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Abstract

Computed tomography (CT) is critical for various clinical applications, e.g., radiation treatment 

planning and also PET attenuation correction in MRI/PET scanner. However, CT exposes radiation 

during acquisition, which may cause side effects to patients. Compared to CT, magnetic resonance 

imaging (MRI) is much safer and does not involve radiations. Therefore, recently researchers are 

greatly motivated to estimate CT image from its corresponding MR image of the same subject for 

the case of radiation planning. In this paper, we propose a data-driven approach to address this 

challenging problem. Specifically, we train a fully convolutional network (FCN) to generate CT 

given the MR image. To better model the nonlinear mapping from MRI to CT and produce more 

realistic images, we propose to use the adversarial training strategy to train the FCN. Moreover, 

we propose an image-gradient-difference based loss function to alleviate the blurriness of the 

generated CT. We further apply Auto-Context Model (ACM) to implement a context-aware 

generative adversarial network. Experimental results show that our method is accurate and robust 

for predicting CT images from MR images, and also outperforms three state-of-the-art methods 

under comparison.

Keywords

Generative models; GAN; Image synthesis; Deep learning; Auto-context

1 Introduction

CT imaging is widely used for both diagnostic and therapeutic purposes in various clinical 

applications. In the cancer radiation therapy, CT image provides Hounsfield units, which are 

essential for dose calculation in treatment planning. Besides, CT image is also of great 
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importance for attenuation correction of positron emission tomography (PET) in the popular 

PET-CT scanner [7]. However, patients are exposed to radiation during CT imaging, which 

can damage normal body cells and further increase potential risks of cancer. It is reported 

that 0.4% of cancers were due to CT scanning performed in the past, and this rate will 

increase to as high as 1.5% to 2% in the future. Therefore, the use of CT scan should be 

done with great caution. MRI, on the other hand, is a safe imaging protocol which also 

provides more anatomical details than CT for diagnostic purpose, but unfortunately cannot 

be used for either dose calculation or attenuation correction. To reduce unnecessary imaging 

dose for patients, it is clinically desired to estimate CT images from MR images in many 

applications.

It is technically difficult to directly estimate CT image from MR image. As shown in Fig. 1, 

CT and MR images have very different appearances. MR images contain much richer texture 

information than CT images. Therefore, it is challenging to directly estimate a mapping from 

MRI to CT. Recently, many researches focus on estimating one modality image from 

another modality image, e.g., estimating CT image using MRI data. Several methods have 

been proposed to address this challenge. For example, Berker et al. [1] proposed to treat this 

problem as a segmentation task where MR images are segmented into different tissue classes 

and then assign each class with a known attenuation property. This method highly depends 

on the segmentation accuracy and always needs manual work to get final accurate results. 

Atlas-based methods have also been used in the literature. In [2], the authors propose to 

register an atlas (with the attenuation map) to the new subject’s MR image and then warp the 

corresponding attenuation map of the atlas to the new MR image as its estimated attenuation 

map. However, this kind of methods is highly dependent on the registration accuracy. On the 

other hand, learning-based methods learn a non-linear mapping model from MRI to CT 

image for alleviating the previous drawbacks. For instance, Jog et al. [6] learned nonlinear 

regression using random forest to improve MRI resolution. Tri et al. [5] presented an 

approach to predict CT image from MRI using structured random forest. Such methods 

often have to first represent the input MR image by features and then map them to output the 

CT image. Thus, the performances of these methods are bounded to the quality of the 

extracted features as well as how well they can represent the natural properties of the MR 

image.

Moreover, deep learning becomes very popular in computer vision and medical imaging 

fields, achieving the state-of-the-art results in both fields without the need of hand-crafted 

features [3,9,10,12,14]. In the particular case of image generation, Dong et al. [3] proposed 

to use Convolutional Neural Networks (CNN) for single image super-resolution, and Li et al. 

[9] applied similar deep learning models to estimate the missing PET image from the MR 

image of the same subject. CNNs tend to neglect neighborhood information in the predicted 

output image. Recently, Fully Convolutional Networks (FCN), which are a variation of the 

conventional CNN, have been utilized for image segmentation and synthesis so that structure 

information can be preserved [10,12].

Typically, L2 distance is used as the loss function to train the previous learning based 

methods (e.g., random forest, CNN and FCN) for image synthesis, but it tends to produce 

blurry results in the output images [11]. Minimizing this distance is equivalent to 
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maximizing the PSNR; however, as pointed out in [8], a high PSNR does not necessarily 

provides a perceptually better result. To address the above mentioned drawbacks, in this 

paper, we propose to learn the non-linear mapping from MRI to CT images through a 3D 

FCN. To overcome the limitations of classical L2 reconstruction, we utilize an adversarial 

strategy to train the FCN, which can thus enforce the generated images to be more realistic. 

We further propose an image-gradient-difference based loss function to alleviate the 

blurriness issue. Specifically, this 3D FCN is used as the generator in a generative 

adversarial framework, where an adversarial loss term from a discriminator network is used 

in addition to the conventional reconstruction error with the objective of producing more 

realistic CT data. The network is trained in a patch-to-patch manner, which restricts its view 

to the patch itself and thus cannot provide long-range information. To address this issue, we 

further use Auto-Context Model (ACM) where each stage is trained using the proposed 

framework to make it context-aware. The proposed method is evaluated on two real CT/MR 

datasets. Experimental results demonstrate that our method can effectively predict CT image 

from MR image, and also outperforms three state-of-the-art methods under comparison.

2 Methods

To address the above mentioned problems and challenges, we propose a generative 

adversarial network by using FCN to form the generator. First, we propose a basic 3D FCN 

structure to estimate the CT from MR images. Note that we use 3D operations to better 

model the 3D spatial information and thus could solve the discontinuity problem across 

slices when using the 2D CNN. Second, we utilize the adversarial training strategy [4] for 

the designed network, where an additional discriminator network is used to urge the 

generator’s output to look like the real CT as much as possible. We add an image gradient 

difference term to the loss function of the generator, with the goal of retaining the sharpness 

of the generated CT, and finally, we employ the Auto-Context Model to iteratively refine the 

output of the generator. At the testing stage, an input MR image is first partitioned into 

overlapping patches, and, for each patch, the generator is used to predict the corresponding 

CT patch. Then, all predicted CT patches are merged into a single CT image by averaging 

the intensities at overlapping CT regions. In the following paragraphs, we will describe in 

detail the framework used in the MRI-to-CT prediction.

2.1 Proposed Supervised Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) have achieved state-of-the-art results in the field of 

image generation producing very realistic images in an unsupervised setting [4,13]. Inspired 

by the work in [4,11], we propose a supervised GAN framework as shown in Fig. 2 to 

synthesize medical images. Our network includes a generator for estimating the CT and a 

discriminator for distinguishing the real CT from the generated CT. GANs work by training 

two different networks: a generator network G, and a discriminator network D. G is typically 

a FCN which generates images and D is a CNN which estimates the probability that an input 

image x is drawn from the distribution of real images; that is, it can classify an input image 

as real or synthetic. Both networks are trained simultaneously with D trying to correctly 

discriminate between real and synthetic data, while G trying to produce realistic images that 

will confuse D. Specifically, we minimize the binary cross entropy (bce) between the 
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decisions of D and the correct label (real or synthetic), while the network G is trying to 

minimize the binary cross entropy between the decision done by D and the wrong label for 

the generated images, in addition to the traditional reconstruction error. In this way, D is 

trying to distinguish between real CT data, and the CT data generated by G. At the same 

time, G is trying to produce more realistic CT images such that D gets completely confused 

and cannot perform better than chance.

Concretely, the loss function for D can be defined as:

LD = Lbce(D(Y), 1) + Lbce(D(G(X)), 0) (1)

where X is the input MR image, Y is the corresponding CT image, and G(X) is the estimated 

image by the generator. Lbce represents the binary cross entropy.

In the case of G, as mentioned above, we use a loss function that includes an adversarial 

term and a reconstruction error with L2 distance. We further propose to add a gradient 

difference loss (gdl) as an additional term in order to deal with the inherently blurry 

predictions obtained from the L2 term. It is defined as:

Lgdl = ∣ ∇Yx ∣ − ∇Y x
2 + ∣ ∇Yy ∣ − ∇Y y

2 + ∣ ∇Yz ∣ − ∇Y z
2

(2)

where Y is the ground-truth CT image, and Ŷ is the estimated CT by the generator network. 

This loss function tries to minimize the difference of the magnitudes of the gradients 

between the ground-truth CT image and the estimated CT image. In this way, the estimated 

CT image will try to keep the zones with strong gradients (i.e., edges) for an effective 

compensation of the L2 reconstruction term. This can be approximated as finite difference 

during the implementation. Finally, the total loss used for training the generator G can be 

defined as the weighted sum of all the terms as shown in Eq. 3.

L (X, Y) = λ1Lbce(D(G(X)), 1) + λ2‖Y − G(X)‖2
2 + λ3Lgdl (X, Y) (3)

The training is performed in an alternating fashion. First, D is updated by taking a mini-

batch of real CT data and a mini-batch of generated CT data (the output of G). Then, G is 

updated by using another mini-batch of samples including MRI and their corresponding CT. 

In Fig. 2, we also show the architecture of our generator network G which has the 

constraints mentioned above, where the numbers indicate the filter sizes. This network takes 

as input an MR image, and tries to generate the corresponding CT image. It has 8 stages 

containing convolutions, Batch Normalization and ReLU operations with number of filters 

32, 32, 32, 64, 64, 64, 32, 32, respectively. The last layer only includes 1 convolutional filter, 

and its output is considered as the estimated CT. Regarding the architecture, we avoid the 

use of pooling layers since they will reduce the spatial resolution of feature maps. The 

Discriminator is a typical CNN architecture including three stages of convolutions+Batch 
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Normalization+ReLU+Max Pooling, followed by one convolutional layer and three fully 

connected layers, where the first two use ReLU as activation function, and the last one uses 

sigmoid (whose output represents the likelihood that the input data is drawn from the 

distribution of real CT). The filter size is 5 × 5 × 5, the numbers of filters are 32, 64, 128 and 

256 for the convolutional layers, and the numbers of output nodes in the fully connected 

layers are 512, 128 and 1.

2.2 Auto-Context Model (ACM) for Refinement

Since our work is patch-based, the context information available for each training sample is 

limited inside of the patch. This affects the modeling capacity of our network. One way to 

enlarge the context during the training is by using the ACM which is commonly used in the 

task of semantic segmentation and has been shown to be very effective [15]. In this work, we 

show that the ACM can also be applied successfully to the regression tasks. In particular, we 

adopt the ACM to iteratively refine the generated results, making our GAN context-aware. 

Specifically, we iteratively train several GANs that take as input the MRI patches and 

estimate the corresponding CT patches. These patches are then concatenated as a second 

channel with the MRI patches, which are used as the input for training of the next GAN.

3 Experiments and Results

We use two datasets to test our proposed methods:

• The brain dataset was acquired from 16 subjects with both MRI and CT scans in 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (see 

www.adni-info.org for details). The MR images were acquired using a Siemens 

Triotim scanner, with voxel size 1.2 × 1.2 × 1 mm3, TE 2.95 ms, TR 2300 ms, 

and flip angle 9ff. The CT images, with voxel size 0.59 × 0.59 × 3 mm3, were 

acquired on a Siemens Somatom scanner. A typical example of preprocessed CT 

and MR images is given in Fig. 1.

• Our pelvic dataset consists of 22 subjects, each with MR and CT images. The 

spacings of CT and MR images are 1.172 × 1.172 × 1 mm3 and 1 × 1 × 1 mm3, 

respectively. In the training stage, CT image is manually aligned to MR image to 

build the voxel-level correspondence. After alignment, CT and MR images of the 

same patient have the same image size and spacing. Since only pelvic regions are 

concerned, we further crop the aligned CT and MR images to reduce the 

computational burden. Finally, each preprocessed image has a size of 153 × 193 

× 50 and a spacing of 1 × 1 × 1 mm3.

We extracted randomly MRI patches of size 32 × 32 × 32, along with their corresponding 

CT of size 16 × 16 × 16, using the same center points, as the paired training samples. The 

networks were trained using the Adam optimizer with a learning rate of 10−6, β1 = 0.5 as 

suggested in [13], and mini-batch size of 10. The generator was trained using λ1 = 0.5, λ2 = 

λ3 = 1. The code is implemented using the TensorFlow library, and we use a 4-TITAN X 

cluster to train our model.
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To demonstrate the advantage of the proposed method in terms of prediction accuracy, we 

compare it with three widely-used approaches: (1) atlas-based method [16], (2) sparse 

representation based method, and (3) structured random forest with auto-context model [5]. 

We used our own implementation of the first two methods, while for the third method 

(structured random forest) we just show the results reported in [5]. All experiments are done 

in a leave-one-out fashion. The evaluation metric is the mean absolute error (MAE) and the 

peak signal-to-noise ratio (PSNR).

Impact of Proposed GAN Model

To show the contribution of the proposed GAN model, we conduct comparison experiments 

between the traditional FCN (i.e., just the generator shown in Fig. 2) and the proposed GAN 

model. The PSNR values are 24.7 and 25.9 for the traditional FCN and the proposed 

approach, respectively. These results do not include the adoption of ACM. We visualize 

results in Fig. 3, where the leftmost image is the input MRI and the rightmost image is the 

ground-truth CT. We can clearly see that the generated data using the GAN approach has 

less artifacts than the traditional FCN by estimating an image that is closer to the desired 

output quantitatively and qualitatively.

Experimental Results for Both Datasets

Considering the trade-off between the performance and the training time, we choose 2 

iterations for ACM in our experiments on both datasets [15]. To qualitatively compare the 

estimated CT by different methods, we visualize the generated CT with the ground-truth CT 

in Fig. 4 (left side). We can see that the proposed algorithm can better preserve the 

continuity, coalition and smoothness in the prediction results, since it uses image gradient 

difference constraints in the image patch as discussed in Sect. 2.1. Furthermore, the 

generated CT looks closer to the real CT compared to all other methods. We argue that this 

is due to the adversarial training strategy which constrains the generated images to be very 

similar to the real ones, so that even a complex discriminator cannot perform better than 

chance.

We also quantitatively compare the predicted results in Table 1 in terms of PSNR and MAE. 

Our proposed method outperforms all other competing methods in both metrics, which 

further demonstrates the advantage of our framework.

The prediction results on the pelvic dataset by the above same methods are shown in Fig. 4 

(right side). It can be seen that our result is consistent with the ground-truth CT. The 

quantitative results based on the same two metrics are also shown in Table 2. Quantitative 

results in Table 2 indicates that our method outperforms other competing methods in terms 

of both MAE and PSNR. Specifically, our method gives an average PSNR of 34.1, which is 

considerably higher than the average PSNR of 32.1 obtained by the state-of-the-art SRF+ 

method.

4 Conclusions

We have proposed a supervised 3D GAN model for estimating CT from MRI. Moreover, a 

special loss function (i.e., image gradient difference loss) is proposed to alleviate the blurry 
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issue of the generated CT. Furthermore, the ACM strategy is adopted to make the GAN 

context-aware. The experiments demonstrate that our proposed method can significantly 

outperform three state-of-the-art methods. Note that, although we consider only the task of 

predicting CT from MRI, our proposed model can also be applied to other related tasks in 

medical application such as image super-resolution and image denoising.
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Fig. 1. 
A pair of corresponding brain MRI (left) and CT (right) from the same subject.
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Fig. 2. 
Architecture used in the Generative Adversarial setting for estimation of synthetic CT 

image.
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Fig. 3. 
Visual comparison for impact of adversarial training. FCN means the case without 

adversarial training, and GAN means the case with adversarial training.
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Fig. 4. 
Visual comparison of MR image, the estimated CT images by our method and other 

competing methods, and the ground-truth CT image for the typical brain (left) and pelvic 

(right) cases.
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Table 1

Performances on the brain dataset.

Method MAE PSNR

Mean(std.) Med. Mean(std.) Med.

Atlas 171.5(35.7) 170.2 20.8(1.6) 20.6

SR 159.8(37.4) 161.1 21.3(1.7) 21.2

SRF+ 99.9(14.2) 97.6 26.3(1.4) 26.3

Proposed 92.5(13.9) 92.1 27.6(1.3) 27.6
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Table 2

Performances on the pelvic dataset.

Method MAE PSNR

Mean(std.) Med. Mean(std.) Med.

Atlas 66.1(6.9) 66.7 29.0(2.1) 29.6

SR 52.1(9.8) 52.3 30.3(2.6) 31.1

SRF+ 48.1(4.6) 48.3 32.1(0.9) 31.8

Proposed 39.0(4.6) 39.1 34.1(1.0) 34.1
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