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Abstract

In this paper, we propose a novel 3D segmentation method based on the effective combination of 

the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method 

consists of three main parts: model building, initialization, and segmentation. In the model 

building part, we construct the AAM and train the LW cost function and GC parameters. In the 

initialization part, a novel algorithm is proposed for improving the conventional AAM matching 

method, which effectively combines the AAM and LW method, resulting in Oriented AAM 

(OAAM). A multi-object strategy is utilized to help in object initialization. We employ a 

pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM 

method. For the segmentation part, a 3D shape constrained GC method is proposed. The object 

shape generated from the initialization step is integrated into the GC cost computation, and an 

iterative GC-OAAM method is used for object delineation. The proposed method was tested in 

segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 

2007 grand challenge for liver segmentation training dataset. The results show the following: (a) 

An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive 

volume fraction (FPVF) < 0.2% can be achieved. (b) The initialization performance can be 

improved by combining AAM and LW. (c) The multi-object strategy greatly facilitates the 

initialization. (d) Compared to the traditional 3D AAM method, the pseudo 3D OAAM method 

achieves comparable performance while running 12 times faster. (e) The performance of proposed 

method is comparable to the state of the art liver segmentation algorithm. The executable version 

of 3D shape constrained GC with user interface can be downloaded from website http://

xinjianchen.wordpress.com/research/.
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I. INTRODUCTION

Image segmentation is a fundamental and challenging problem in computer vision and 

medical image analysis. In spite of several decades of research and many key advances, a 

few challenges still remain in this area. Efficient, robust, and automatic segmentation of 

anatomy on radiological images is one of these challenges.

The image segmentation methods could be classified into several types: image based [1–12], 

model based [13–30], and hybrid methods [31–39]. Purely image based methods perform 

segmentation based only on image information; these include thresholding, region growing 

[1], morphological operations [2], active contours [3, 4, 22], level sets [5], live wire (LW) 

[6], watershed [7], fuzzy connectedness [8, 9] and graph cut (GC) [10, 11, 47]. These 

methods perform well on high quality images. However, the results are not as good when the 

image quality is inferior or boundary information is missing. In recent years, there has been 

an increasing interest in model-based segmentation methods. One advantage of these 

methods is that, even when some boundary information is missing, such gaps can be filled 

due to the closure and connectedness properties of the model. The model-based methods 

employ object population shape and appearance prior such as atlases [13–17, 23–25], 

statistical active shape model [18–20, 26], and statistical active appearance models (AAMs) 

[21, 27, 28]. MICCAI 2007 “Grand Challenge” workshop [29] organized a competition for 

liver segmentation which attracted a lot of attention. In that competition, the three best-rated 

approaches [29, 30] were all based on statistical shape models with some form of additional 

deformation. Such hybrid approaches are rightfully attracting a great deal of attention at 

present. The relative merits of the synergy that exists between these two approaches – purely 

image-based and model-based strategies – are clearly emerging in the segmentation field. As 

such hybrid methods that form a combination of two or more approaches are emerging as 

powerful segmentation tools [31–39] where their superior performance and robustness over 

each of the component methods have been well demonstrated.

Many of the above mentioned image-based [1, 4], model-based [14–18, 20–25, 30], as well 

as hybrid [39] techniques were tailored for specific body regions and image modalities. 

However, it is desirable to have a general approach that is applicable to any (or most) body 

regions and image modalities and protocols and not heavily dependent on the characteristics 

of fixed shape families and image modalities. While perhaps some of the above techniques 

can be generalized in this spirit, few methods have demonstrated to work in this general 

setting.

In this paper, we propose a general method which can be used to segment most organs and 

which effectively combines the AAM, LW, and GC methods, leading to the GC-OAAM 

approach, and arrive at an automatic, efficient, and accurate segmentation method. LW is a 

user-steered 2-dimensional segmentation method in which the user provides recognition help 

and the algorithm does the delineation precisely. The major limitation of live wire is that the 

recognition process (selecting anchor points on the boundary) is done by a human operator; 

hence it is far less efficient. AAM methods use landmarks to represent shape and 

appearance, and use principal component analysis to capture the major modes of variation in 

shape and appearance observed in the training data sets. However, the specific shape and 
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appearance information are also lost during the model building. GC methods have the ability 

to compute globally optimal solutions and have proven to be a useful multidimensional 

optimization tool which can enforce piecewise smoothness while preserving relevant sharp 

discontinuities. However, some GC methods need human operator to label the source and 

sink seeds. In this paper, our aim is to combine the complementary strengths of the 

individual methods to arrive at a more powerful hybrid strategy that can overcome the 

weakness of the component methods.

Several existing approaches embody hybrid integration in the above spirit. Besbes et al. [12] 

proposed a discrete MRF based segmentation method which combined shape priors and 

regional statistics. However, this method did not perform segmentation at the pixel level. 

Freedman and Zhang [34] incorporated a shape template into the graph-cut formulation as a 

distance function. However, it relied crucially on user input. Based on the latter method, 

Ayvaci and Freedman [35] proposed a joint registration-segmentation method which 

removed the user interaction requirement and resolved the problem of template registration. 

However, this method required proper registration of the shape template for an accurate 

segmentation. Kumar et al. [36] used a MRF representation where the latent shape model 

variables were integrated via expectation maximization. While shape information was 

utilized in a principled Bayesian manner, this approach was computationally intensive where 

a separate energy minimization was required. Malcolm et al. [37] imposed the shape prior 

model on the terminal edges and performed graph cut optimization iteratively starting from 

an initial contour. Their method constructed a statistical shape space using kernel principal 

component analysis. This method also relied on user input. Vu and Manjunath [38] proposed 

a shape prior integrated segmentation method using graph cuts suitable for multiple objects. 

The shape prior energy was based on a shape distance popular in level set approaches. 

However, the shape used was a simple fixed shape. Most of the above mentioned methods 

operated on 2D images.

Compared to these methods, the strategy proposed in this paper is a 3D anatomy 

segmentation method. More importantly, different from all the above shape prior-integrated 

methods, our technique does not need shape registration. The proposed GC-OAAM 

effectively combines the rich statistical shape and appearance information embodied in 

AAM, effective boundary oriented delineation in LW, with the globally optimal delineation 

capability of the GC method.

The remaining part of this paper is organized as follows. In Section 2, we elaborate the 

complete methodology of the delineation algorithm. In Section 3, we describe an evaluation 

of this method in terms of its accuracy and efficiency. In Section 4, we summarize our 

contribution.

II. THE GC-OAAM APPROACH

2.1 Overview of the approach

The proposed method consists of two phases: training phase and segmentation phase. Fig. 1 

shows the flowchart of the proposed method. In the training phase, an AAM is constructed 

and the LW boundary cost function and GC parameters are trained. The segmentation phase 
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consists of two main steps: initialization and delineation. In the initialization step, we 

employ a pseudo 3D initialization strategy in which the organs are initialized slice by slice 

via a multi-object OAAM method, and a refinement method is applied to further adjust the 

initialization results. The employment of pseudo 3D initialization strategy is motivated by 

two reasons: (1) Compared to a full 3D initialization method, the proposed method is much 

faster. (2) It is difficult to combine AAM with LW in 3D. The experimental results 

demonstrate that the proposed method has performance comparable to the full 3D AAM 

initialization method, which may be due to the effective combination of AAM with the LW 

method. Finally, for the delineation part, the object shape information generated from the 

initialization step is integrated into the GC cost computation. An iterative GC-OAAM 

method is proposed for object delineation. The details of each step are given in the following 

sub-sections.

2.2 Model Building and Parameter Training

Before building the model, the top and bottom slices of each organ are first manually 

identified. Then linear interpolation is applied to generate the same number of slices for the 

organ in every training image. 2D OAAM models are then constructed for each slice level 

from the training images. The LW cost function and GC parameters are also estimated in this 

stage.

2.2.1 Landmark Specification—Due to the nature of the proposed method (slice by 

slice), we represent a 3D shape as a stack of 2D contours, and manually label the 3D shape 

slice by slice, although semi-automatic or automatic methods are also available for this 

purpose. For each slice, operators locate the shape visually, and then identify prominent 

landmarks on that shape.

2.2.2 AAM Construction—The standard AAM method [27, 28] is used to construct the 

model. The model includes both shape and texture information.

The generative model can be described by

(1)

where Q is a matrix of the selected eigenvectors of the covariance matrix over the training 

samples for shape and texture, b is the model parameter vector and x is a sample generated 

by the model.

Suppose Mj represents the AAM for slice level j and the number of slice levels is n, then the 

overall model M can be represented as

(2)
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Although we employ the pseudo 3D initialization strategy, we also build the real 3D AAM 

M3D using the method in [43]. However, this 3D model M3D is used only for providing the 

delineation constraints as to be explained later.

2.2.3 LW Cost function and GC Parameter Training—Similar to the OASM method 

[31], an oriented boundary cost function is devised for each organ in the model M as per live 

wire method [6].

A boundary element, bel for short, of a given image slice I is an ordered pair (a, b) of 4-

adjacent pixels a and b. It represents the oriented edge between pixels a and b, (a, b) and (b, 

a) representing its two possible orientations. To every bel of I, we assign a set of features. 

The features are intended to express the likelihood of the bel belonging to the boundary (of a 

particular object) that we are seeking in I. The cost c(b) associated with each bel b of I is a 

linear combination of the costs assigned to its features

(3)

where wi is a positive constant indicating the emphasis given to feature function fi, and cf is 

the function to convert feature values fi (b) at b to cost values cf (fi (b)). In live wire 

technique [6], fi represents features such as intensity on the immediate interior of the 

boundary, intensity on the immediate exterior of the boundary, and gradient magnitude at the 

center of the bel. cf is an inverted Gaussian function, and here, uniform weights wi are used 

for all selected features.

For the purpose of OAAM, we shall utilize the feature of live wire to define the best oriented 

path between any two points as a sequence of bels with minimum total cost. The only 

deviation in this case is that the two points will be taken to be any two successive landmarks 

employed in the AAM, and the landmarks are assumed to correspond to pixel vertices. With 

this facility, we assign a cost to every pair of successive landmarks of any shape instance x 

associated with Mj, which represents the total cost of the bels in the best

oriented path <b1, b2,.…, bh> from landmark xk to landmark xk+1. That is,

(4)

For any shape instance x = (x1, x2,…, xn) of Mj, the cost structure K(x) associated with Mj 

may now be defined as
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(5)

where m is the number of landmarks for this slice and we assume that xm+1 = x1. That is, 

K(x) is the weighted sum of the costs associated with the best oriented paths between all m 

pairs of successive landmarks of shape instance x. The parameters of GC are also trained 

during the training stage; more details on this are given at section 2.4.1.

2.3 Initialization

The initialization step plays a key role in our method, which provides the shape constraints 

to the later GC segmentation step and makes it fully automatic. The proposed initialization 

method includes three main steps. First, a slice localization method is applied to detect the 

top and bottom slices of the organ. Second, a linear interpolation is applied to generate the 

same number of slices for the subject as in the model. And third, the organ is recognized 

slice by slice via the OAAM method. A multi-object strategy [44] is utilized to help with 

object initialization. We found from experiments that the initialization performance with 

multiple organs in the model is much better than with a single organ due to the constraints 

among multiple organs. It means that, even if just one organ is to be segmented, other organs 

can be employed in the segmentation to provide context and constraints. Finally, a 

refinement method is applied to the initialization result. These three steps are described 

below.

2.3.1 Top and Bottom Slices Localization—There are several recent works related to 

slice localization. Haas et al. [39] introduced an approach for creating a navigation table 

using eight landmarks which were detected in various fashions. Seifert et al. [19] proposed a 

method to detect invariant slices and single point landmarks in full body scans by using 

probabilistic boosting tree (PBT) and Haar features. Emrich et al. [40] proposed a CT slice 

localization method via k-NN instance based regression. The aim of slice localization in our 

approach is to locate the top and bottom slices of the organ. Since we already trained the 

model for each organ slice, we could use this model for slice localization. The proposed 

method is based on the similarity to the OAAM model of the slice.

For top slice localization in a given image, the top slice model is applied to each slice in the 

image using the recognition method detailed in 2.3.2 and evaluating the respective similarity 

metric (Eqn. (6)). Then the slice corresponding to the maximal similarity (minimal distance) 

is taken as the top slice of the organ. Fig. 2 shows the distance value computed from Eqn. (6) 

for the top slice in a patient abdominal CT image. The minimum corresponds to the top slice 

of the left kidney. A similar method is used for the bottom slice detection.

2.3.2 Object Recognition—The proposed object recognition method is based on the 

AAM. The conventional AAM matching method for object recognition is based on the root-

mean-square difference between the appearance model instance and the target image. Such a 

strategy is better suited for matching appearances than for the detailed segmentation of target 
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images (see Fig. 3(b)). This is because the AAM is optimized on global appearance, and is 

thus, less sensitive to local structures and boundary information. Conversely, the LW 

delineates the boundary very well [6], however it needs good initialization of landmarks and 

is an interactive method. Here, we integrate the AAM with the LW method (termed OAAM) 

to combine their complementary strengths. That is, the AAM provides the landmarks to the 

LW, and as a return, LW improves the shape model of the AAM. The LW is fully integrated 

with AAM in two aspects: (1) LW is used to refine the shape model in AAM; (2) the LW 

boundary cost is integrated into cost computation during the AAM optimization method. 

Fig. 3(c) shows the proposed OAAM segmentation result; compared to conventional AAM 

method (Fig. 3(b)), the boundary delineation is much improved.

2.3.2.1 Refinement of the Shape Model in AAM by LW: First, the conventional AAM 

searching method is performed once to obtain a rough placement of the model. Then the 

following method is applied to refine the shape model in AAM. The shape is extracted from 

the shape model of the AAM, and then the landmarks are updated based on LW using only 

the shape model and the pose parameters (translation, rotation and scale). Subsequently, the 

refined shape model is transformed back into the AAM. At the same time, AAM refinement 

is applied to the image yielding its own set of coefficients for shape and pose.

Suppose P1, P2 and P3 are three successive landmarks in shape instance x.

Algorithm: Refine AAM shape model based on LW: begin

1. Extract the shape instance x from the shape model.

2. Update the landmarks’ position in x based on LW as follows (see Fig. 4).

First, perform LW delineation from P1 to P2, and P2 to P3.

Next, find the middle point Q1 and Q2 in the LW segments generated from P1 to 

P2, and from P2 to P3, respectively. Then perform LW delineation from Q1 to 

Q2.

Finally, find the closest point P2′ on the LW segment from Q1 to Q2. Update P2 

to P2′.

Perform the above three steps on all landmarks in x, and produce the updated 

shape model x′.

3. Transform x′ into a new shape model instance xa ′ via an affine transformation 

so as to align it with the mean shape x ̄.

4. Apply the model constraints to the new shape model xa ′ so that the new shape is 

within the allowed shape-space.

end

2.3.2.2 OAAM Optimization: In the conventional AAM matching method, the optimization 

is based only on the difference between the appearance model instance and the target image. 

The boundary cost is not taken into consideration. By combining the boundary cost, the 

performance of AAM matching can be considerably improved. In the proposed method, the 
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LW technique is integrated into the cost computation during the optimization process. 

Combined with the above shape model refinement method, our optimization method is as 

follows.

Algorithm OAAM Optimization: begin

Let the current estimate of the model parameter vector be b, the pose t, the texture 

transformation Tu and the image sample (as a vector) at the current estimate be gim.

1. Extract the shape parameters bs from the entire model parameter b, and refine bs 

and pose t using the shape refinement method described above. This results in a 

new set of parameters  and t′.

2. Resample the image intensity, resulting in the vector , and project the texture 

sample into the texture model frame using .

3. Evaluate the error vector, , and the current error, Eaam =|r|2.

4. Compute the live wire cost along the shape boundary, Elw, and compute the total 

error as

(6)

5.
Compute the predicted displacements, δb =−Rr(b), where .

6. Update the model parameters b ↑b + kδb, where initially k = 1.

7. Calculate the new shape points x, and refine the new shape using the shape 

refinement method described above, and obtain the refined new shape point x′.

8. Calculate the model frame texture , and sample the image at the new points x′ 

to obtain .

9.
Calculate a new error vector, , and the error .

10. Compute the live wire cost along the predicted shape boundary, . And 

compute the total error, .

11. If , then accept the new estimate; otherwise, try at k = 0.5, k = 0.25, 

etc, until no improvement can be made.

end

In our implementation, we set α1 = α2 = 0.5. During the initialization, we employ a multi-

resolution strategy, in which we start at a coarse resolution and iterate to convergence at each 

level before starting the next level. This strategy is more efficient than searching at a single 

resolution and can lead to a convergence to the correct solution even when the initial model 

position is away from the real object(s).
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2.3.2.3 Refinement of the 3D Recognized Shapes: After objects are recognized in all 

slices, the recognized shapes are stacked together to form 3D objects. We observed from 

experiments that sometimes the initialization result for one slice is far away from the results 

for its neighboring slices. This signals failure of recognition for this slice. We found that at 

most two slices failed in recognition in this sense for each subject in all of our experiments 

(in 80 cases, non-failed: 71; 1 slice failed: 7; 2 slices failed: 2). When failure occurs, we 

interpolate the new shape from the shapes in neighboring slices. Fig. 5 shows an illustration 

for the proposed method. The following method is applied to improve the recognized shape 

results.

Algorithm: Refinement of the 3D recognized shape: begin

for each slice level j, 1 ≤ j ≤ n, do

1. Suppose the error in recognition (Eqn. (6)) for the current slice is e, and emax 

represents maximum error. Compute the distance dj−1 and dj+1 between the 

centroids of the shapes in neighboring slices j−1 and j+1.

2. Compute the total reliability for slice j as

(7)

where η1, η2 and η3 are weights (in our implementation, η1=0.5, η2=0.25 and 

η3=0.25).

μ(dj−1), var(dj−1), μ(dj+1) and var(dj+1) are the mean and variance of dj−1 and, 

dj+1, respectively, which are estimated from training images during the model 

building process. For the first and last slice, only one neighbor slice is used.

3. If relj > threj, then the recognized result is considered reliable; otherwise the 

recognized result is discarded and the new shape is interpolated from the 

neighboring slices. threj is the threshold of reliability, which is also estimated 

from the training images.

endfor

end

2.4 Segmentation/Delineation

The purpose of this step is to precisely delineate the shapes recognized in the previous step. 

We propose an iterative GC-OAAM (named IGC-OAAM) method for the organ’s 

delineation. The GC-OAAM algorithm effectively integrates the shape information with the 

globally optimal 3D delineation capability of the GC method.
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2.4.1 Shape integrated GC—GC segmentation can be formulated as an energy 

minimization problem such that for a set of pixels P and a set of labels L, the goal is to find a 

labeling f: P → L that minimizes the energy function En(f).

(8)

where Np is the set of pixels in the neighborhood of p, Rp (fp) is the cost of assigning label fp 

∈ L to p, and Bp, q (fp, fq) is the cost of assigning labels fp, fq ∈ L to p and q. In two-class 

labeling, L = {0, 1}, the problem can be solved efficiently with graph cuts in polynomial 

time when Bp, q is a submodular function, i.e., Bp, q(0, 0) + Bp, q(1, 1) ≤ Bp, q(0, 1) + Bp, q(1, 

0) [11].

In our framework, the unary cost Rp (fp) is the sum of a data penalty Dp (fp) and a shape 

penalty Sp (fp) term. The data term is defined based on the image intensity and can be 

considered as a log likelihood of the image intensity for the target object. The shape prior 

term is independent of image information, and the boundary term is based on the gradient of 

the image intensity.

The proposed shape-integrated energy function is defined as follows:

(9)

where α, β, γ are the weights for the data term, shape term Sp, and boundary term, 

respectively, satisfying α + β + γ=1. These components are defined as follows:

(10)

(11)

and

(12)
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where Ip is the intensity of pixel p, object label is the label of the object (foreground). P(Ip | 

O) and P(Ip | B) are the probability of intensity of pixel p belonging to object and 

background, respectively, which are estimated from object and background intensity 

histograms during the training phase (details given below). d(p, q) is the Euclidian distance 

between pixels p and q, and σ is the standard deviation of the intensity differences of 

neighboring voxels along the boundary.

(13)

where d (p, xO) is the distance from pixel p to the set of pixels which constitute the interior 

of the current shape xo of object O. (Note that if p is in the interior of xo, then d (p, xO)= 0.) 

rO is the radius of a circle that just encloses xo. The linear time method in reference [42] was 

used in this paper for computing this distance.

During the training stage, the histograms of intensity for each object are estimated from the 

training images. Based on this, P(Ip | O) and P(Ip | B) can be computed. As for parameters 

α,β and γ in Eqn. (9), since α+β+γ=1, we estimate only α and β by optimizing accuracy as 

a function of α and β and set γ = 1−α−β. We use the gradient descent method for the 

optimization. Let Accu(α,β) represent the algorithm’s accuracy (here we use the true 

positive volume fraction [45]), α and β are initialized to 0.35 each, then Accu(α,β) is 

optimized over the training data set to determine the best α and β.

2.4.2 Minimizing En with Graph Cuts—Let G be a weighted graph (V, A), where V is 

a set of nodes, and A is a set of weighted arcs. Given a set T ⊆ V of k terminal nodes, a cut 

is a subset of edges C ⊆ A such that no path exists between any two nodes of T in the 

residue graph (V, A\C). In our implementation, we segment the object using the α-

expansion method in [46].

The graph is designed as follows. We take V = P ∪ L, i.e., V contains all the pixel nodes and 

terminals corresponding to the labels in L which represent objects of interest plus the 

background. A = AN ∪ AT, where AN is the n-links which connect pixels p and q (p ∈P, q ∈ 
Np) and with a weight of wpq. AT is the set of t-links which connect pixel p and terminals ℓ 
∈ L and with a weight of wpℓ. The desired graph with cut cost |C| equaling En(f) is 

constructed using the following weight assignments:

(14)

(15)

where K is a constant large enough to make the weights wpℓ positive.
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2.4.3 IGC-OAAM—We assume that the recognized shapes are sufficiently close to the 

actual boundaries in the given image to be segmented. The IGC-OAAM algorithm then 

determines what the new position of the landmarks of the objects represented in the 

initialized shape xin should be such that the minimum graph cut cost is achieved, as 

presented below.

Algorithm IGC-OAAM: Input: Initialized shapes xin.

Output: Resulting shapes xout and the associated object boundaries.

begin

while number of iterations < nIteration do

1. Perform GC segmentation using Eqn. (9) based on the OAAM initialized shapes 

xin;

2. Compute the new position of the landmarks by moving each landmark in xin to 

the point closest on the GC boundary; call the resulting shapes xnew;

3. If no landmarks move, then, set xnew as xout and stop;

Else, subject xnew to the constraints of model M3D, and call the result xin.

endwhile

Perform one final GC segmentation based on xout, and obtain the associated object 

boundaries.

end

In our implementation, nIteration is set as 3. Also we limit the distance a landmark can move 

within any iteration to 6 voxels.

III. EXPERIMENTAL RESULTS

The proposed methods were tested on a clinical CT dataset. This dataset contained images 

pertaining to 20 patients (10 male and 10 female, ages 32 to 68), acquired from pre-contrast 

phase of two different type of CT scanner (GE Medical systems, LightSpeed Ultra, and 

Philips, Mx8000 IDT 16). The pixel size varied from 0.55 to 1 mm, and slice thickness from 

1 to 5 mm. Four experiments of liver, left kidney, right kidney and spleen segmentation were 

done to evaluate the proposed method. All objects were manually segmented by two experts 

to generate the reference segmentations (ground truth). The leave-one-out strategy was used 

in the evaluation.

3.1 Evaluation of the Localization of the Top and Bottom Slice

The proposed slice localization method was used to detect the top and bottom slices of the 

liver, left kidney, right kidney and spleen. These organs were manually checked to generate 

the reference standard of the top and bottom position. Table 1 shows the experimental 

results. We observe that the localization of the top slice of liver is most accurate which may 
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be due to the high contrast in the lung region; while the localization of liver bottom has the 

largest error which may be due to the lack of sufficient contrast in that region. The average 

localization error is 7.3 mm. Compared to Emrich et al’s result [40] of 4.5 cm, the proposed 

method seems superior.

3.2 Evaluation of Initialization

For helping with the initialization of liver, left and right kidneys, and spleen, the skin object 

is included in the model in addition to the object of interest. Fig. 7 shows one slice example 

and its corresponding mean shape and texture model for the four objects. We select only 8 

landmarks for the skin object because LW works very well for this object even for such a 

small number of landmarks. Table 2 summarizes the number of interpolated slices and the 

number of landmarks used in our experiments.

In Figs. 8–11, the left column shows sample initialization results for the four objects. A 

quantitative evaluation of the initialization approach is presented in Table 3. The accuracy in 

terms of true positive and false positive volume fractions (TPVF and FPVF) [45] is shown. 

TPVF indicates the fraction of the total amount of tissue in the true delineation; FPVF 

denotes the amount of tissue falsely identified, which are defined as follows,

(16)

(17)

Where, Ud is assumed to be a binary scene with all voxels in the scene domain C set to have 

a value 1, as shown in Fig. 6, more details can seen in [45].

Experiments were done to compare the performance of pseudo-3D AAM (single object, here 

pseudo-3D means slice-by-slice), pseudo-3D MAAM (multi-object), real 3D MAAM 

(multi-object), and the proposed pseudo-3D multi-object OAAM using reference images 

from expert #1 as ground truth. We note that the multi-object strategy improves the accuracy 

considerably over single object AAM. The MOAAM method also improves the MAAM 

initialization performance due to the effective combination of AAM and LW. The 

pseudo-3D MOAAM and the real 3D MAAM methods [43] have comparable performance, 

while the pseudo-3D MOAAM method is about 12 times faster (see Table 4). This is one of 

the reasons that we used the pseudo-3D initialization method.

After object recognition for all the slices, all the recognized shapes are stacked together to 

form a 3D shape. Then the refinement of shape method proposed in section 2.3.3 is applied 

if the 3D shape is not transiting smoothly. We found actually our OAAM recognition method 

works very well and the refinement only applied to very few cases. In total 80 (20×4) cases 

of organ recognition, there are 7 cases with one slice of object recognition failed (liver:3, left 
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kidney:1, right kidney:2 and spleen:1), 2 cases with two slices of object recognition failed 

(liver:1 and right kidney 1).

3.3 Evaluation of the IGC-OAAM Delineation Method

The accuracy of delineation by IGC-OAAM expressed in TPVF, FPVF and average 

symmetric surface distance [29] using reference images from expert #1 are summarized in 

Table 3. And the evaluation of the reference image from expert 1 to the reference image 

from expert 2 is also shown in Table 3 as the second rater. We observe that the average 

TPVF and FPVF is about 94.3% and 0.15%, respectively. In Figs. 8–11, the right column 

shows the IGC-OAAM segmentation results for the liver, left kidney, right kidney, and 

spleen, respectively. Additionally, Fig. 12 shows the 3D surface distance between the 

segmentation result by IGC-OAAM and reference image (from expert 1) for the liver, left 

kidney, right kidney, and spleen segmentation, respectively. The mean distance, over all 

objects and the whole dataset, between the segmented 3D surface and the reference (true) 

surface was found to be about 0.78 mm.

In terms of efficiency, Table 4 shows the computation time for the four objects on an Intel 

Xeon E5440 workstation with 2.83GHz CPU, 8 GB of RAM. The average total time 

(initialization + segmentation) for segmenting one liver is about 310 seconds. Segmentation 

of kidney and spleen has similar computational time, about 270 seconds.

The proposed IGC-OAAM delineation method was also tested on the MICCAI 2007 grand 

challenge training dataset using leave-one-out strategy. There are 20 CT volumes of 

abdomen with contrast agent in the training datasets. All datasets have an in-plane matrix of 

512 × 512 pixels and inter-slice spacing from 0.7 mm to 5.0 mm. Fig. 13 shows the 

recognition and delineation results for three slice levels of one image on MICCAI grand 

challenge dataset..

The proposed method was evaluated based on the MICCAI 2007 grand challenge for liver 

segmentation evaluation criteria [29]: volumetric overlap error (Overlap Error), volume 

difference, symmetric average surface distance, symmetric RMS surface distance, and 

maximal surface distance. The results achieved by the proposed method and previous work 

from literature are summarized in Table 5. Compare to the best performance (Kainmüller et. 

al [30]), we can see we have comparable performance, but much faster speed (6 min vs 15 

min).

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a 3D automatic anatomy segmentation method. The method 

effectively combines the AAM, LW, and GC methods to exploit their complementary 

strengths. It consists of three main parts: model building, initialization, and segmentation. 

For the initialization part, we employ a pseudo-3D strategy, and segment the organs slice by 

slice via multi-object OAAM method which effectively combines the AAM and LW 

methods. For the segmentation (delineation) part, an iterative GC-OAAM method is 

proposed which integrates the shape information gathered from initialization with a GC 

algorithm. The method was tested on a clinical CT dataset with 20 patients for segmenting 
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the liver, kidneys, and spleen. The experimental results suggested that an overall 

segmentation accuracy of TPVF > 94.3%, FPVF < 0.2% can be achieved.

As for the initialization, we employed a pseudo-3D strategy and combined AAM and LW 

methods to improve the performance. The multi-object strategy also helped initialization due 

to increased constraints. Compared to the real 3D AAM method, the pseudo 3D OAAM 

approach has comparable accuracy while has roughly a 12-fold speed up. The purpose of 

initialization is to provide a rough object localization and shape constraints for latter GC 

method which will produce refined delineation. We think it is better to have a fast and robust 

method than a slow and more accurate technique for initialization.

As for the delineation, shape constrained GC method is the core part of the whole system. 

Several similar ideas were also proposed in the references [34–38]. However, they are 

mostly tested in the 2D images, and it is difficult to compare with these methods because the 

testing dataset is different.

From Figs. 8–11 and the testing result in table 5, it seems that the proposed method was a 

little bit under-segmenting the organ. This may due to two reasons: (1) the shape term 

designed in our cost function is not symmetric. We didn’t put the penalty for the pixel if it is 

inside the shape. That is because we found there are usually some pixels which don’t belong 

to the target organ inside the shape, such as urine in the kidney (Fig. 10). So our method can 

separate this kind of pixels out. We think this is the beauty of our method. (2) according to 

our experiences, the expert is easily tender to over-segmenting the organ during the process 

of manually segmenting the boundaries.

Although localizing a CT slice within a human body can greatly facilitate the workflow of a 

physician, so far, this area of research has not received much attention. The proposed slice 

localization method aims to localize the top and bottom slices of organs, which is important 

part of the whole system. The average localization error over the whole dataset and all 

organs is only about 7.3 mm (much improved compared to the result of 4.5 cm in [40]), 

good for clinical use. In a similar manner, it can also be used to localize any slice by 

constructing the corresponding slice model.

In this paper, only one object is segmented at a time. With the shape constraints of multiple 

organs, the proposed IGC-OAAM method can be easily generalized to segment multiple 

organs simultaneously. However, this brings up an issue for GC - of the unavailability of a 

globally optimal min cut solution for simultaneously segmenting multiple objects. For single 

object segmentation, global optimality is guaranteed. For multiple objects, the α-expansion 

method can find segmentations only within a known factor of the global optimum [46].

Current proposed method for segmenting one organ is taking about 5 min. To make it more 

realistic in clinical application, the parallelization or multi-threads of the algorithm is one of 

the good solutions. Anderson et al. [48] and Liu et al. [49] proposed the parallelization of 

GC methods, and achieved the good performance. This will also be investigated for the 

proposed method in near future.

Chen et al. Page 15

IEEE Trans Image Process. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The executable version of 3D shape constrained GC with user interface can be downloaded 

from website http://xinjianchen.wordpress.com/research/. Source codes will be available 

soon. By opening source, we believe it will benefit to the whole society.
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Fig. 1. 

The flowchart of the proposed GC-OAAM system.
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Fig 2. 

Illustration of top slice recognition. (a) Coronal view of the abdominal region. Cross point 

represents the top slice of the left kidney. (b) The distance values for the top slice of the left 

kidney.
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Fig. 3. 

Comparison of conventional AAM and OAAM segmentation. (a) Original image. (b) 

Conventional AAM segmentation showing a good appearance fit but poor boundary 

detection accuracy (arrows). (c) OAAM result shows substantial improvement in boundary 

location (arrows).
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Fig. 4. 

The illustration of how to update the landmark’s position. (a) P1, P2 and P3 are three 

landmarks from AAM shape results. (b) The middle point Q1 of the LW segment between 

P1 and P2, Q2 of P2 and P3 are generated. (c) Landmark P2 is moved to the closest point 

P2′ on the live wire segment from Q1 to Q2.
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Fig 5. 

Illustration of refinement of the 3D recognized shape
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Fig. 6. 

Illustration of the accuracy factors for delineation for a binary case. Here, Ctd is the 

corresponding scene of ‘true’ delineation, CM is the delineation result by method M.
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Fig. 7. 

Illustration of models used in organ initialization. The 1st, 2nd, 3rd and 4th row correspond to 

liver, right kidney, left kidney, and spleen, respectively. (a) The landmarks of organ and skin 

on one slice. (b) The corresponding AAM shape model for this slice level. (c) The 

corresponding AAM appearance model for this slice level.
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Fig. 8. 

Experimental results for three slice levels of liver segmentation. The left column is the 

MOAAM initialization result; the right is IGC-OAAM result in which red contour represents 

the reference image 1, green represents the reference image 2, and blue contour represents 

segmentation by the proposed method.
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Fig. 9. 

Experimental results for three slice levels of right kidney segmentation. The left column is 

the MOAAM initialization result; the right is IGC-OAAM result in which red contour 

represents the reference image 1, green represents the reference image 2, and blue contour 

represents segmentation by the proposed method.

Chen et al. Page 27

IEEE Trans Image Process. Author manuscript; available in PMC 2017 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 

Experimental results for three slice levels of left kidney segmentation. The left column is the 

MOAAM initialization result; the right is IGC-OAAM result in which red contour represents 

the reference image 1, green represents the reference image 2, and blue contour represents 

segmentation by the proposed method.
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Fig. 11. 

Experimental results for three slice levels of spleen segmentation. The left column is the 

MOAAM initialization result; the right is IGC-OAAM result in which red contour represents 

the reference image 1, green represents the reference image 2, and blue contour represents 

segmentation by the proposed method.
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Fig. 12. 

3D surface distance (mm) between the segmentation result by IGC-OAAM and reference 

image (ground truth 1). Positive value represents the vertex on the surface of the 

segmentation is outside of the surface of ground truth, vice versa. (a), (b), (c) and (d) 

correspond to surface distance for liver, right kidney, left kidney and spleen segmentation, 

respectively.
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Fig. 13. 

Experimental results for three slice levels of one image on MICCAI grand challenge dataset. 

The left column is the MOAAM initialization result; the right is IGC-OAAM result in which 

red contour represents the reference (ground truth) and blue contour represents segmentation 

by the proposed method.
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Table 1

Slice localization error (in mm) of the organ top and bottom

Organ Mean error (in mm) ± std.dev.

Liver
Top 5.1±2.5

Bottom 9.2±5.1

Left kidney
Top 7.5±5.2

Bottom 6.2±4.6

Right kidney
Top 8.3±6.5

Bottom 7.1±5.8

Spleen
Top 8.1±5.2

Bottom 7.3±6.1

Average 7.3±5.1
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Table 2

Number of Landmarks and Slices Used in Modeling

Number of Landmarks in Organ Number of Landmarks in Skin Object Number of Interpolated Slices

Liver 35 8 50

Left Kidney 20 8 32

Right Kidney 20 8 32

Spleen 26 8 32
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Table 4

Average computational time (in seconds) in all experiments for pseudo-3D MAAM, 3D MAAM, pseudo-3D 

MOAAM, and IGC-OAAM.

Organ
Average computational time (in seconds)

Pseudo-3D MAAM 3D MAAM Pseudo-3D MOAAM (initialization) IGC-OAAM (delineation)

Liver 50 732 60 310

Left Kidney 33 495 40 275

Right Kidney 32 476 40 260

Spleen 35 556 45 280
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