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ARTICLE

Medical relevance of protein-truncating variants
across 337,205 individuals in the UK Biobank study
Christopher DeBoever1,2, Yosuke Tanigawa 1, Malene E. Lindholm3, Greg McInnes1, Adam Lavertu1,

Erik Ingelsson4, Chris Chang3, Euan A. Ashley 5, Carlos D. Bustamante1,2, Mark J. Daly 6,7 &

Manuel A. Rivas1

Protein-truncating variants can have profound effects on gene function and are critical for

clinical genome interpretation and generating therapeutic hypotheses, but their relevance to

medical phenotypes has not been systematically assessed. Here, we characterize the effect of

18,228 protein-truncating variants across 135 phenotypes from the UK Biobank and find 27

associations between medical phenotypes and protein-truncating variants in genes outside

the major histocompatibility complex. We perform phenome-wide analyses and directly

measure the effect in homozygous carriers, commonly referred to as “human knockouts,”

across medical phenotypes for genes implicated as being protective against disease or

associated with at least one phenotype in our study. We find several genes with strong

pleiotropic or non-additive effects. Our results illustrate the importance of protein-truncating

variants in a variety of diseases.
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P
rotein-truncating variants (PTVs), genetic variants pre-
dicted to shorten the coding sequence of genes, are a pro-
mising set of variants for drug discovery since identification

of PTVs that protect against human disease provides in vivo
validation of therapeutic targets1–4. Although tens of thousands
of germline PTVs have been identified5–9, their medical relevance
across a broad range of phenotypes has not been characterized.
Because most PTVs are present at low frequency, assessing the
effects of PTVs requires genotype data from many individuals
with linked phenotype data for a variety of diseases and physio-
logical measurements. The recent release of genotype and linked
clinical and questionnaire data for 488,377 individuals in the UK
Biobank provides an unprecedented opportunity to assess the
clinical impact of truncating protein-coding genes at a resolution
not previously possible.

PTVs are genetic variants that disrupt transcription and lead to
a shortened or absent protein that often causes loss of protein
function though it is also possible to observe gain-of-function
effects10. PTVs include nonsense single-nucleotide variants
(SNVs), frameshift insertions or deletions (indels), large struc-
tural variants, and splice-disrupting SNVs8. Although most
common genetic variants associated with disease have relatively
small effect on disease risk, PTVs are expected to have much
stronger effects on disease risk as they dramatically alter protein
sequence11. Population sequencing efforts have estimated that
every human genome contains ~ 100 PTVs although this rate can
be higher in consanguineous populations6,12,13. Prior studies have
identified a number of associations between PTVs and disease
risk. PTVs that are associated with protection against disease are
particularly interesting as they indicate genes that may be targeted
for therapeutics. For instance, PTVs in CARD9, RNF186 and
IL23R provide protection against Crohn’s disease and/or ulcera-
tive colitis1,2 and PTVs in ANGPTL4, PCSK9, LPA, and APOC3
protect against coronary heart disease4,13–17.

Here, we test for associations between PTVs and 135 different
medical phenotypes including cancers and complex diseases
among 337,205 participants in the UK Biobank. We identify 27
PTVs outside of the MHC that are associated with at least one
medical phenotype, including several protective associations. We
perform phenome-wide association analyses across 206 medical
phenotypes for these PTVs as well as PTVs with previously
identified associations and find PTVs with pleiotropic effects. We
also perform a human “knockout” analysis to identify non-
additive associations for homozygous or compound heterozygous
PTV carriers and find several genes with non-additive effects. The
associations reported here indicate new disease-causing genes that
may be promising therapeutic targets.

Results
PTV genetic association analysis. To assess the clinical relevance
of PTVs, we cataloged predicted PTVs present on the Affymetrix
UK Biobank array and their effects on medical phenotypes from
337,205 unrelated individuals in the UK Biobank study18,19. We
defined PTVs as SNVs predicted to introduce a premature stop
codon or to disrupt a splice site or small indels predicted to
disrupt a transcript’s reading frame. Although methods to predict
PTVs, also referred to as loss-of-function or knockout var-
iants6,20, are still being improved and validated21, previous work
has found that 70% of nonsense PTVs predicted to cause
nonsense-mediated decay show evidence for decreased expression
of the corresponding transcript and 79% of splice-site variants
disrupt splicing8, indicating that predicted PTVs are likely to
affect gene expression or function.

We identified 18,228 predicted PTVs in the UK Biobank array
that were polymorphic across 8750 genes after filtering (Methods,
Supplementary Fig. 1). Each participant had 95 predicted PTVs
with minor allele frequency (MAF) < 1% on average, and 778
genes were predicted to be homozygous or compound hetero-
zygous for PTVs with MAF < 1% in at least one individual. We
observed 291 genes that had at least one observed homozygous
PTV carrier in our study but had no observed homozygous loss-
of-function carriers in previous studies (Supplementary Data 1).
The observed number of PTVs per individual is consistent with
the ~ 100 loss-of-function variants observed in the 1000 Genomes
project22. In contrast, the number of PTV singletons (or observed
allele counts < 10) in ExAC suggests approximately five singletons
per individual and only ~ 0.2 per individual in highly constrained
genes9,23. These observations indicate that the majority of PTVs
in an individual are common (or common and low frequency)
such that they can be assessed via genotyping.

We used computational matching and manual curation based
on hospital in-patient data (National Health Service Hospital
Episode Statistics), self-reported verbal questionnaire data, and
cancer and death registry data to define a broad set of medical
phenotypes including various cancers, cardiometabolic diseases,
and autoimmune diseases (Supplementary Data 2)24. We then
performed association analyses between the 3724 PTVs with
MAF > 0.01% and 135 medical phenotypes with at least 2000 case
samples (Fig. 1, Supplementary Fig. 2) and stratified the
association results into three bins based on PTV MAF > 1%
(463 PTVs), between 0.1% and 1% (700 PTVs), and between
0.01% and 0.1% (2561 PTVs) to account for expected differences
in the statistical power to detect associations for PTVs with
different MAFs (Supplementary Fig. 3). We adjusted the nominal
association p values separately for each MAF bin using the
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Fig. 1 Schematic overview of the study. We prepared a data set of 18,228 protein-truncating variants and 135 medical phenotypes from the UK Biobank
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Benjamini-Yekutieli (BY) procedure to correct for multiple
hypothesis testing and identified 74 significant associations
between PTVs and medical phenotypes (BY-adjusted p < 0.05,
Fig. 2a–c, Supplementary Data 3).

Among the 74 PTV-phenotype associations we identified, 27
involved PTVs in genes outside of the MHC (chr6–25, 477,
797–36, 448, 354). As PTVs in or near the MHC likely tag HLA
risk alleles, we focused on associations for PTVs outside of the
MHC. We identified five PTVs with seven associations consistent
with protective effects (odds ratio (OR) < 1, BY-adjusted p < 0.05,
Fig. 2d, Supplementary Data 3). We found that the rare splice-
disrupting PTV rs146597587 in IL33 is associated with protection
against asthma (MAF= 0.48%, p= 7.6 × 10−13, OR= 0.64, 95%
confidence interval (CI): 0.57–0.72). This PTV is negatively
associated with eosinophil counts (β=−0.21 SD, p= 2.5 × 10–16)
and has suggestive evidence of an association with asthma (p=
1.8 × 10−4, OR= 0.47, 95% CI: 0.32–0.70)25. Our results provide
strong evidence in an independent sample that this PTV protects
against asthma and suggests that knocking down IL33 function
may be a useful therapeutic approach for asthma. We also
identified protective associations for the PTV rs11078928 (MAF
= 47.1%) in GSDMB against asthma (p= 6.3 × 10−50, OR= 0.90,
95% CI: 0.88–0.91) and bronchitis (p= 2.6 × 10−6, OR= 0.91,
95% CI: 0.87–0.95). GSDMB is associated with asthma in humans
and induces an asthma phenotype in mouse when over-
expressed26,27. We identified additional protective associations
between PTVs in IFIH1 and hypothyroidism (labeled as
hypothyroidism/myxedema) (MAF= 1.5%, p= 1.7 × 10−6, OR
= 0.80, 95% CI: 0.73–0.88) and VKORC1 and hypertension
(MAF= 25.3%, p= 1.4 × 10−6, OR= 0.97, 95% CI: 0.96–0.98).

We also found 20 risk associations for PTVs in 12 genes
outside the MHC (Fig. 2d, Supplementary Data 3). We identified
clinically relevant PTV-phenotype associations such as FLG,
whose protein product contributes to the structure of epidermal
cells, and eczema/dermatitis (MAF= 0.48%, p= 6.7 × 10−15, OR
= 1.80, 95% CI: 1.55–2.08)28 and TSHR, thyroid-stimulating
hormone receptor, and hypothyroidism/myxedema (MAF=
0.046%, p= 1.2 × 10−13, OR= 3.30, 95% CI: 2.41–4.53)29. We
replicated known risk genome-wide association study (GWAS)
associations such as BRCA2 and family history of lung cancer
(MAF= 0.93%, p= 7.3 × 10−11, OR= 1.19, 95% CI: 1.13–1.25)30

and rs33966350 in ENPEP and hypertension (MAF= 1.3%, p=
4.8 × 10−11, OR= 1.17, 95% CI: 1.12–1.23)31 and identified risk
associations between FANCM, a member of the same gene family
as BRCA2, and lung cancer (MAF= 0.11%, p= 9.7 × 10−10, OR
= 1.58, 95% CI: 1.36–1.83) as well as NOL3, a regulator of
apoptosis in muscle cells, and muscle or soft tissue injury (MAF
= 0.11%, p= 6.5 × 10−8, OR= 3.43, 95% CI: 2.19–5.36)32,33. To
investigate the association between NOL3 and tissue injury, we
knocked down NOL3 threefold in differentiated human skeletal
muscle cells and used electrical pulse stimulation to induce cell
damage and simulate injury. Lower expression of NOL3 resulted
in increased activation of caspase 8, an early indicator of
apoptosis, in the damaged cells, consistent with the observation
that NOL3 inhibits caspase 8 (Supplementary Fig. 4a, b)34. The
degree of DNA fragmentation, another indicator of tissue
damage, was also higher in NOL3 knockdown cells compared
with control (Supplementary Fig. 4c). We observed higher
expression of MAFbx/atrogin-1 (mRNA and protein), a muscle-
specific E3 ubiquitin ligase that is activated during skeletal
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muscle atrophy35, in NOL3 knockdowns without stimulation
(Supplementary Fig. 4d, e), consistent with increased expression
of MAFbx in NOL3 knockout mice36 and general
protein degradation after stimulation. These results provide
additional evidence that NOL3 has an important role in muscle
injury.

Even in the context of variants with strong predicted effects
such as PTVs, it is critical to evaluate whether the associated
variant is causal in the context of neighboring variants. We
initially identified an association between the PTV rs34358 in
ANKDD1B and high cholesterol, although this association
disappeared upon conditional analysis with rs17238484, an
intronic variant in HMGCR known to be associated with
cholesterol levels37. Another association between rs34358 and
family history of diabetes remained upon conditional analysis
with rs17238484 (p= 9.1 × 10−5, OR= 1.03, 95% CI: 1.02–1.05).
We performed conditional analyses for the remaining 27
associations outside of the MHC by identifying genotyped
variants within 10 kb of the associated PTV and using the
genotypes of the nearby variants as covariates for logistic
regression. For PTVs with MAF < 1%, we found that only the
association between a PTV in HEATR6 and retinal detachment
was explained by a nearby variant rs3744375 (Supplementary
Data 3). Six of the common (MAF > 1%) PTVs with associations
were in high linkage disequilibrium with other nearby common
variants that may explain the observed associations (Supplemen-
tary Data 3, Supplementary Fig. 5), though the PTVs remain
strong functional candidate for these associations. For instance,
the gain-of-function PTV rs328 in LPL (MAF= 10.1%) that we
find to be associated with decreased risk for high cholesterol (p=
3.9 × 10−15, OR= 0.90, 95% CI: 0.88–0.93) and angina (p= 1.3 ×
10−7, OR= 0.91, 95% CI: 0.87–0.94) has been associated with
coronary artery disease, lipid metabolism, and lower triglyceride
levels17,38,39. Similarly, a recent study found that the PTV
rs11078928 in GSDMB that offers protection against asthma
removes exon 6 from the transcript and eliminates the ability of
GSDMB to induce cell death40. The PTV rs2004640 in IRF5 has
previously been associated with rheumatoid arthritis and has been
connected to pathogenesis in the mouse model41,42. The PTV
rs601338 in FUT2 determines secretor status for ABH blood
groups that has been associated with susceptibility to infection
and several diseases43–47. The PTV rs2884737 in VKORC1
associated with hypertension is in moderate LD (R2 ≈ 0.56) with
several nearby common variants and the PTV rs776746 in
CYP3A5 associated with hayfever/allergic rhinitis is in near
perfect LD with one other nearby variant. Additional functional
work may be needed to establish whether the PTVs are causal for
these two associations.

We identified five significant associations between PTVs and
family history phenotypes included in our analysis (Supplemen-
tary Data 3). For two of these associations, the variant associated
with the family history phenotype was also associated directly
with the phenotype. rs180177132 in PALB2 was associated with a
family history of breast cancer (MAF= 0.037%, p= 2.5 × 10−8;
OR= 2.14, 95% CI: 1.64–2.79) as well as breast cancer diagnosis
(p= 9.0 × 10−12; OR= 4.25, 95% CI: 2.80–6.43) and FUT2 was
associated with family history of high blood pressure (MAF=
49.1%, p= 1.3 × 10−7; OR= 1.03, 95% CI: 1.02–1.04), hyperten-
sion diagnosis (p= 5.7 × 10−13; OR= 1.04, 95% CI: 1.03–1.05),
and essential hypertension (p= 5.2 × 10−8, OR= 1.04, 95% CI:
1.02–1.05). We also found that the PTV rs11571833 in BRCA2
was associated with lung cancer (MAF= 0.934%, p= 7.3 × 10−11,
OR= 1.19, 95% CI: 1.13–1.25). These results demonstrate
previous approaches for identifying genetic associations using
family history information (e.g., ref. 48,49) can be applied even to
relatively rare PTVs.

To further characterize the PTV-phenotype associations, we
asked whether missense variants with MAF > 0.01% in the genes
with significant PTV associations were also associated with the
same phenotypes. For each of the 27 PTV-phenotype associations
in our GWAS, we performed association analyses between the
missense variants in that gene and the phenotype that the PTV
was associated with and found 23 missense variant-phenotype
associations with p < 0.001 (Supplementary Data 3). Thirteen of
these 23 associations remain significant after a conditional
analysis including the PTV genotype as a covariate indicating
that several genes with PTV associations also contain indepen-
dent missense associations. For instance, we found two different
missense variants in TSHR that were both associated with
hypothyroidism independent of the PTV association. We also
identified independent missense associations for genes and
phenotypes such as ENPEP and hypertension; GSDMB and
asthma; IFIH1 and hypothyroidism; and PALB2 and lung cancer
(Supplementary Data 3). In total, we found at least one missense
association for seven genes implicated in our PTV GWAS
providing more evidence that these genes are likely important to
the etiology of these conditions.

Forty-seven of the 74 significant associations involved PTVs in
genes in or near the MHC (Supplementary Data 4). 4). To
investigate whether these associations are caused by linkage
between these PTVs and HLA susceptibility alleles, we performed
association analyses for each of these PTVs conditional on the
presence of each of 344 HLA alleles that were polymorphic
among the 337,205 subjects (Supplementary Data 4). (Supple-
mentary Data 4). We found that the p values for all five
associations with MAF between 0.1 and 1% were > 0.05 for at
least one HLA allele (Fig. 2e). Similarly, the p values for 30 of 42
associations with MAF > 1% were > 0.05 for at least one HLA
allele and only three were < 0.001 (Fig. 2f). For instance, we
identified an association between rs72841509 in BTN3A2 and
Celiac disease (coded malabsorption/celiac disease) in our initial
GWAS (MAF= 0.13, p= 1.8 × 10−119, OR= 2.33, 95% CI:
2.17–2.50). However, conditioning upon the presence of HLA-
B8, which is on the same haplotype as the HLA-DQ2 Celiac risk
allele, reduced the p value of the association between rs72841509
and Celiac disease to p= 0.9250,51. These results indicate that the
majority of the associations identified here for PTVs in MHC
genes are likely due to LD with HLA susceptibility alleles and
show that it is important to carefully consider the genomic
context of associated variants, even for variants with strong
predicted effects52.

We next investigated whether we could identify PTV-
phenotype associations using imputed genotypes. After filtering
(Methods), we identified 546 PTVs outside the MHC with MAF
greater than 0.01% among the UK Biobank imputed genotypes.
We stratified these PTVs into the same MAF bins as above
(0.01–0.1%, 0.1–1%, and 1–50%) and applied the BY adjustment
to the association p values for each bin. We found nine significant
associations for imputed PTVs (BY-adjusted p < 0.05, Supple-
mentary Data 3) including rs74315329 in MYOC and glaucoma
(MAF= 0.0012, p= 1.8 × 10−30, OR= 4.71, 95% CI: 3.61–6.14)53,
a well-known risk variant for glaucoma54, and D2HGDH and
asthma (MAF= 0.445, p= 1.6 × 10−12, OR= 0.95, 95% CI:
0.94–0.96) and hayfever (coded hayfever/allergic rhinitis) (p=
8.4 × 10−9, OR= 0.94, 95% CI: 0.92–0.96). The D2HGDH PTV is
in partial LD with an intronic variant rs34290285 in D2HGDH
(r2= 0.366, LDlink) that has been associated with asthma and
allergic disease in the initial UK Biobank data release55,56. We
also identified an association between the PTV rs754512 in
MAPT and Parkinson’s disease (MAF= 0.23, p= 1.1 × 10−6; OR
= 0.94, 95% CI: 0.92–0.97)57. This variant is predicted to be a
PTV but is in the intron of the canonical MAPT transcript and
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lies on the same haplotype as three MAPT missense variants
(rs17651549, rs62063786, rs10445337) so conditional analysis
could not establish the causal allele. We found associations
between a PTV in RPL3L and atrial flutter (MAF= 0.0021, p=
5.0 × 10−10, OR= 0.54, 95% CI: 0.44–0.66) and atrial fibrillation
(p= 2.3 × 10−9, OR= 0.55, 95% CI: 0.46–0.67). The missense
variant rs140185678 in RPL3L is also independently associated
with atrial fibrillation (MAF= 0.0363, p= 5.4 × 10−9, OR= 1.21,
95% CI: 1.14–1.30) and atrial flutter (p= 1.1 × 10−7, OR= 1.20,
95% CI: 1.12–1.28). Overall, we were able to recover a small
number of associations using imputed PTVs, indicating that
better imputation methods are likely needed in the absence of
direct genotyping of PTVs.

Targeted PTV phenome-wide association study. To further
assess the role of PTVs across medical phenotypes, we performed
a phenome-wide association analysis (pheWAS) to determine
whether PTVs that have been implicated in disease predisposition
may impact other diseases or commonly measured traits58. We
focused this analysis on PTVs with minor allele frequency >
0.01% in the 17 genes with significant associations in our GWAS.
In addition to PTVs in the genes identified here, we also inves-
tigated PTVs in genes with previously identified protective effects
such as: CARD9, RNF186, and IL23R shown to confer protection
against Crohn’s disease and/or ulcerative colitis1,2; ANGPTL4,
PCSK9, LPA, and APOC3 shown to confer protection against
coronary heart disease4,13–17; and SCN9A where homozygous
PTV carriers show an inability to experience pain59 (Supple-
mentary Table 1).

We identified all associations (p < 0.01) for PTVs in these 25
genes with a MAF > 0.01% and found that PTVs in many of these
genes were associated with a broad range of phenotypes
(Supplementary Data 3, Supplementary Fig. 6). PTVs in eight
of the 25 genes were associated with eight or more phenotypes.
We observed associations between the viral receptor IFIH1 and
10 phenotypes including protective effects against hypothyroid-
ism, hypertension, gastric reflux, and psoriasis (Fig. 3, Supple-
mentary Table 1). Despite minor allele frequencies ranging from
0.02% to 1.5%, three of these associations were observed for more
than one IFIH1 PTV. PTVs in IFIH1 were also associated with
increased risk for ulcerative colitis, inflammatory bowel disease,
and endometriosis. We identified protective effects for IL33 for
hayfever (coded hayfever/allergic rhinitis), nasal polyps, and

angina as well as weak risk effects for bowel/intestinal obstruction
and shoulder/scapula fracture (Supplementary Fig. 6). Overall,
these results demonstrate that PTVs can have pleiotropic effects
across diverse phenotypes and that PTVs in the same gene can
both protect against and increase risk for different diseases.

We extended the pheWAS analysis to 47 sets of genes
including gene sets of importance for diabetes and schizophre-
nia60,61 as well as more general gene sets such as genes with
associations in ClinVar and genes near GWAS peaks (Methods)
62,63. We found several associations in important gene sets that
were near significance in this study, particularly in genes near
GWAS peaks (Supplementary Data 3, Supplementary Fig. 7). We
also performed PTV burden tests by counting the number of
PTVs present in each subject for each gene set and performing
association analyses with the 135 phenotypes with more than
2000 cases. We found seven associations between gene sets and
phenotypes (BY-adjusted p < 0.05, Supplementary Data 3). Five of
the seven associations were between cancer phenotypes and gene
sets that included BRCA2 which had many PTVs on the
genotyping array. These results indicate that exome sequencing
may be needed to identify associations between PTV burden
across multiple genes association and disease.

Human gene knockout analysis. Homozygous carriers of PTVs,
referred to as homozygous knockouts (KOs), may have drama-
tically altered medical outcomes compared with carriers with only
one PTV (heterozygous KOs)64. Genetic association analyses
typically assume that genetic effects are additive; that is, the log
OR of a homozygote is expected to be twice the log OR of a
heterozygote. Given the large difference between having one
functional copy and no functional copies of a gene, however, we
expect that homozygote KOs may have non-additive effects that
are stronger or weaker than would be predicted given the effect
size for heterozygote KOs. To assess whether any of the 17 genes
with significant associations in our GWAS or the eight genes with
published protective effects (Supplementary Table 1) have evi-
dence for non-additive effects on medical phenotypes, we esti-
mated the KO status in each subject for each of these 25 genes.
Subjects with one PTV in a gene were considered heterozygote
KOs for that gene and subjects with two or more PTVs were
considered homozygote KOs. In total, 16 of the 25 genes had at
least one predicted homozygous KO carrier. We fit additive and
non-additive models to test for associations between KO status
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for these 16 and 206 medical phenotypes (minimum 1000 cases,
Supplementary Fig. 8) and found 13 associations (6 distinct genes,
12 distinct phenotypes) with potential non-additive effects
(Supplementary Fig. 9, Supplementary Data 5, Methods).

We identified 87,176 predicted homozygous KOs for FUT2
caused by a common PTV rs601338 with MAF 49.1% and
identified non-additive risk associations between FUT2 KO status
and eight phenotypes including hypertension and mumps (Fig. 4,
Supplementary Data 5). FUT2 regulates the expression of the H
antigen on the gastrointestinal mucosa and genetic variation in
FUT2 is associated with Crohn’s disease65,66, psoriasis67, plasma
vitamin B12 levels68,69, levels of two tumor biomarkers70,71, and
urine fucose levels72. Under a non-additive model, the ORs for
heterozygous FUT2 KOs are all nearly one while FUT2
homozygous KOs have ORs ranging from 1.05 (95% CI:
1.03–1.07) to 1.51 (95% CI: 1.29–1.77). Given the frequency of
the rs601338 PTV, our results indicate that FUT2 function may
have an important role in a wide range of phenotypes.

We also found evidence that the association between GSDMB
KO and asthma described in our GWAS analysis above is non-
additive (Figure S9, Supplementary Data 5). In total, we identified
168,025 heterozygous KOs and 74,534 homozygous KOs for
GSDMB. Under an additive model, GSDMB heterozygote KOs are
predicted to have a decreased risk for asthma with OR= 0.90 (p
= 5.9 × 10−50; 95% CI: 0.88–0.91). Under a non-additive model,
however, GSDMB heterozygote KOs are predicted to have OR=
0.86 (p= 4.3 × 10−38; 95% CI: 0.84–0.88) while GSDMB homo-
zygote KO offers only modestly higher protection (p= 9.7 × 10
−46, OR= 0.81, 95% CI: 0.79–0.84). Variants that increase
expression of GSDMB in humans are associated with asthma
risk,73 and increased GSDMB expression causes an asthma
phenotype in mice74. Our results suggest that knocking out just
one copy of GSDMB provides most of the protective effect on
asthma risk. Overall, we identified non-additive PTV associations
for six of 16 genes tested demonstrating that the effect of PTVs on
disease risk can be complex.

Discussion
Assessing the medical relevance of protein-truncating variants is
critical for prioritizing putative drug targets and clinical inter-
pretation. We systematically characterized the association of
PTVs, a class of variants with functional consequences likely to be

consistent with inhibition, with medical phenotypes using data
from the UK Biobank study. We estimated the effects of PTVs
across 135 phenotypes and identified 27 associations between
PTVs in 17 genes and 20 different phenotypes. We found four
associations for PTVs with minor allele frequency < 0.1%, indi-
cating that more subjects or case/control studies design may be
needed to test for associations between ultra-rare PTVs and
relatively low prevalence diseases that are not well-represented in
biobank datasets. We performed 25 phenome-wide association
analyses for the genes implicated by GWAS in this study plus
eight genes curated from the literature (Supplementary Table 1)
and identified eight genes that were associated with eight or more
phenotypes (p < 0.01). Six of these 25 genes showed evidence for
non-additive associations across several phenotypes including
non-additive associations between GSDMB and asthma and FUT2
and eight phenotypes including hypertension and cholesterol.

The genetic associations reported here directly link gene
function to disease etiology and provide attractive targets for drug
discovery. Naturally occurring human knockouts that protect
against disease provide in vivo validation of safety and efficacy
and may be relatively simple to target with drugs. Protective
associations between PTVs in IL33 and asthma; GSDMB and
asthma; and IFIH1 and hypothyroidism represent particularly
attractive drug targets, whereas risk associations between PTVs in
FANCM and lung cancer and NOL3 and muscle injuries implicate
these genes as important to the development of these conditions.
Our results illustrate the value of deep population-scale health
and genomic datasets for prioritizing genetic variants and genes
with translational potential.

Methods
Quality control of genotype data. We used genotype data from UK Biobank
dataset release version 2 for all aspects of the study except the imputed PTV
GWAS18,75. To minimize the impact of cofounders and unreliable observations, we
used a subset of individuals that satisfied all of the following criteria: (1) self-
reported white British ancestry, (2) used to compute principal components, (3) not
marked as outliers for heterozygosity and missing rates, (4) do not show putative
sex chromosome aneuploidy, and (5) have at most 10 putative third-degree rela-
tives. These criteria are reported by the UK Biobank in the file “ukb_sqc_v2.txt” in
the following columns respectively: (1) “in_white_British_ancestry_subset,” (2)
“used_in_pca_calculation,” (3) “het_missing_outliers,” (4) “putative_sex_chromo-
some_aneuploidy”, and (5) “excess_relatives.” We removed 151,169 individuals
that did not meet these criteria. For the remaining 337,205 individuals, we used
PLINK v1.90b4.476 to compute the following statistics for each variant: (a)
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genotyping missingness rate, (b) p values of Hardy–Weinberg test, and (c) allele
frequencies.

Protein-truncating variant annotation. We annotated 784,257 autosomal variants
extracted from the mapping bim files provided by the UK Biobank using VEP
version 87 and the LOFTEE plugin (https://github.com/konradjk/loftee) and
identified 27,057 putative PTVs77. We first removed 8118 PTVs specific to the UK
BiLEVE Axiom Array or with missingness > 1% among the subjects genotyped on
the UK Biobank Axiom Array. Despite a missingness rate of 28% on the Axium
Biobank Array, we kept rs141992399 (CARD9) in the analysis. We removed 11
variants with cluster plots that indicated unreliable genotypes. We removed Affx-
89018997 because the REF/ALT annotation caused problems with analysis
software.

We next matched our PTVs to PTVs annotated in gnomAD (gnomad.exomes.
r2.0.1.sites.vcf.gz) based on genomic position, reference, and alternate alleles and
compared the allele frequencies in the UKB and gnomAD by (1) performing a
Fisher’s exact test using the minor allele counts from the 337,205 UKB subjects and
the minor allele counts from gnomAD and (2) calculating the log odds ratio of
observing the minor allele in the UKB vs. gnomAD. We stratified our PTVs by
minor allele frequency into the following three bins: (0.01%, 0.1%), (0.1%, 1%),
(1%, 50%). For bin (0.01%, 0.1%), we removed PTVs with Fisher p < 1e-7 and an
absolute log odds ratio > 3. For bin (0.1%, 1%), we removed PTVs with Fisher p <
1e-7 and an absolute log odds ratio > 2. For bin (1%, 100%), we removed PTVs
with Fisher p < 1e-7 and an absolute log odds ratio > 1 (Supplementary Fig. 1). In
total, 123 variants were removed in this step.

There were 134 variants with MAF > 0.1% that we did match to the gnomAD
exome data. We manually reviewed these variants on the gnomAD browser to
determine whether they were likely to accurately type a PTV in gnomAD. In cases
where the PTV was present on the gnomAD browser but was not included in the
exome data, we kept the PTV in our analysis. In cases where the UKB array likely
typed a non-PTV or there was no variant present on the browser, we removed the
PTV from our analysis. In total, 79/134 variants were removed during in this step.
18,726 PTVs remained after filtering of which 18,228 were polymorphic. We
focused on these 18,228 PTVs for subsequent analyses.

We defined the MHC region as chr6:25477797–36448354 according to the
Genome Reference Consortium definition (https://www.ncbi.nlm.nih.gov/grc/
human/regions/MHC?asm=GRCh37). We considered any PTV in this region or
within 3,000,000 base pairs of this region (to avoid including PTVs in LD with
variants in the MHC) as in or near the MHC for all analyses. We use the hg19
human genome reference throughout.

Cancer phenotype definitions. We combined cancer diagnoses from the UK
Cancer Register with self-reported diagnoses from the UK Biobank questionnaire
to define cases and controls for cancer GWAS. Individual level ICD-10 codes from
the UK Cancer Register (http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100092),
Data-Field 40006 (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=40006), and the
National Health Service (http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=2022),
Data-Field 41202 (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=41202), in the
UK Biobank were mapped to the self-reported cancer codes, Data-Field 20001
(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20001). The mapping was per-
formed via manual curation of ICD-10 codes for each of the self-reported cancer
codes. UKB field codes for self-reported cancer were created with a tree structure
such that more specific cancer subtypes (e.g., “malignant melanoma”) are nested
under more general categories (“skin cancer”). This tree structure was preserved in
the field code to ICD-10 mapping. For example, the self-reported phenotype of “lip
cancer” was mapped to its field code, 1010, and the ICD-10 codes for “malignant
neoplasm of lip”, C00 and C000-C009. After this mapping, individuals with an
affirmative entry in one or more of the phenotype collections (self-reported cancer,
cancer registry, and the NHS) were included in the case cohort for the GWAS. No
secondary neoplasms were included in the cancer phenotype mappings.

High confidence phenotype definitions. We combined disease diagnoses from
the UK National Health Service Hospital Episode Statistics with self-reported
diagnoses from the UK Biobank questionnaire to define cases and controls for non-
cancer phenotypes. We used the following procedure to define cases and controls
for non-cancer phenotypes (referred to as “high confidence” phenotypes). ICD-10
codes (Data-Field 41202) were grouped with self-reported non-cancer illness codes
(Data-Field 20002) that were closely related. This was done by first creating a
computationally generated candidate list of closely related ICD-10 codes and self-
reported non-cancer illness codes, then manually curating the matches. The
computational mapping was performed by calculating the token set ratio between
the ICD-10 code description and the self-reported illness code description using
the FuzzyWuzzy python package. The high scoring ICD-10 matches for each self-
reported illness were then manually curated to ensure high confidence mappings.
Manual curation was required to validate the matches because fuzzy string
matching may return words that are similar in spelling but not in meaning. For
example, to create a hypertension cohort the code description from Data-Field
20002 (“Hypertension”) was mapped to all ICD-10 code descriptions and all closely
related codes were returned (“I10: Essential (primary) hypertension” and “I95:

Hypotension”). After manual curation code I10 would be kept and code I95 would
be discarded.

Family history phenotype definitions. We used data from Category 100034
(Family history–Touchscreen–UK Biobank Assessment Centre) to define “cases”
and controls for family history phenotypes. This category contains data from the
touchscreen questionnaire on questions related to family size, sibling order, family
medical history (of parents and siblings), and age of parents (age of death if died).
We focused on Data Coding 20107: Illness of father and 20110: Illness of mother.

Genome-wide association analyses. We performed genome-wide logistic
regression association analysis with Firth-fallback using PLINK v2.00a(17 July
2017). Firth-fallback is a hybrid algorithm which normally uses the logistic
regression code described in78, but switches to a port of logistf() (https://cran.r-
project.org/web/packages/logistf/index.html) in two cases: (1) one of the cells in the
2 × 2 allele count by case/control status contingency table is empty (2) logistic
regression was attempted as all the contingency table cells were nonzero, but it
failed to converge within the usual number of steps. We used the following cov-
ariates in our analysis: age, sex, array type, and the first four principal components,
where array type is a binary variable that represents whether an individual was
genotyped with UK Biobank Axiom Array or UK BiLEVE Axiom Array. For
variants that were specific to one array, we did not use array as a covariate. We
stratified GWAS p values from PLINK into three minor allele frequency bins:
0.01–0.1% (2562 PTVs), 0.1–1% (700 PTVs), and > 1% (463 PTVs). We corrected p
values separately for each bin using the Benjamin-Yekutieli approach implemented
in R’s p.adjust79. We considered associations with BY-corrected p values < 0.05 as
significant which controls the false discovery rate at 5%. As we identified 74 sig-
nificant associations in our main analysis, we would expect ~ 4 false-positive
associations. We also applied the Bonferroni correction for each MAF bin and for
all tests for reference (Supplementary Data 3).

For the missense variant GWAS, we identified missense variants with MAF >
0.01% in each of the 17 non-MHC genes that had a significant PTV from the PTV
GWAS. All genes except for IRF5 had at least one missense variant. We then
performed associations analyses as described above for the missense variants from
each gene and the phenotypes that PTVs in that gene were associated with. We
considered significant any missense-phenotype associations with nominal p <
0.001. We repeated the association analyses using the PTV genotype as a covariate
to evaluate whether the association signals were independent for significant
missense variants.

HLA conditional analysis. We performed conditional association analyses for 47
of the 74 significant associations from our GWAS for PTVs in genes in or near the
MHC using the HLA alleles provided by the UK Biobank (ukb_hla_v2.txt). For
each PTV-phenotype association, we re-ran the association analysis using each of
the 344 HLA alleles polymorphic in the 337,205 subjects used here as a covariate in
turn. We then identified which HLA allele, when used as a covariate, corresponded
to the largest p value for the additive genetic effect. These results are reported in
Supplementary Data 4. Note that this HLA allele is not necessarily the associated
with the reported trait since LD exists between different HLA alleles.

ANKDD1B conditional analysis. In our initial GWAS, we found associations
between the PTV rs34358 in ANKDD1B and family history of diabetes and high
cholesterol. Since ANKDD1B is near HMGCR, we performed a conditional asso-
ciation analysis between rs34358 and family history of diabetes and high choles-
terol using the imputed genotypes for rs17238484, an intronic variant in HMGCR
associated with cholesterol levels37, as covariates. We found that conditioning on
rs17238484 made the association between rs34358 and high cholesterol insignif-
icant (p= 0.052) but that the association between rs34358 and family history was
only slightly reduced from p= 1.5 × 10−7 to p= 9.1 × 10−5. We therefore decided
to include this association in Supplementary Data 3.

Conditional analysis. We performed conditional analyses for each of the 27 PTVs
outside of the MHC with significant associations. We identified all variants gen-
otyped on the UK Biobank array within 10 kb of the PTVs that passed filtering and
had MAF > 0.01%. For each variant within 10 kb of a PTV, we ran a logistic
regression as described above using PLINK but added the genotype of the nearby
variant as a covariate. For each PTV-phenotype association, we identified which
nearby variant resulted in the largest p value for the PTV association. We report
this nearby variant (cond_variant), p value for the PTV association (cond_p), and
the MAF of the nearby variant (cond_maf) in Supplementary Data 3. For Sup-
plementary Fig. 5, we plotted the linkage disequilibrium (LD) between the PTV and
nearby variants (minimum LD 0.9) for PTVs with MAF > 1% and for which
conditional analysis identified a nearby variant that reduced the p value by at least
one order of magnitude. For the PTV rs2884737 in VKORC1, we plotted variants
with LD > 0.5. For rs2004640 in IRF5, we plotted variants with LD > 0.6. LD values
were calculated using the same UK Biobank subjects used for the GWAS.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03910-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1612 |DOI: 10.1038/s41467-018-03910-9 |www.nature.com/naturecommunications 7

https://github.com/konradjk/loftee
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC?asm=GRCh37
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100092
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=40006
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=2022
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=41202
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20001
https://cran.r-project.org/web/packages/logistf/index.html
https://cran.r-project.org/web/packages/logistf/index.html
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Imputed PTVs GWAS. We identified 962 PTVs among the UK Biobank imputed
genotypes that were not multi-allelic, had MAF > 0.01%, and were not already
included in our study by comparing the chromosomal coordinates and reference
and alternate alleles of PTVs annotated in gnomAD to the UK Biobank positions
and alleles for the UK Biobank data. We only considered PTVs in the HRC site list
version 1.1 (http://www.haplotype-reference-consortium.org/site). We removed
408 imputed PTVs that had an imputation score < 0.8, missingness > 1%, or whose
MAF differed substantially from the non-Finnish European MAF in gnomAD. We
removed eight more imputed PTVs that were in genes near the MHC. In total we
were left with 546 imputed PTVs that we stratified into the following MAF bins:
0.01–0.1% (247 PTVs), 0.1–1% (153 PTVs), and > 1% (146 PTVs). We corrected
p values separately for each bin using the Benjamin-Yekutieli approach imple-
mented in R’s p.adjust79. We assessed linkage disequlibrium between imputed
PTVs and other variants using LDmatrix in LDlink80.

For the missense variant rs140185678 (MAF= 0.0363) in RPL3L, we ran
GWAS as described above and found that the variant was associated with
associated with atrial fibrillation (p= 5.4 × 10−9, OR= 1.21, 95% CI: 1.14–1.30)
and atrial flutter (p= 1.1 × 10−7, OR= 1.20, 95% CI: 1.12–1.28). We re-ran this
analysis using the genotype of the RPL3L PTV rs140192228 as a covariate and
found that the associations between rs140185678 and atrial fibrillation (p= 4.3 ×
10−9, OR= 1.21, 95% CI: 1.14–1.29) and atrial flutter (p= 8.4 × 10−8, OR= 1.20,
95% CI: 1.12–1.28) were still significant. The PTV was also significant under
these models for atrial fibrillation (p= 1.1 × 10−5, OR= 0.85, 95% CI: 0.79–0.91)
and atrial flutter (p= 2.1 × 10−6, OR= 0.84, 95% CI: 0.78–0.90).

Phenome-wide association analyses. We performed pheWAS on the 17 genes
with at least one significant association in our GWAS as well as 8 genes reported to
have protective genetic associations: CARD9, RNF186, IL23R, ANGPTL4, PCSK9,
LPA, APOC3, and SCN9A (Supplementary Table 1). We identified associations
between PTVs in these genes with MAF greater than 0.01% and 135 medical
phenotypes (p < 0.01, Supplementary Fig. 6). Four genes (ANGPTL4, IL23R,
PCSK9, and APOC3) did not have any associations with p < 0.01 in the pheWAS.

We also report pheWAS results for gene sets from https://github.com/
macarthur-lab/gene_lists and60,61. We plotted the p values and odds ratios for
associations with p < 0.01 between PTVs in the genes from each gene set and 135
traits with more than 2000 cases in Supplementary Fig. 7. We also performed a
burden test by counting the number of PTVs present in each subject in each gene
in a gene set to create a polygenic score. If a subject had more than two PTVs
present in a gene, we only counted two PTVs for that gene. We regressed the
polygenic score for each gene set against disease status for 135 phenotypes with >
2000 cases using logistic regression in R. We adjusted the p values for each gene set
using the BY method. The significant associations are reported in Supplementary
Data 3. Note that owing to the rarity of PTVs, some gene sets with a small number
of genes had little or no variation in the polygenic score because we observed few
polymorphic PTVs in those gene sets. We have included all PTV associations with
nominal p < 0.01 in Supplementary Data 3 (“all_phewas” tab).

NOL3 siRNA knockdown in human skeletal muscle cells. Adult human skeletal
muscle cells (150–05 A, Sigma-Aldrich) were cultured in skeletal muscle cell
growth medium (Sigma-Aldrich). For differentiation, cells were dissociated using
0.05% Trypsin-EDTA (ThermoFisher Scientific) and replated onto collagen-coated
six-well plates in skeletal muscle growth medium. After 24 h, differentiation was
initiated by changing medium to skeletal muscle cell differentiation medium
(Sigma-Aldrich), which was subsequently exchanged every second day. We
transfected differentiating skeletal muscle cells in DMEM/F-12 medium with 30
pmol siRNA against NOL3 (s301, ThermoFisher Scientific) or a scramble negative
control siRNA (ThermoFisher Scientific) using the Lipofectamine RNAiMAX
Transfection reagent (ThermoFisher Scientific) according to the manufacturer’s
protocol.

Electrical pulse stimulation. Four days after siRNA-treatment, we electrically
stimulated skeletal muscle cells using a C-pace unit and a six-well C-Dish
(IonOptix), according to the manufacturer’s specifications. The protocol, which
was adapted from81, consisted of pulses of 20 ms at 10 V in a sequence of a 5 s
tetanic hold through continuous pulses at 8 Hz, a 5 s delay, 5 s of pulses at 5 Hz and
another 5 s delay for a total of 5 h. Unstimulated cells were exposed to the six-well
C-Dish without supply of an electric current.

RNA isolation and qRT-PCR. Total RNA was extracted by the Trizol method. In
all, 300 ng of total RNA was used to generate cDNA through the High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems) in a total volume of 20 ul.
Gene expression was quantified using standard TaqMan gene expression assays
(NOL3 Hs01126088_g1; ACTB Hs01060665_g1; MAFbx/FBXO32
Hs01041408_m1; ThermoFisher Scientific).

Protein analyses. Fifteen mg of total protein was loaded onto a 4–15% poly-
acrylamide gel (Bio-Rad), separated and subsequently transferred onto a PVDF
membrane (Merck Millipore). The membrane was blocked in Odyssey blocking
buffer (LI-COR), incubated overnight with primary antibodies; Fbx32/MAFbx

1:500 (ab168372 Lot: GR322135_2, Abcam) and GAPDH 1:1000 (sc-48167
Lot: B2112, Santa Cruz Biotechnology) as a loading control. After washing and
incubation with the appropriate fluorescent secondary antibody (a-rabbit 1:5000
(925-32211 Lot: C70926_01 and a-goat 1:5000 925-32214 Lot: C50330-07), the
membranes were imaged and protein quantified using the LI-COR Odyssey Fc
imaging system.

We measured the activity of caspase 8 as an early apoptotic signal inhibited by
NOL3. A colorimetric Caspase 8 assay kit (ab39700, Abcam) was used according to
the manufacturer’s protocol. To increase the efficiency of the homogenization, the
homogenate was snap-frozen in liquid nitrogen prior to protein quantification and
the centrifugation step performed to remove solid material was done at a lower
speed. The assay quantified the cleavage of a p-nitroanilide chromophore from the
sequence Ile-Glu-Thr-Asp, and the signal was measured at OD= 405 nm. The
resulting values were related to the total protein content measured with the Pierce
BCA protein assay kit (ThermoFisher Scientific).

DNA fragmentation. We analyzed the level of DNA fragmentation as a measure of
the degree of apoptosis induced by the stimulation. The Cell Death Detection
ELISAplus kit (Sigma-Aldrich) was used to quantify the level of cytoplasmic
histone-associated DNA fragments, according to the manufacturer’s specifications.
In brief, the cells were lysed directly in the culture wells, scraped off the plate and
centrifuged at 200 × g. The supernatant (cytoplasmic fraction) was loaded onto a
streptavidin-coated microplate and incubated for 2 h with a biotin-labeled histone
antibody and a peroxidase-conjugated DNA antibody. An ABTS substrate was
subsequently added, and the enzyme-linked immunosorbent assay was read at OD
= 405 nm. The level of fragmentation was related to the total amount of protein.

Knockout status. We estimated PTV knockout carrier status for each individual
by summing the total number of PTVs present in an individual for each gene that
had at least one PTV. If a PTV was predicted to effect more than one gene, we
counted that PTV for each gene. If an individual was heterozygote for two different
PTVs in the same gene, we considered the individual as a homozygous KO. If an
individual was predicted to carry > 2 PTVs in a given gene, we set his or her count
to two. We thus obtained carrier statuses for each gene in each subject that ranged
from no KO, heterozygous KO, or homozygous KO. For all 18,228 predicted PTVs,
we found 262 PTVs per subject on average and 1173 genes with at least one
putative KO. If we restrict to only high confidence PTVs, we observe 174 PTVs per
subject on average and 995 genes with at least one putative KO. If we restrict to
PTVs with MAF < 1%, we observe 95 PTVs per subject on average and 778 genes
with at least one putative KO.

Additivity analyses. To test for departures from additivity, we tested for asso-
ciations between PTV carrier status and phenotype status for 16 of the 25 genes
used in the pheWAS analysis that had at least one homozygote knockout and 206
phenotypes with at least 1000 cases. For each gene and phenotype, we fit two
models using the glm function in R (family= “binomial”). For the additive model,
we provided PTV carrier status as a numeric variable, and for the non-additive
model, we provided PTV carrier status as a factor. We included age, sex, geno-
typing array, and the first four principal components as covariates for both models.
To identify gene-phenotype associations with suspected departures from additivity,
we identified genes and phenotypes where either the additive p value or homo-
zygote KO p value was < 10−4 and the difference between the non-additive model
AIC and additive model AIC was < −1.

URLs. For LDlink, see https://analysistools.nci.nih.gov/LDlink/; for gnomAD
browser, see http://gnomad.broadinstitute.org/; for UK Biobank, see http://www.
ukbiobank.ac.uk/.

Data availability. The UK Biobank data are available through the UK Biobank
(http://www.ukbiobank.ac.uk/). Analysis scripts and notebooks are available on
Github at https://github.com/rivas-lab/public-resources. GWAS results can be
browsed on the Global Biobank Engine (biobankengine.stanford.edu).
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