.9402 0.9314 0.0210
[44] 0.9516 0.9432 0.0183
Ours 0.9904 0.9827 0.0012
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image segmentation. 1e deep learning methods proposed
in [42–44] have optimized the convolutional neural network
model to varying degrees. 1e Dice and Jaccard indicators
obtained by using them for image segmentation are both
above 0.9, and the FP indicators are below 0.05. It shows that
the methods proposed in [42–44] have not improved the
image segmentation effect obviously compared with the
traditional machine learning method. Moreover, it has been
improved to a certain extent compared to the nonoptimized
convolutional neural network model. It shows that the
optimization of deep learning models and the improvement
of dropout have a greater effect on improving the effect of
image segmentation. 1e Dice and Jaccard indicators for
image segmentation obtained by the method proposed in
this paper are the highest among those of all the methods,
and the FP index is the lowest among those of all the
methods. 1is shows that the proposed method is the best
among all the methods. 1is is mainly because the method
proposed in this paper is better optimized than the deep
learning methods proposed in [41–43]. 1e proposed
method not only optimizes the network structure of the deep
learning model but also solves the overfitting problem of the
deep learning model. 1rough this processing, the deep
learning model obtains a stronger modeling ability and
nonlinear fitting ability and fully exploits the advantages of
the deep learning method in medical image segmentation.

4.3. SpineWeb Dataset Experiment. To further verify the
segmentation effect of the proposed algorithm on lumbar CT
medical images, this section discusses segmentation tests on
the two SpineWeb datasets [45] and compares the results
with those of mainstream medical image segmentation
algorithms.

4.3.1. >e Dataset and Segmentation Process. 1e dataset of
images for this experiment was derived from two datasets
from SpineWeb, one of which contained six volumetric
images that labeled segmented vertebral bodies without
transverse processes, spinous processes, or pedicles. 1e
image resolution is 1.0×1.0×1.0mm3. 1e scan matrix size
is 512× 512, and the number of sliced images is between 35
and 98. 1e other dataset contains 30 individual images of
segmented complete vertebral bodies with a resolution of
0.35× 0.35×1mm3. 1e acquired slice image size is
512× 512. 1e number of slice images is 265 to 1050. In the
dataset of 6 individual images, the number of network
training, testing, and verification iterations is 3, 2, and 2,
respectively, and the dataset containing 30 individuals is
divided into 2 individual datasets for verification. Others are
used for network training and cross testing. During each
training iteration, the input trained image is elastically
deformed by a density deformation field obtained by using a
3× 3 grid control point and cubic B-spline interpolation. A
new variant of the training dataset is derived. 1e primary
purpose of this dataset is to verify the validity and reliability
of the data expansion method.

1e deep learning model used in this experiment was
based on the Pytorch implementation and was trained on the

Titan-X GPU.1e network architecture in the deep learning
model is the network architecture proposed in Section 2 of
this paper. 1e overfitting processing method of the deep
learning model is the adaptive depth-based deep computing
model proposed in Section 3.1e initial learning rate was set
to 0.001, and the learning rate was reduced by one tenth
when the training progressed to 60 and 120 epochs. 1e
training lasted for 200 epochs. In all training sessions, the
model proposed in this paper is trained based on the sto-
chastic gradient descent method, and the number of samples
per batch is set to 64.

4.3.2. Segmentation Results and Analysis. 1e image seg-
mentation algorithm proposed in this paper and other
mainstream medical image segmentation algorithms are
used to segment the experimental dataset, respectively. 1e
partial image segmentation results are shown in Figure 5. It
can be seen from Figure 5 that the results obtained by the
proposed segmentation algorithm are the most satisfactory.
1e segmentation effects of the methods in [46, 47] have
problems to varying degrees. For better comparison and
analysis, Table 2 gives the specific segmentation results of the
methods proposed in [46–50].

Table 2 shows that the segmentation effect of the medical
image segmentation algorithm based on the optimized
convolutional neural network with adaptive dropout depth
calculation is better than that of the traditional machine
learning image segmentation algorithms proposed in
[45, 46] and [41, 47–49]. 1e segmentation effect of the
proposed deep learning algorithm has advantages. Specifi-
cally, the traditional machine learning methods proposed in
[45, 46] have the lowest Dice values after image segmen-
tation, 0.8481 and 0.8570, respectively, and the Jaccard in-
dexes are lower than 0.8, while the FP indexes are higher
than 0.1.1is shows that themachine learningmethod is one
of the worst-case methods among the above-listed methods.

Krizhevsky et al. [41] proposed a deep learning model
without optimized convolutional neural network model and
improved dropout. 1e Dice index is higher than 0.92, the
Jaccard index is higher than 0.86, and the FP index is lower
than 0.07. It shows that the convolutional neural network
model that has not been optimized has a significant im-
provement over traditional machine learning methods. 1is
is mainly because the deep learning model can better train
the experimental data and obtain a more reasonable and
reliable image segmentation model. It confirms that the deep
learning method is suitable for image segmentation. 1e
image segmentation method of the deep learning method
proposed in [48–50] has obtained Dice and Jaccard indexes
both higher than 0.9, and some have reachedmore than 0.95,
and the FP indexes are lower than 0.03. It shows that the
segmentation effect of the deep learning method proposed in
[48–50] is not only significantly improved compared with
the traditional machine learning method but also superior to
the unoptimized convolutional neural network model. It
shows that improving and optimizing the convolutional
neural network model can improve the image segmentation
effect.
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1e Dice and Jaccard indicators for image segmentation
obtained by the method proposed in this paper are the
highest among those of all the methods, and the FP index is
the lowest among those of all the methods. 1is method is
not only superior to traditional machine learning methods
but also superior to other deep learning methods. 1is is
mainly because the method proposed in this paper is better
optimized than the deep learning methods proposed in
[48–50]. 1e proposed method not only optimizes the
network structure of the deep learning model but also solves
the overfitting problem of the deep learning model. 1rough
the above processing, the deep learning model has a stronger
modeling ability and a nonlinear fitting energy. It can fully
extract all kinds of characteristic information of lumbar CT
images to obtain a better segmentation effect.

In short, the traditional machine learning segmentation
algorithm has problems such as weak adaptive ability and
poor segmentation effect in medical image segmentation. It
shows that the traditional machine learning segmentation
algorithm is difficult to adapt to the requirements of image

segmentation accuracy in the medical field. 1e depth
learning image segmentation algorithm is significantly better
than the traditional machine learning method in the above
dataset. It validates the advantages of deep learning models
in medical image segmentation. Among these deep learning
models, the medical image segmentation algorithm based on
optimized convolutional neural network-adaptive dropout
depth calculation has better segmentation effect than other
deep learning algorithms. 1is is because the deep learning
model proposed in this paper better solves the problem of
deep learning architecture optimization and overfitting.

5. Conclusion

To obtain a better medical image segmentation method
based on deep learning, this paper first studies the network
structure of the deep learning model and adds cross-layer
connections to the traditional convolutional neural network.
An optimized convolutional neural network model is
established. In the optimized convolutional neural network
model, two scale features can be used simultaneously for
segmentation. At the same time, to solve the overfitting
problem of the traditional deep learning model, this paper
proposes an adaptive dropout model, which can improve the
generalizability of the dropout model and better solve the
overfitting problem, thereby addressing the segmentation
problem of the corresponding medical image. Based on this
idea, this paper proposes a medical image segmentation
algorithm based on an optimized convolutional neural
network with adaptive dropout depth calculation.

1e experimental results for the ultrasonic tomographic
image dataset and the SpineWeb dataset show that the

(a) (b) (c) (d)

(e)

Figure 5: Partial CT image vertebral segmentation results. (a) Original image. (b) Standard result. (c) Ours. (d) Segmentation results of [45].
(e) Segmentation results of [46].

Table 2: Comparison of SpineWeb dataset segmentation results.

Segmentation method Dice Jaccard FP

[46] 0.8481 0.7904 0.1270
[47] 0.8570 0.7986 0.1131
[41] 0.9206 0.8675 0.0649
[48] 0.9400 0.9108 0.0295
[49] 0.9496 0.9407 0.0200
[50] 0.9611 0.9526 0.0174
Ours 0.9932 0.9881 0.0010
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segmentation effect of the deep learning medical image
segmentation method is the best. 1e Dice and Jaccard
indicators of the segmented image are the highest, and the
false positive index is the lowest. 1e data of these three
indicators show that the segmentation method proposed in
this paper obtains an optimal medical image segmentation
effect for these two datasets. 1e method in this paper is not
only superior to the traditional deep learning model but also
superior to the deep learning model that is only optimized
for the network without dropout optimization. 1e method
proposed in this paper can obtain such an excellent seg-
mentation effect primarily because, first, the deep learning
method proposed in this paper solves the problem of net-
work architecture optimization for the deep learning model.
Second, the deep learning method proposed in this paper
addresses the overfitting problem better than previous
methods.
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