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Abstract-A microwave tomographic scanner for biomedical appli- 

cations is presented. The scanner consists of a 64 element circular ar- 

ray with a useful diameter of 20 cm. Electronically scanning the trans- 
mitting and receiving antennas allows mnltiview measurements with 

no mechanical movement. Imaging parameters are appropriate for 

medical use: a spatial resolution of 7 mm and a contrast resolution of 

1% for a measurement time of 3 s. Measurements on tissue-simulating 

phantoms and volunteers, together with numerical simulations, are 

presented to assess the system for absolute imaging of tissue distribu- 

tion and for differential imaging of physiological, pathological, and in- 

duced changes in tissues. 

I. INTRODUCTION 
ORMING images of the human body using ionizing F radiation has been a part of the diagnostic process in 

medicine for many years. More recently, other probing 
radiations, notably ultrasound, have provided successful 
diagnostic images. Tomography is now in widespread use 
in the clinic with ionizing radiations (X-ray, isotopes) and 
with nuclear magnetic resonance imaging. In the past few 
years, other probing radiations have been considered for 
tomography, including ultrasound zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11, [2], very low-fre- 
quency electromagnetic fields in electrical impedance 
tomography [3], and microwaves [4], [5]. 

Active microwave imaging consists of illuminating the 
body to be imaged with a low-power coherent microwave 
field and measuring the field scattered by the body on the 
opposite side (transmission imaging) or on the same side 
(reflection imaging) as the illuminator. The measured data 
can be processed using specialized reconstruction algo- 
rithms to give information on the complex dielectric per- 
mittivity of the scattering body. In microwave imaging, 
the complex electromagnetic field is measured and the re- 
construction is also complex, thus much information is 
available and different parameters can be represented in 
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image form. Microwave imaging has some potentialities, 
mainly resulting from the specificity of the interaction 
mechanisms with the living tissues, different from those 
encountered in any other technique. Additional advan- 
tages include the fact that the probing radiation is not 
harmful at the low powers employed, and that the tech- 
nology is that used in the communications field and thus 
is easily available and relatively inexpensive. 

The human body exhibits large variations in the dielec- 
tric properties of its various tissue types (Table I). For 
this reason, microwave diffraction tomography is ex- 
pected to give information on the distribution of tissue 
types within the body in image form. This type of imaging 
is known as absolute imaging. In addition, the dielectric 
properties of tissue can vary substantially with alterations 
in the physiological parameters, such as blood flow [6], 
or with externally induced alterations such as tissue tem- 
perature during hyperthermia treatment of cancer [7]. Per- 
forming differential imaging is therefore expected to give 
information on these alterations. 

The microwave frequency chosen for imaging of bio- 
logical objects is a compromise between the losses in tis- 
sue and the spatial resolution, which is approximately half 
a wavelength in the surrounding medium. The useful 
range is found to be 1-4 GHz depending on the consid- 
ered application. Among the reasons for the late devel- 
opment of microwave imaging were the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori ideas 
about the difficult penetration of microwaves in living tis- 
sues, their high attenuation, and their poor resolution. 
Larsen and Jacobi [8] solved this problem by submerging 
the body to be imaged in a medium with similar electrical 
properties, in that case water, improving the spatial res- 
olution by around nine times while simultaneously match- 
ing the incident illumination to the body. They produced 
the first images of biological objects (isolated canine kid- 
neys), the microwave images showing up the internal 
structure well. Ermert and Dohlus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ]  performed com- 
puter simulations and measurements on cylindrical ob- 
jects using mechanically-scanned antennas in order to as- 
sess microwave diffraction tomography for imaging of 
biological objects. Their conclusions were fairly pessi- 
mistic due to the breakdown of the approximations used 
in the reconstruction algorithms for high-contrast objects 
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TABLE 1 
DIELECTRIC PROPERTIES OF TISSUE-SIMULATING PHANTOM MATERIALS 12 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, 

1241, ~ 5 1  

Permittivity 

Phantom 
Tissue Material 

Composition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof ~ _ _ _  
Tissue t '  e'' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE '  6'' Form Phantom Material 

4.50 1.17 
BoneiFat to to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.1 1 . 1  

8.35 1.60 

49.0 16.2 54.5 17.2 
Muscle 10 to 

58.0 19.0 53.7 19.4 

Brain 

Gray matter 46.0 19.0 48.5 17.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
58.0 16.1 

Blood 58.0 15.6 

64.3 14.8 

Solid 

Liquid 

Gel 

Gel 

Liquid 
Liquid 
Liquid 

Liquid 

Gel 

Plaster 

Water(65 %) Ethyl.Alc(35 %) 

Water(65.857~) Su&ar(30%) 
NaN,(O. 15%)  Agar(4%) 

Water(60.85%) Sugar(35 %) 
NaN,(0.15%) A&ar(4%) 

Water(40%) n-Prop.Alc(6OW) 
Water(30%) Ethil.Alc(707a) 
Water(50%) Oi1(50%) 

Water(8O%) n-Prop.Alc(20W) 

Water(80.85%) Sugar( 15%) 
NaN,(O.IS%) Agar(4t )  

into which category falls the human body. This problem 
remains the greatest limitation of this technique. An ad- 
ditional drawback of their measurements was the use of a 
mechanically-scanned measurement system which led to 
very long measurement times. 

Fast techniques for measuring microwave fields have 
been considered [9], [lo]. Bolomey et al. developed a 
planar system for producing tomograms of submerged 
bodies and isolated animal organs were again successfully 
imaged. Subsequent measurements on phantoms and bi- 
ological objects, in addition to new methods for inter- 
preting data, have shown the possibility of using this tech- 
nique to produce absolute images of limbs and also 
differential image useful for monitoring hyperthermia 
treatments [ 1 I], [ 121. 

Research in medical imaging began in Barcelona in 
1982, in close agreement with the approach of Bolomey 
[ 131. In 1985 the work was addressed towards a cylindri- 
cal microwave scanner, with a first prototype system being 
completed in 1986 [ 141. Since then studies have been car- 
ried out to assess the imaging capability of the system for 
biomedical applications [ 151. 

11. THE CYLINDRICAL MEASUREMENT SYSTEM 

The prototype measurement system is shown in Fig. 1. 
A ring of antennas is placed around a tank filled with 
deionized water into which the object is placed [ 161. The 
water is necessary for matching purposes and to improve 
the system spatial resolution. The antenna array consists 
of a circular array of 64 water-loaded waveguide anten- 
nas, flared in the E plane forming a conformed sectorial 
horn (2.5 cm height, 2.5 cm length) providing a colli- 
mated field pattern of about 2 cm in the vertical plane. In 

the H plane the antenna is an open waveguide with a quasi- 
omnidirectional field pattern. The array is divided into 
four sectors of 16 antennas. Each subarray of 16 elements 
has a one-to-16 multiplexer consisting of a tree of p-i-n 
diodes, allowing one element at a time to be selected. The 
antennas are connected to the emitlreceive equipment 
through a nonreciprocal two- to four- way switching ma- 
trix, allowing selection of each sector as emit or receive. 

The emitlreceive subsystem provides an emitted signal 
of one watt at 2.45 GHz at its output, giving a power 
density of less than 0.1 mW/cm2 at the body, and re- 
ceives with a noise figure smaller than 3 dB. A coherent 
phase quadrature detector allows the measurement of the 
magnitude and phase of the signal from the selected re- 
ceive antenna. The system employs the method of mod- 
ulation and synchronous detection to give a high sensitiv- 
ity, and minimize unwanted coupling. 

The data acquisition routine consists in addressing one 
of the 64 antennas as emitter and then scanning the scat- 
tered field with the elements belonging to the half array 
opposite the emitter antenna. This procedure is sequen- 
tially repeated for each emitter until one revolution is 
completed. The acquisition is controlled by a 32 bit HP 
320 microcomputer which also addresses the A/D con- 
verters to digitize the data. The microcomputer performs 
the reconstruction of the image, Section 111, with a pro- 
cessing time of 37 s and finally displays the result in a 
high-resolution color screen. The complex value of the 
image can be displayed in several formats as magnitude/ 
phase or real/imaginary parts. A linear correspondence 
relates the image values from minimum to maximum to a 
colour scale going from blue to red. 

Before a measurement is performed, the system is cal- 
ibrated by comparing the field diffracted by a known ob- 
ject (a centrally-located metal cylinder) with theoretically 
calculated values. The object is then placed centrally in 
the water tank, and a measurement performed. The sys- 
tem imaging parameters are given in Table 11. The mini- 
mum object permittivity change detectable (contrast res- 
olution) and the minimum object temperature change 
detectable (temperature resolution) refer to experimen- 
tally measured values in the water tank, with a measure- 
ment time of 3 s. The spatial resolution is given theoret- 
ically as a consequence of the algorithm. In practice, the 
spatial resolution is slightly deteriorated due to a low-pass 
filter effect resulting from the attenuation of high-order 
spatial frequencies and is measured to be around 10 mm. 
For differential imaging, it is often convenient to perform 
the measurement rapidly. Using an integration time of 1.5 
ms per measurement the acquisition is completed in 3 s. 
For absolute imaging the measurement time is not very 
crucial, the limit being the time for which a patient can 
remain still, say one minute. Component settling times 
can be extended to improve system stability and measure- 
ments can be averaged to reduce noise. For the measure- 
ments of phantoms presented in Sections V and VI, a total 
measurement time of 45 s was used. 
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Fig. 1 .  Prototype cylindrical microwave tomographic scanner. 

TABLE I1 
PROTOTYPE MICROWAVE TOMOGRAPHIC SCANNER- 

SYSTEM PARAMETERS 

SYSTEM PARAMETERS 
Frequency 
Power Density 

Useful Diameter 
Data Acquisition Time 
Reconstruction Time 

IMAGE 
Spatial Resolution 
Contrast Resolution 
Temperature Resolution 

2.45 GHz 
< O . l  
mW/cm* 
20 cm 
3 s  
37 s on HP320 

7 mm 
1% 
0.5"C 

111. RECONSTRUCTION ALGORITHMS 

The reconstruction algorithm is formulated in two di- 
mensions and makes use of the Born approximation, 
which assumes that the scattering acts as a small pertur- 
bation on the illumination, and therefore the field within 
the body is approximated by the incident field. The spec- 
trum of the planewave induced currents in the object is 
obtained from measurements on a circular line with a set 
of cylindrical wave illuminations. This is realized with a 
double convolution operator, efficiently implemented as a 
double product in the spectral domain [17]. The first con- 
volution synthesizes an incident plane wave as a super- 
position of cylindrical waves generated by point sources. 
Using the reciprocity theorem, the planewave scattering 
amplitude can be obtained from a second convolution of 
the scattered fields, measured along a cylindrical array. 
In this way, the problem is reduced to a conventional re- 
construction in linear geometries [ 11, [ 181, [ 191 where, 
assuming weak scattering, the spectral domain of the ob- 

ject is filled in arcs of radius KO where KO is the wave- 
number in the embedding medium. This means that the 
imaged object is a low-pass version of the original, with 
a resolution of approximately half a wavelength. Unfor- 
tunately, most biological bodies cause the breakdown of 
the Born approximation due to their high contrast char- 
acteristics and large size in terms of wavelengths. For this 
reason the absolute image obtained is qualitative, i.e., 
does not reconstruct the original permittivity values, al- 
though the image still supplies information on the internal 
structure of bodies. Differential imaging, Section VI, is 
carried out by processing the difference between the scat- 
tered fields of the reference and perturbed objects. This is 
equivalent to subtracting images, given the linearity of the 
algorithm. Differential techniques allow the visualization 
of small changes in objects which are far beyond the limit 
of the Born approximation [ 151, [20]. 

The reconstruction is obtained in two complex formats, 
either directly as object permittivity or as object profile, 
defined as o = 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( ~ ) / E o ,  which shows the contrast 
between object permittivity E ( r )  and the permittivity of 
the embedding medium E O .  

IV. BIOLOGICAL MODELS 
A program of work has been carried out to define ap- 

propriate models to simulate the electrical properties of 
parts of the human body at microwave frequencies. Solid 
and liquid materials have been produced with dielectric 
properties simulating most tissue types at 2.45 GHz [21], 
[24], [25] (Table I). Dielectric properties were confirmed 
by a reflection method, terminating an open coaxial line 
with a sample of the material and measuring the complex 
reflection coefficient very accurately with a HP85 10B au- 
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REAL IMAG 

Fig. 2. Tomographic slice of a in vivo human forearm. Absolute image of 
complex permittivity. 

tomatic network analyzer [22], [23]. Various phantoms 
have been constructed. Fig. 3 shows a phantom simulat- 
ing a child's head. The geometry was based on X-ray CT 
scan data and the dielectric properties taken from the lit- 
erature [24], [25]. The phantom consists of a plaster outer 
shell to simulate bone, with a gel simulating gray brain 
matter and a liquid (water and oil mixture) the properties 
of white brain matter. Phantoms of limbs have also been 
constructed. 

V. ABSOLUTE IMAGING 

Absolute imaging implies taking single frame data sets 
to reconstruct images which contain information on the 
tissue structure of the object. Fig. 2 shows an absolute 
image of a human forearm. The pseudocolor scale repre- 
sents linearly the range between minimum and maximum 
values in the reconstruction. The imaginary part of the 
complex permittivity image clearly shows the radius and 
ulna, the superficial fat layer and some less clearly-de- 
fined internal features. The values of permittivity are in- 
correctly reconstructed, due to the fact that the object falls 
outside the region of validity of the Born approximation. 
In particular the high contrast between the real part of 
permittivity of bone: 8 and muscle: 50, appears as com- 
pressed between 65 and 92 around the water permittivity. 
For the imaginary part the effect is not so serious due to 
the lower contrast of the imaginary parts. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 shows the ideal reconstruction of the permittivity 
of a numerical head model. In practice the present first 
order algorithm does not show the internal structure of the 
model due to its high contrast and large size. Such prob- 
lem with the algorithm effectively limit, at the moment, 
absolute imaging to the limbs. A large research effort is 
being carried out worldwide to improve reconstruction of 
microwave diffraction data [26]-[30], and it is hoped in 
the future to use this technique for absolute imaging of 
the brain since the substantial difference in permittivity 
values between different soft tissues should allow them to 
be easily distinguished. 

Fig. 3. Head phantom without white matter equivalent liquid 

VI. DIFFERENTIAL IMAGING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  Thermal Change Imaging 

Fig. 5(a) show the arrangement of a preliminary exper- 
iment to estimate the temperature sensitivity of the sys- 
tem. A rubber tube 0.05 mm thick and 3 cm internal di- 
ameter was placed off center in the water tank. Water from 
an external temperature tank was pumped through the 
tube, whilst the surrounding medium was maintained at 
To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 24°C. Fig. 5(b) shows a differential image corre- 
sponding to a temperature change of AT = 2°C ( T  = To 
+ A T ) ,  the graph, Fig. 5(c), showing the linear relation- 
ship between the differential image values and tempera- 
ture change ( A T ) .  The temperature resolution was ex- 
perimentally found to be 0.5"C. It is expected that in a 
more lossy and diffracting medium such as the human 
body, the temperature resolution would deteriorate. How- 
ever, this measured resolution is comparable with phan- 
tom results reported for other imaging techniques being 
considered for noninvasive temperature monitoring in hy- 
perthermia [3 13, [32]. 
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Fig. 4. Ideal image of complex permittivity corresponding to a human head 
numerical model [Fig. 7(a)], as would be obtained with a perfect algo- 
rithm. 

(b) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  (a) Experimental setup for measurement of temperature changes. 
(b) Image of 2°C temperature change (differential image of profile mag- 
nitude). (c) Maximum value of image versus temperature of water in 
tube. 

B. Blood Content Imaging zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. Diferential Imaging of the Head 

In order to demonstrate the capability of imaging blood 
content variations, the blood content of the arm of a vol- 
unteer was varied. After holding the arm in the air to re- 
move as much blood as possible, a pressure cuff was ap- 
plied to the upper arm and pressurized to above the 
systolic pressure. The arm was then placed in the tank and 
after taking three images, the cuff was released to just 
above the diastolic pressure thus increasing the blood con- 
tent of the arm with time. Images were taken at the rate 
of one every three seconds for the next 90 s. After 70 s ,  
the cuff pressure was released completely, allowing the 
blood content to begin to return to normal. The series of 
images (Fig. 6) shows a linear increase in the maximum 
image value until the cuff is released completely, when 
the image values began to fall. The images show a gradual 
development and change of position of the maxima. 

Reconstructions of numerically simulated data for the 
head were performed. The forward scattered fields were 
calculated on a circular measurement array identical to 
that of the prototype system assuming the object is im- 
mersed in water, using an iterative conjugate gradient 
method [33], [34]. The numerical model of the head is 
identical to the phantom (Fig. 3) but includes an outer 
skin layer of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 mm thickness. Fig. 7 shows a change in 
the dielectric properties of the whole brain. This differ- 
ential image has been obtained by processing the change 
of the scattered field produced by the actual head and a 
reference one obtained using a priori information, in this 
case the contour, skin, and bone permittivities and an av- 
erage permittivity for the brain. The internal form of the 
brain model can be recognized in the image. For Fig. 8 
the permittivity values of three small areas within the brain 



308 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. VOL. 37. NO. 3. MARCH 1990 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

29 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r 

7 

19 

11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

23 

0.35 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 

0.3  

0 .25  

0.2 

0.15 

0.1 

0.05 

0 - 
6 9 12 15 18 2 1  2 4  27  30 

Image  number T 
0 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  A selection from a series of images of blood content of the arm 
(differential images of profile magnitude). The number associated with 
each image corresponds to it’s place in the sequence from 0 to 29, each 
image taking 3 s. The basis image for these difference images is that of 
Fig. 2. The graph shows the maximum value of the image versus the 
image number and indicates the places in the sequence where the pres- 
sure in the pressure cuff was changed. 
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for computer simulation of the head. (b) Assumed 
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori model of the head. (c) Differential image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1  
of (a)-@) profile magnitude 

43 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA29 3 

a 2 3  9 u  

511 I' 8 " 
50 5 d .8  

(4 (b) 

Fig 8 Image of \mall ( I % ) ChdngeY within the brain 
(numerical simulation) (a) Basis model (b) Model 
after change (c) Reconstruction of change, differ- 
ential image of profile magnitude 

(a) (b) (C) 

Fig. 9. Image obtained by substituting water for 
white matter equivalent liquid. (a) Basis phantom. 
(b) Phantom after change. (c) Reconstruction of 
change, differential image of complex permittivity. 

matter equiva-lent liquid. (a )  Basis phantom. (b) 
Phantom with bar. (c) Reconstruction of change. 
ditferential image of profile magnitude (same scale 
as (b ) ] .  
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were changed by 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%, showing that small changes in the 
dielectric properties of the brain can, in simulations, be 
successfully imaged. 

Fig. 9 shows a measured differential image of the head 
model, changing the inner section of the brain from a 
white matter equivalent to water. The reconstruction 
shows up well the extension and form of the change. In 
Fig. 10, a small hemorrhage in the right posterior section 
of the white matter is created by adding a small gel block 
with the dielectric properties of blood. The image repre- 
sents well the position of the hemorrhage with respect to 
the brain visualized in Fig. 9, although with some arti- 
facts. 

VII. DISCUSSION AND CONCLUSION 

The results presented show the capability of the proto- 
type system for absolute imaging of smaller biological 
bodies (e.g., limbs) with differential imaging of induced 
temperature changes and blood flow changes. Numerical 
simulations and measurements on a head phantom show 
the potentiality of the system to visualize alterations 
within the brain. 

Possible clinical applications are being sought by the 
authors. Suggested applications include the visualization 
of blood content changes in the limbs with applications in 
detecting thromboses since regions with poor blood sup- 
ply would show smaller changes in permittivity. A car- 
diac gating system is presently being added to the imaging 
system and should improve the imaging of blood flow. 
Results show that imaging changes within the brain should 
be possible with the present algorithms. One possible ap- 
plication would be to detect brain hemorrhaging in neo- 
nates, although this application is expected to bring many 
additional practical problems. Visualization of regional 
blood-flow variations within the brain due to increased 
specific brain activity appears feasible but will require an 
increase in system sensitivity. Absolute imaging of the 
brain will require improvement of the reconstruction al- 
gorithms. 

The present system of employing a water tank is con- 
venient for the imaging of limbs, but evidently cannot be 
used when the head is to be imaged. A possible solution 
consists of employing a bolus or water-filled bag which 
fits between the antennas and the head. This system was 
successfully employed in the early X-ray head scanners 
to avoid the large jump in density between the tissue and 
the surrounding air. As in these X-ray scanners, the bag 
would also serve to hold the head stationary during the 
scan. In a future design, the matching medium could be 
dispensed with altogether if contacting (possibly micro- 
strip) antenna were placed directly in contact with the tis- 
sue. 

In conclusion, a microwave scanner for rapid tomo- 
graphic imaging of the body has been produced. The sys- 
tem has no mechanical movement and patient microwave 
radiation levels are below the safety standards for long 
exposure. The technology used is readily available and 

relatively inexpensive. Research will continue to improve 
reconstruction algorithms, increase system sensitivity, and 
to assess the system for clinical applications. 

ACKNOWLEDGMENT 

We would like to acknowledge the help of 1’Ecole Su- 
pCrieure d’ElectricitC, Paris, France, for the computer 
program used in the numerical simulations of the head. 
We also thank Dr. H. Almirall for her medical assessment 
in this work. 

REFERENCES 
[ l ]  R.  K. Mueller, M. Kaveh, and G. Wade, “Reconstructive tomogra- 

phy and applications to ultrasonics,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. IEEE, vol. 67, pp. 567- 
587, Apr. 1979. 

[2] B. Duchene and W. Tabbara, “Tomographie ultrasonore par diffrac- 
tion,” Rev. Phys. Appl., no. 6, pp. 299-304, June 1985. 

[3] D. C. Barber, B. H.  Brown, and I. L. Freeston, “Imaging spatial 
distributions of resistivity using applied potential tomography,” Elec- 
tron. Left . ,  vol. 19, no. 22, pp. 933-934, 1983. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[4] J. Ch. Bolomey, L. Jofre, Ch. Pichot, and G. Peronnet, “Microwave 
diffraction tomography for biomedical applications,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE Trans. 
Microwave Theory Tech., vol. MTT-30, pp. 1988-2000, Nov. 1982. 

[SI H. Ermert and M. Dohlus, “Microwave-diffraction-tomography of 
cylindrical objects using 3-dimensional wave fields,” n tzhch iv ,  Ed. 

161 E. C. Burdette, F. L. Cain, and J. Seals, “In situ tissue permittivity 
at microwave frequencies: Perspective, techniques, results,” in Med- 
ical Applications zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Microwave Imaging, L. E. Larsen and J. H .  Ja- 
cobi, Eds. 

[7] E.  C. Burdette, P. G. Friedrich, R. L. Seaman, and L. E. Larsen, 
“In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsitu permittivity of canine brain: Regional variations and post- 
mortem changes,” IEEE Trans. Microwave Theory Tech., vol. 
MTT-34, pp. 38-50, Jan. 1986. 

[8] L. Larsen and J. Jacobi, “Microwave scattering parameter imagery 
of an isolated canine kidney,” Med. Phys., vol. 7 ,  no. I ,  pp. 1-7, 
1980. 

[9] Ch. Pichot, L. Jofre, G. Peronnet, and J. Ch. Bolomey, “Active mi- 
crowave imaging of inhomogeneous bodies,” IEEE Trans. Antennas 
Propagat., vol. AP-33, pp. 416-425, Apr. 1985. 

[ lo]  S.  J. Foti, R. P. Flam, J. F. Aubin, L. E. Larsen, and J. H. Jacobi, 
“A water-immersed microwave phased array system for interrogation 
of biological targets,” in Medical Applicafions of Microwave Imag- 
ing, L. E. Larsen, J. H.  Jacobi, Eds. New York: IEEE, 1986, pp. 
148- 166. 

[ l l ]  J. Ch. Bolomey, L. Jofre, and G. Peronnet, “On the possible use of 
microwave-active imaging for remote thermal sensing,’’ IEEE Trans. 
Microwave Theory Tech., vol. MTT-31, pp. 777-781, Sept. 1983. 

[12] G. Gaboriaud, C. Lavergne, J. Ch. Bolomey, M. S.  Hawley, P. Ber- 
thaud, M. Gautherie, and Ch. Lavoine, “Microwave tomography in 
noninvasive control of hyperthermia,” IEEE Eng. Med. Biol. Soc., 
Nov. 1987. 

1131 G. Peronnet, Ch. Pichot, J. Ch. Bolomey, and L.  Jofre, “A micro- 
wave diffraction tomography system for biomedical applications,” 
presented at 13th European Microwave Conf., Nurnberg, Sept. 1983, 
pp. 529-533. 

[14] L. Jofre, E. de 10s Reyes, M. Ferrando, A. Elias, J. Romeu, M. 
Baquero, and J. M. Rius, “A cylindrical system for quasi-real-time 
microwave tomography,” presented at 16th European Microwave 
Conf., Dublin, Sept. 1986, pp. 599-604. 

[I51 A .  Broquetas, M. Ferrando, J. M. Rius, L. Jofre, E. de 10s Reyes, 
A. Cardama, A. Elias, and J .  Ibanez, “Temperature and permittivity 
measurements using a cylindrical microwave imaging system,’’ pre- 
sented at 17th European Microwave Conf., Rome, Sept. 1987, pp. 

[ 161 A. Bioquetas, A. Elias, L. Jofre, M. Ferrando, and E. de 10s Reyes, 
“A cylindrical microwave tomographic system for medical imag- 
ing,” IEEE Trans. Microwave Theory Tech., to be published. 

[17] J. M. Rius, M. Ferrando, L.  Jofre, and A. Broquetas, “Microwave 
tomography: An algorithm for cylindrical geometries,” Electron. 
Lett . ,  vol. 23, no. 1 1 ,  pp. 564-565. 1987. 

8 ,  H. 5 ,  pp. 111-117, 1986. 

New York: IEEE, 1986, pp. 13-40. 

892-895. 



31 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI JOFRE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal . :  MEDICAL IMAGING WITH MICROWAVE SCANNER 

[I81 S X Pan and A C Kdk. "A computdtiondl study ot recomtruction working on antenna measurement and electromagnetic imaging He IS cur- 
rently Professor and Director ot the Telecommunicdtion Engineering School 
dt the UPC where he zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1s engaged in research in the areas of antennas dnd 

algorithm\ tor diffraction tomography Interpolation verw\ hltered 
backpropagation." zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE T r m s  Atoucf , Speech. Signal Procecerrig, 
vol ASSP-31, pp. 1962-1275, Oct 1983 electromdgnetic imaging, both in numerical dnd experimental aspects 

[ 191 A P Anderson and M F Adam\, "Holographic and tomographic 
imaging with microwaves dnd ultrasound," in InLerse Methods 111 

Electromagnetrc Irriagrng, NATO AS1 Series C. Vol 143, Woltgang- 
Boeruer, Eds. Dordrecht, Holldnd Reidel. 1985, pp 1077-1 105 

1201 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ M Rius, A Broquetas. M Ferrando. A Cardama, and L Jofrc. 
"Tomogratia de microondas Reconctruccion de objetos con perdidas 
en geometriaq cilindricds," in Proc VI Meeting URSI, Vdlencid. 
Spain, Sept 1987, pp 511-516 

(211 G Hartsgrove, A. Kraszewski, and A Surowiec. "Simulated biolog- 
ical material\ for electromagnetic absorption studies," J Broe/cc 
rromugn , vol 7 ,  1986 

[22] T Whit Athey. M A Stuchly. and S S Stuchly. "Medwremcnt of 
radio frequency permittivity of biologicdl ticwe5 with an open-ended 
coaxidl line Pdrt I," lEEE Trurrs Microitabe Theor! Tech , vol 
MTT 30, pp. 82-86, Jan 1982 

1231 M A Stuchly, T Whit Athey, G M Samaras, and G E Taylor, 
"Medcurement of rddio frequency permittivity of biological tissues 
with an open-ended codxial line part 11-Experimental results,' lEEE 
Trans Microwa\e Theor) Tech , vol MTT-30, pp 87-92. Jan 1982 

[24] C H Durnev et c l /  Rarliofreauenci Rudrcitron Do\rmerr\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHaridbaah. 

Mark S. Hawley wds born in Sheffield, England, 
in 1961 He received the Honors B Sc degree in 
physics in 1982 

He joined the Department of Medical Physics, 
Weston Park Hospital and received the Ph D de- 
gree in 1986 for his work in microwave radiom- 
etry. a joint project with the Department of Elec- 
tronic dnd Electrical Engineering, University of 
Sheffield 

Since 1986 he has worked in the fields of non- 

Univ. Utah,'Rep. SAM-Tk-78-22;May 1978. 
M. A. Stuchly and S .  S .  Stuchly. "Dielectric properties of biological 
substances-Tabulated." J .  MirrowaLv Poitvr. vol. 15, no. I .  pp. 
19-25, 1980. 
D.  K.  Ghodgaonkar, 0. P. Ghandi. and M. J .  Hagmann. "Estima- 
tions of complex permittivities of three-dimensional inhomogeneous 
bodies." IEEE Trtrnc. Mic.roii,ui,r Theory T ~ I . .  vol. MTT-3 I .  pp. 
442-446, June 1983. 
B .  A. Roberts and A. C.  Kak, "Reflection mode difraction tomog- 
raphy," Ulrruson. /mug..  vol. 7. pp. 300-320, 1985. 
A. J .  Devaney, "Reconstructive tomography with diffracting wave- 
fields," Inivrse f r o b . .  vol. 2. pp. 161-183. 1986. 
L. Chommelux, Ch. Pichot, and J .  Ch. Bolomey. "Electromagnetic 
modeling for microwave imaging of cylindrical buried inhomogenei- 
ties." IEEE Traris. Microitui>e Theor! Tech.. vol. MTT-34. Oct. 
1986. 
A. P. Anderson and R. Ait-Mchdi. "Phase tomography in microwave 
diagnostics." Electron. Leu . .  vol. 19. pp. 873-874. 1983. 
R. J .  Dickinson. A. S. Hall. A. J .  Hind. and I .  R. Young, "Mea- 
surement of changes in tissue temperature using MR imaging,'' J .  
Conipur. Assist. Tornograph?.. vol. 10. pp. 468-472. 1986. 
J .  Conway. M. S. Hawley. A. D. Seagar, B.  H. Brown, and D. C. 
Barber. "Applied potential tomography for noninvasive thermal im- 
aging during hyperthermia treatment." Elrctron. Lett. ,  vol. 2 I .  no. 
19. 1985. 
F. Jouvie, D. Lesselier. and D. Vuillet-Laurent. "Iterative tech- 
niques applied to some radiation and scattering problems." in Pro(,. 
Arnc,r. Radio Sci. Meel.. URSI. Vancouver. June 17-21. 1985. p. 
103. 
P. M .  Van Den Berg. "Iterative computational techniques in scatter- 
ing based upon the integrated square error criterion." IEEE Trcrris. 
Arireririus Propci~ur..  vol. AP-32. pp. 1063-1071. Oct. 1984. 

invasive thermometry during hyperthermia treat- 
ment and microwave imaging with the Curie Institute, Supelec and 
SATIMO in Paris, France and with ETSIT Barcelona, Spain, where the 
reported work was carried out. He is currently working at the District Gen- 
eral Hospital in Barnsley, England, developing devices to assist disabled 
people. 

Antoni Broquetas (M'90) was born in Bdrcelona 
in 1959 He received the Ingeniero degree in tele- 
communication engineering from the Universitdt 
Politkcniea de Catalunya (U P C ) in 1985 and the 
Doctor Ingeniero degree in telecommunication 
engineering from the U P.C tor his work in mi- 
crowave tomography in 1989 

In 1984 he joined the Electrophycics group of 
the U P C working in microwave \ystems and 
digital radio-links During 1986 he was a resedrch 
assistant in the Portsmouth Polytechnic (U K ) in- 

volved in the development of microwdve receivers for propdgdtion 5tudies 
Currently he is a lecturer of the Telecommunication School at Barcelona 
dnd involved in electromagnetic scattering, imaging, and radar 

Elias de 10s Reyes (S'78-M'81) received the In- 
Luis Jofre (S'79-M'83) was born in Matdro, geniero de Telecomunicacih degree trom the 
S p i n .  in 1956 He received the Ingeniero and Universiddd PolitCcnica de Madrid (U P M) in 
Doctor lngeniero degrees in teleconimunication 1974 In 1978 he received the Doctor Ingeniero 
engineering. both trom the Universidad Politec- degree trom the Univeruddd Politecnica de 
nicd de Cataluria (UPC). in 1978 and 1982 re- Cataluria in telecommunication engineering 

In 1975 he joined the Electrophyrics group of spectively 
In 1978 he was a Research A\SiStdnt in the the Telecommunication School of Barcelona, be- 

Electrophysics Group dt UPC where he worked on coming Full Professor in 1987. He has been in- 
analysis and near-field measurement of dntenna\ volved in re\earch in microwave systems. raddr. 
During 1981 he pined the Ecole Superieure and microwdve imaging Since October 1988 he 
d'Electricit6 where he was involved in microwave has been in charge ol the Department ot Signdl and Conimunicdtions The- 

imaging technique\ tor biomedicdl dpplications During 1986-1987 he was ory ot the Telecommunicdtion School of Valencia (Spain) He is duthor 
a Visiting Fulbrigth Scholdr dt Georgia Institute of Technology, Atlanta, dnd coauthor of severdl papers and technical reports 



312 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL 37. NO 3. MARCH 1990 

Miguel Ferrando (S’78-M’83) was born in Al- 
coy, Spain, in 1954. He received the Ingeniero 
and Doctor Ingeniero degrees in telecommunica- 
tion engineering, both from the Universidad Pol- 
itkcnica de CataluAa (U.P.C.), in 1977 and 1982, 
respectively. 

In 1979 he joined the “Centre National 
d’Etudes de Telecomunication,” Lannion, 
France. From 1985 to the present he has been an 
Associate Professor at the Telecommunication 
Engineering School at the U.P.C. He has worked zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

in the areas of microstrip antennas, diffraction and scattering, near-field 
measurements, and numerical methods. 

Antonio R. Elias-Fust6 (S’8 I -M’82) received the 
Ingeniero and Doctor Ingeniero degrees in tele- 
communication engineering, both from the Uni- 
versitat Politecnica de Catalunya (U.P.C.) in 1978 
and 1982, respectively. 

In 1978 he joined the Antenas-Microondas-Ra- 
dar Group of the “Escuela Tecnica Superior de 
Ingenieros de Telecomunicacion de Barcelona” 
and he works in microwave characterization and 
RF systems design. Since 1982 he has been an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs- 
sociate Professor at the U.P.C. where he is en- 

gaged in research in the field of radar. He is the author and coauthor of 
several reports for the industry and papers published in technical journals 
and conference proceedings. 

Dr. Elias-Fustt is an AOC member. Currently, he is the Chairman of 
the AES Spanish Chapter. 


