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Abstract. Motoneurons (MNs) are neuronal cells involved in several
central nervous system (CNS) diseases. In order to develop new treat-
ments and therapies, there is a need to understand MN organization
and differentiation. Although recently developed embryo mouse models
have enabled the investigation of the MN specialization process, more
robust and reproducible methods are required to evaluate the topology
and structure of the neuron bundles. In this article, we propose a new
fully automatic approach to identify MN clusters from stained histologi-
cal slices. We developed a specific workflow including inter-slice intensity
normalization and slice registration for 3D volume reconstruction, which
enables the segmentation, mapping and 3D visualization of MN bundles.
Such tools will facilitate the understanding of MN organization, differ-
entiation and function.

1 Introduction

Motoneurons (MNs) are neuronal cells from the central nervous system (CNS)
whose axons extend outside of the CNS. Several MN diseases, such as amy-
otrophic lateral sclerosis (ALS), lead to MN cell death correlated with a progres-
sive loss of muscle contractibility. MN specification relies notably on expression of
a defined set of transcription factors. Each combination of transcription factors
ultimately leads to the formation of a MN pool (or bundle) that shares com-
mon characteristics and projects to a common target. Typical amniote limbs are
composed of more than 50 different muscles [17], however little is known about
the intrinsic identity of the corresponding MN bundles. Recent studies with em-
bryo mouse models, have characterized pool specific transcription factors such
as Pea3 [8], Scip and Runx1 [7] providing basic knowledge of MN pool differen-
tiation.
Understanding the mechanisms and the precise topography of the transcrip-
tion factors underlying MN specification will provide important insights for the
elaboration of regenerative therapies (i.e. stem cells therapy). In this field, light



microscopy is commonly used to identify MN clusters on 2D embryo mouse slices,
with manual identification of the clusters [4]. Usually, an expert identifies the
bundle location, the number of MN cells and the cluster diameter on a slice-
by-slice basis. However, this process is time consuming and lacks reproducibility
when attempting to apply a robust analysis across populations in animal studies.
Furthermore, the discontinuity of the 2D histological slices prevents the inves-
tigation of the 3D organization of MN clusters. Therefore, there is a need for
robust automatic 3D reconstruction, segmentation and clustering.
In this article, we propose a fully automatic approach to MN cluster identifi-
cation that consists of: inter-slice intensity normalization, reconstruction of cor-
rupted slices, non-linear symmetric inter-slice registration and a 3D Mean-Shift
clustering of the MNs.

2 Materials and Methods

2.1 Data Acquisition

Runx1 lacZ/+ mice were generated and genotyped as described in [11]. For em-
bryonic staging, the day of appearance of the vaginal plug was considered as 0.5
embryological day (E0.5). All animal procedures were conducted in accordance
with the guidelines of the Council for Animal Care. E13.5 mouse embryos were
collected and fixed in 2% paraformaldehyde, 10 mM sodium periodate, and 70
mM l-lysine for 2 hours; transferred to 30% sucrose for 24 hours. After freezing,
14µm cryostat sections were prepared and subjected to immunohistochemistry
as described in [11] in order to identify specific MNs. All the resulting slices were
captured with an EXi Retiga color camera (QImaging) mounted on an Axio Im-
ager M1 microscope (Zeiss) with a 1.68x1.68µm in-plane resolution (Fig. 1).

Fig. 1. Example of stained histological embryo spinal slice (scale bar = 40µm ) with
specific MN staining (blue).



2.2 Workflow

Identification of MN clusters requires segmentation and grouping of MN neurons
on each histological slice. While MN neurons are dark and easily segmented,
clustering is difficult because: i) intensity differences exist from slice to slice, ii)
staining and sectioning may result in lost or corruption of slices (e.g. air bubbles,
stretching...), and iii) the slices are not aligned within the stack. For each of these
limitations we propose an adapted image processing as follows:

Inter-Slice Intensity Normalization Staining inhomogeneity, due in part
to local slice thickness variance, can produce intensity inhomogeneities between
slices that adversely affect visual analysis and automated registration methods.
We used the intensity normalization method proposed by [16] which consists in
a linear transformation of the current slice histogram to match the histogram of
the reference slice, which in this case is defined as the middle slice of the spinal
cord.

Inpainting Cryotomic image acquisition lead to discrepancies such as folding,
stretching, splitting as well as air bubbles which can get stuck between the slides.
In order to recover the corrupted slices identified during the image acquisition
procedure, we applied a robust inpainting method [9]. Initially proposed in mag-
netic resonance imaging, this approach reconstructs the missing voxels by using
the two most similar patches from the previous and the subsequent slices.

3D Image Reconstruction To correct for morphological inconsistencies be-
tween the slices due to stretching, distortion, rotation and translation during the
slice image acquisition, we propose an iterative 3D reconstruction method based
on inter-slice registration as in [10] [5] [6]. While [10] and [5] used a Single Slice
(SS) before and after to determine the deformation field, and [6] used a Multi-
Slice (MS) reconstruction approach, we proposed a Multi-Slice reconstruction ap-
proach based on a symmetric registration non-linear registration and Gaussian-
Distance weighted interpolation of deformation field (MSDWsym). The ANI-
MAL non-linear registration algorithm [2] allows for the registration parameters
to be set for histological image dimensions [6]. ANIMAL uses a multi-scale vector
deformation estimation with a normalized cross-correlation similarity measure.
Local registration is achieved in a hierarchical manner with a Gaussian blurring
of input images with kernels of varying size to recover large deformations. To
enforce the inter-slice registration consistency and to reduce the effect of outlier
slices with erroneous anatomy, the deformation fields Ti (Eq. 1) of the slice i
is obtained with a Gaussian distance-weighted average deformation [15] to the
6 nearest slices. This proposed MSDW approach gives a stronger weight to the
nearest slices such that:
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where T (x)i is the deformation field in x of the image i and n the distance be-
tween the reference and the target slices. This iterative process uses the previous
iteration deformation field as an initial deformation for the following registra-
tion and the iteration number was set to 25. In order to produce less pair-wise
registration errors, to avoid registration bias and to preserve the topology of the
images [1], we force ANIMAL to be symmetric. To do so, we applied regulariza-
tion constraints on the forward and the inverse deformation fields [12] for each
registration of the MSDW:

T sym(x)i→j =
T (x)i→j .(T (x)j→i.T (x)i→j) + (T (x)j→i.(T (x)i→j .T (x)j→i))

−1

2
(2)

where T (x)i→j is the deformation field in x of the image i to the image j.

Clustering and localization of the MNs MNs are organized in bundles,
with a tubular form along the spinal cord [14]. Due to the slice-by-slice discon-
tinuity, manual outlining of the 2D slices cannot take in consideration the 3D
structure of the MNs. A 3D reconstruction step is thus required to realign the
structure within a consistent 3D volume to recover the 3D organization of the
MNs. Therefore the clustering was performed on the position of the mask-outed
MNs extracted from the 3D reconstructed volume using a colour filter. Because
the number of MN clusters is still unknown, we applied a spatial Mean-Shift clus-
tering algorithm [13] since it presents the advantage of being a non-a-priori tech-
nique. To achieve the Mean-Shift based clusterization, the 2D position X(x, y)
of the MNs was used. Moreover, to prevent the loss of continuity between the
clusters due to staining and acquisition artefacts that may have omitted MNs,
we propose to apply a multi-slice Mean-Shift algorithm. The MN position of the
3 slices before and after are projected into the 2D space of the current slice. The
cluster centroids of the current slice are obtained by using all these projected
points. This procedure is repeated for each slices of the 3D volume. Since we
expect that each cluster is separated by a distance of 30-50µm [4], we set the
bandwidth kernel to 40µm. Finally, during the label merging step, the cluster
center found in the previous slices is used as a prior to set the label of the next
one.

2.3 Experiments

Simulation: We compared 5 different 3D inter-slice reconstruction algorithms:
the SS approach [5], MS approach [6] and the proposed approaches with and



without the symmetrization (MSDWsym and MSDW). To validate the 3D re-
construction algorithms, we simulated on 100 identical histological slices stacked
together, different random translations, rotations and shearings, which were cho-
sen to mimic acquisition variations (Table 1). The quality of the reconstruction
of each method compared was measured by estimating the MN inter-slice overlap
with the Dice’s Kappa (DK) [3] agreement measure between the ground truth
(Fig. 2) and each reconstruction:

DK = 2.V (I ∩A)/(I ∪A) (3)

where I and A are respectively the initial aligned and automaticly aligned MNs
volumes (V ). DK value are comprised between 0-1 with 1 indicating perfect
agreement. The topology preservation was assessed by comparing the total MN
volume difference before and after reconstruction (|V (I −M)|/V (I)) where the
value closest to 0 the value is the better the topology is preserved.

Mean Std Min Max

Rotation (◦) 0.3 2.8 -4.7 4.9

Translation (µm) -0.7 4.6 -8.3 8.3

Scale 1.0 0.1 0.87 1.12

Shear 0.0 1.2 -2.0 1.92

Table 1. Simulation transformation parameters and stack of the 100 identical slice
after simulation: axial (a), sagittal (b), coronal (d) and 3D rendering of the MNs(c).

Real data: On a mouse embryo spinal cord data set of 180 slices, we first
compared the histogram distance before and after the intensity normalization
with the symmetric Kullback-Leibler divergence coefficient (KL). Essentially,
small differences between histograms correspond to a lower divergence value. The
recent 3D inter-slice reconstruction algorithm of MS [6], our proposed MSDW
and MSDWsym methods were evaluated. For both methods, the final results of
the clustering was assessed with manual slice-by-slice outlining performed by an
expert with a DK agreement measure. The expert performed manual outlining
of the clusters on 10 slices in the native space. The automatic clustering of
the 10 identical slices after the 3D reconstuction was transformed back in the
native space. For each of the methods, the DK agreement measure was compute
between the expert and the automatic clustering into the native space.



3 Results and discussion

3.1 Simulation

The 3D reconstructions of the simulated stack obtain by each method are pre-
sented in Fig. 2. Visual inspection of the reconstruction shows that the SS recon-
struction method resulted in the worst alignment, compared to the multi-slice
approaches (MS, MSDW and MSDWsym). Between the multi-slice approaches,
MS and MSDW tend to a similar registration quality which seems to misalign
the smaller MN clusters present on the top of the images. Because of the reg-
ularization, MSDWsym preserves the topology of small structures and provides
the best overall registration. Table 2 represents the DK value of the MN mask
for the 100 slices after convergence and the percentage of volume preservation.
These quantitative results show that MSDWsym reaches higher DK value com-
pared to the MS and MSDW methods. Furthermore the MN volume difference
prior to and after reconstruction is best preserved using MSDWsym.

Method DK % Volume difference

SS 0.559 1.9±2.3
MS 0.657 1.4±1.7

MSDW 0.671 1.6±2.1
MSDWsym 0.688 0.4±1.8

Table 2. MN DK overlap measure and topology preservation with MN volume differ-
ence prior and after 3D reconstruction.

Ground truth Simulation SS

MS MSDW MSDWsym

Fig. 2. Sagittal slice of the MN extracted simulated stack.



3.2 Real data

Fig. 3 shows the mouse embryo spinal cord before and after processing. Both
sides of the spinal cord are processed separately and the results are visualized to-
gether. The slice-to-slice intensity inhomogeneity and mis-registration is visible
in the sagittal (c, d) and the coronal (e, f) slices of Fig. 3. After processing, these
artefacts are greatly reduced. The average slice-to-slice KL = 0.714 +/- 0.946
before normalization and 0.060 +/- 0.145 afterwards, indicating good agreement
of the intensity histograms after normalization. The DK measure (Table 3) be-
tween the automatic and the expert segmentation for the different algorithms
shows a higher agreement for the MSDWsym 3D reconstruction method. On
the axial slices (a, b) of Fig. 3, the inpainting algorithm removed the air bub-
ble but preserved the anatomy of the slide, and most importantly preserved
the MN localization and size. Compared to clustering obtained on initial stack
(seen in g on Fig. 3), the MN bundles clustering obtained after reconstruction
with MSDWsym algorithm (seen in h on Fig. 3) show a continuity and a spacial
organization of the MNs.

DK

MS MSDW MSDWsym

Cluster
#1 0.622 0.650 0.710
#2 0.580 0.570 0.700
#3 0.650 0.670 0.677

Table 3. DK value of expert versus automatic clustering

4 Conclusion and future work

We presented a new approach to investigate MNs differentiation topology in a re-
producible and automatic manner. From multiple 2D histological slices of stained
mouse embryo spinal cord, we proposed a worklfow to correct for inter-slice in-
tensity inhomogeneity, slice reconstruction, 3D volume reconstruction and MN
clustering. We validated our 3D reconstruction method on synthetic data and
obtained a better slice-to-slice alignment with the proposed symmetric Multi-
Slice Distance-Weighted algorithm (MSDWsym). On real data, the proposed
clustering method provides good agreements with the expert manual approach.
These results indicate that our method can automatically identify the groups of
MNs thank to a sliding Mean-Shift method and a robust 3D reconstruction. Each
cluster identified on the left and right side of the spinal cord might target spe-
cific limb muscles, and we can also identify sub-clusters that might have more
specific targeting. This exploratory study will enable more extensive analyses
and validations in the future. In conclusion, the proposed method will facilitate
the investigation of different mouse embryo populations and therefore provide
important insights for future MN therapies.
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Fig. 3. MN clustering before (a,c,e,g) after (b,d,f,h) 3D reconstruction: axial (a, b),
sagittal (c, d), coronal (e, f) and 3D rendering of the MN clusters (g, h).


