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Abstract

Background: The medical subdomain of a clinical note, such as cardiology or neurology, is useful content-derived

metadata for developing machine learning downstream applications. To classify the medical subdomain of a note

accurately, we have constructed a machine learning-based natural language processing (NLP) pipeline and developed

medical subdomain classifiers based on the content of the note.

Methods: We constructed the pipeline using the clinical NLP system, clinical Text Analysis and Knowledge Extraction

System (cTAKES), the Unified Medical Language System (UMLS) Metathesaurus, Semantic Network, and learning

algorithms to extract features from two datasets — clinical notes from Integrating Data for Analysis, Anonymization,

and Sharing (iDASH) data repository (n = 431) and Massachusetts General Hospital (MGH) (n = 91,237), and built

medical subdomain classifiers with different combinations of data representation methods and supervised learning

algorithms. We evaluated the performance of classifiers and their portability across the two datasets.

Results: The convolutional recurrent neural network with neural word embeddings trained-medical subdomain

classifier yielded the best performance measurement on iDASH and MGH datasets with area under receiver operating

characteristic curve (AUC) of 0.975 and 0.991, and F1 scores of 0.845 and 0.870, respectively. Considering better clinical

interpretability, linear support vector machine-trained medical subdomain classifier using hybrid bag-of-words and

clinically relevant UMLS concepts as the feature representation, with term frequency-inverse document frequency

(tf-idf)-weighting, outperformed other shallow learning classifiers on iDASH and MGH datasets with AUC of 0.957

and 0.964, and F1 scores of 0.932 and 0.934 respectively. We trained classifiers on one dataset, applied to the other

dataset and yielded the threshold of F1 score of 0.7 in classifiers for half of the medical subdomains we studied.

Conclusion: Our study shows that a supervised learning-based NLP approach is useful to develop medical subdomain

classifiers. The deep learning algorithm with distributed word representation yields better performance yet shallow

learning algorithms with the word and concept representation achieves comparable performance with better clinical

interpretability. Portable classifiers may also be used across datasets from different institutions.
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Background
Automated document classification is an effective method

that can categorize documents into predefined document-

level thematic labels [1]. Clinical notes, in which the med-

ical reports are mainly written in natural language, have

been regarded as a powerful resource to solve different

clinical questions by providing detailed patient conditions,

the thinking process of clinical reasoning, and clinical in-

ference, which usually cannot be obtained from the other

components of the electronic health record (EHR) system

(e.g., claims data or laboratory examinations). Automated

document classification is generally helpful in further pro-

cessing clinical documents to extract these kinds of data.

As such, the massive generation of clinical notes and rap-

idly increasing adoption of EHR systems has caused auto-

mated document classification to become an important

research field of clinical predictive analytics, to help lever-

age the utility of narrative clinical notes [2].

Detection of the medical subdomain of a clinical note,

such as cardiology, gastroenterology and neurology, may

be useful to enhance the effectiveness of clinical predictive

analytics by considering specialty-associated conditions

[3]. Knowing the medical subdomain helps with subse-

quent steps in data and knowledge extraction. Training on

specialist reports and applying the subdomain models on

notes written by generalists, such as general practitioners

and internists, will also help identify the major problems

of the patient that are being described. This can be useful

not only in studying the practice and validity of clinical

referral patterns, but also in helping to focus attention

on the most pressing medical problem subdomain of

the patient.

Early research on automated document classification

utilized rule-based knowledge engineering, by manually

implementing a set of expert intelligence rules [1]. More

recently, machine learning algorithms such as regularized

logistic regression and kernel methods [4–7], and natural

language processing (NLP) techniques have been utilized

to support clinical decision making through risk stratifica-

tion [8, 9], disease status or progression prediction using

clinical narratives. For example, researchers used machine

learning and NLP to perform automated clinical document

classification for adjusting intensive care risk through

procedure and diagnosis identification [10], detecting

heart failure criteria [11], identifying adverse drug ef-

fects [12, 13], detecting the status of autism spectrum

disorder [4], asthma [14], or the activity of rheumatoid

arthritis [7]. For clinical administrative tasks, some studies

also adopted technologies to optimize clinical workflows

and improve patient safety using automated clinical docu-

ment classification [6, 15].

Recently, different data representation methods have

been reported to help in classifying clinical documents, for

example by using lexical features, such as bag-of-words

and n-grams [10, 15], adopting topic modeling methods,

for example, latent Dirichlet allocation (LDA) algorithm

[16], or integrating knowledge in medical ontologies such

as the Unified Medical Language System (UMLS) Metathe-

saurus or Medical Subject Headings (MeSH) [5, 7, 17, 18],

to embed clinical knowledge in documents in machine

computable information.

The state-of-the-art approach to the document classi-

fication task uses neural network models with the dis-

tributed representation method [19, 20]. Instead of

handcrafted feature engineering for clinical knowledge

representation, the deep neural network may learn

complex data representation through the algorithm it-

self [21]. Hughes et al. applied convolutional neural

networks (CNN) with distributed word representation

to medical text classification task at a sentence-level

and yielded competitive performance [22, 23]. At the

document-level, computer scientists applied CNN or a

variant of recurrent neural network, Long Short-Term

Memory (LSTM), to learn semantic representations in

documents for general sentiment analysis [24–26]. CNN

has also been applied at the character-level for different

text classification tasks [27].

Regarding the document-level solution for detecting

medical subdomains of a clinical note, Doing-Harris et

al. used the clustering algorithm, with vocabulary and se-

mantic types for their data representation, to perform

the unsupervised learning task across different note types

and different document sources, and yielded good per-

formance for identifying clinical sublanguages [28].

Kocbek et al. used support vector machine (SVM) with

bag-of-phrases (UMLS concepts) to detect various dis-

ease categories to classify admissions for potential dis-

eases [5]. However, there is no study evaluating and

comparing the performance of supervised shallow and

deep learning algorithms with different data representa-

tions on the medical subdomain classification problem.

With the appropriate data representation, the super-

vised machine learning classifier for categorizing clinical

notes to detect medical subdomains can augment clinical

downstream applications at the medical specialty level. For

example, using the medical subdomain classifier may help

us understand shared syntactic and semantic structures in

notes written by specialists [29], or more clinically, redirect

patients with unsolved problems to the correct medical

specialty for the appropriate management.

We developed a supervised machine learning-based

NLP pipeline to build medical subdomain classifiers that

can categorize clinical notes into medical subdomains.

Specifically, we compared the performance of various

shallow and deep supervised learning classifiers using

different data representations, weighting strategies, and

supervised learning algorithms, and we investigated the

important features of medical subdomains and the
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portability of classifiers across two clinical datasets. We

trained classifiers on one dataset and applied the best

performing classifiers directly to the other dataset. We

have achieved good accuracy in classifying clinical notes

into their medical subdomains.

Methods
Overview

We integrated NLP and other machine learning tools to de-

velop our generalized clinical document classification and

prediction pipeline (Fig. 1). We used two sets of clinical

notes to conduct the study. The datasets were acquired

from the Integrating Data for Analysis, Anonymization,

and Sharing (iDASH) data repository and Massachusetts

General Hospital (MGH) clinical notes in the Research Pa-

tient Data Registry (RPDR) data repository of the Partners

HealthCare system [30].

Clinical dataset

iDASH (integrating data for analysis, anonymization, and

sharing) dataset

We downloaded 431 publicly available anonymized clinical

notes or reports from the “Clinical Notes and Reports data

repository” in the iDASH data repository. The iDASH data

repository includes widely diverse clinical notes and re-

ports from MedicalTranscriptionSamples.com, which is a

website that collects sample notes and reports from various

transcriptionists and clinical users. The iDASH documents

include admission notes, discharge notes, progress notes,

surgical notes, outpatient clinic notes, emergency notes,

echocardiogram, CT scan, MRI, nuclear medicine, ra-

diographs, ultrasound and radiological procedures re-

ports. Two well-trained clinicians independently and

manually annotated each document, assigning it to one

of six medical subdomains: ‘Cardiology’, ‘Gastroenterology,

‘Nephrology’, ‘Neurology’, ‘Psychiatry’ and “Pulmonary dis-

ease”. Cohen’s κ coefficient of 0.97 was obtained, which

represented an excellent inter-rater consistency of annota-

tion. These annotations serve as ground truth for our

learning methods.

MGH (Massachusetts General Hospital) dataset

The MGH dataset includes 542,744 clinical notes of 4844

patients since 2012, who had visited one of three specialist

clinics (neurology, cardiology, and endocrinology) at least

once in May 2016 at MGH, the tertiary care medical cen-

ter in Boston, MA. We limited the note extraction query

in the three specialties due to the limited data access. To

allow derivation of gold standard labels of the medical

subdomain for the notes without needing extensive man-

ual annotations, we extracted all specialist-written notes

and created an automated mapping script, which allows

the mapping between note authors and their medical

specialization using the Partners Enterprise data ware-

house (EDW) physician database.

We further removed notes written by specialists with

more than one specialty to ensure that each note can be

classified into only one medical subdomain. After removing

Fig. 1 The study design. We used two datasets — clinical notes and reports from the Integrating Data for Analysis, Anonymization, and Sharing

(iDASH) data repository as well as Massachusetts General Hospital (MGH) clinical notes from the Research Patient Data Registry (RPDR) data

repository of the Partners HealthCare system. For each dataset, we applied and combined different data representation methods, weighting

strategies, and supervised learning algorithms to build classifiers. F1 score, precision, recall, balanced accuracy and area under receiver operating

characteristic curve (AUC) were used to evaluate the model performance. The model portability test across datasets was performed. We have

applied the clinical NLP system, clinical Text Analysis and Knowledge Extraction System (cTAKES), the UMLS Metathesaurus, Semantic Network,

and machine learning tools to construct the pipeline. The analytic pipeline has three main components, the medical concept extractor (red),

model constructor (yellow), and evaluator (green)
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386,903 notes that did not fulfill the above note selection

criteria, we selected the top 24 medical subdomains among

105 medical specialties in the MGH dataset. The remaining

91,237 clinical notes were deidentified by ‘deid’ software

after data filtering [31, 32], and used for the further analysis.

The deidentification not only helps to protect the patients’

identities but also prevents the classification system from

relying on the name of specialists for the classification task

because the names are elided. The document filtering

process is illustrated in Additional file 1: Figure S1. The

MGH dataset was acquired through Partners Healthcare

RPDR system [30], and this study was approved by the In-

stitutional Review Board at MGH.

Clinical word and concept representations

Appropriate clinical feature representation has been shown

to improve the performance of machine learning classifiers

[33]. To extract and represent interpretable clinical features,

we adopted the clinical NLP annotator and parser, Apache

clinical Text Analysis and Knowledge Extraction System

(cTAKES) [34], and used the UMLS Metathesaurus, and

Semantic Network to filter clinically relevant UMLS

concepts in clinical notes [35–37].

We used the bag-of-words representation, which dir-

ectly identified and normalized lexical variants from the

unstructured text content, as the baseline of clinical feature

representation. For clinically relevant concept identification,

we selected the cTAKES analysis engine, Aggregate

Plaintext UMLS Processor, to acquire UMLS concept

unique identifiers (CUIs) and build feature sets. The

UMLS Metathesaurus and Semantic Network were fur-

ther applied to restrict the extracted UMLS CUIs

within clinically relevant semantic groups and semantic

types. We selected 56 semantic types within five clinically

related semantic groups, which are “Anatomy (ANAT)”,

“Chemicals and Drugs (CHEM)”, “Disorders (DISO)”,

“Phenomena” (PHEN) and “Procedures (PROC)”. We

further asked two clinicians to restrict UMLS-derived

concepts from 56 to 15 semantic types (Table 1), which

are most related to clinical tasks, based on clinical

experiences.

Using clinical word and concept representations, we

built features sets of (1) bag-of-words, (2) UMLS con-

cepts, (3) UMLS concepts restricted to five semantic

groups, comprising 56 semantic types, (4) UMLS concepts

restricted to 15 semantic types, and also three combina-

tions of hybrid feature sets comprising of (5) the combin-

ation of bag-of-words + UMLS concepts, (6) bag-of-words

+ UMLS concepts restricted to five semantic groups, com-

prising 56 semantic types, as well as (7) bag-of-words +

UMLS concepts restricted to 15 semantic types. Through

NLP, ontology and semantic filtering, clinical knowledge

in clinical notes was represented in a uniform and inter-

pretable way.

For different feature sets, we preserved all of the ex-

tracted features instead of applying additional feature selec-

tion methods to subset the features. We computed the

term frequency of features as well as term frequency–in-

verse document frequency (tf-idf) weighting [38]. The bag-

of-words features were obtained by word tokenization and

word stemming using the Porter stemming algorithm [39].

Distributed word and document representations

For the distributed document representation, we experi-

mented with neural document embedding method, distrib-

uted memory model of paragraph vectors (PV-DM), for

shallow machine learning algorithms [19]. The learned

paragraph vector representations have 600-dimensions,

and we used the window size of 10 words, negative

sampling and frequent word subsampling rate of 10−5

for hyperparameter settings, and hierarchical softmax

for faster training [19].

For distributed word representations, we utilized a

neural word embedding model, word2vec, to process raw

texts for deep learning architecture [20, 40]. As the input

of deep learning classifiers, we used either the word em-

bedding vectors trained on our input data, or the publicly

available pre-trained word embedding fastText vectors

[41, 42], which is a 1 million word vector trained on 16

billion tokens at the subword-level. Both the vectors have

the dimensionality of 300. Words not present in the set of

pre-trained words are set as a zero vector.

Shallow learning classifiers

A total of 105 supervised shallow machine learning clas-

sifications were performed, based on 15 different data

Table 1 Fifteen semantic types selected for clinical feature

representations

TUI Semantic group Semantic type description

T017 Anatomy Anatomical Structure

T022 Anatomy Body System

T023 Anatomy Body Part, Organ, or Organ Component

T033 Disorders Finding

T034 Phenomena Laboratory or Test Result

T047 Disorders Disease or Syndrome

T048 Disorders Mental or Behavioral Dysfunction

T049 Disorders Cell or Molecular Dysfunction

T059 Procedures Laboratory Procedure

T060 Procedures Diagnostic Procedure

T061 Procedures Therapeutic or Preventive Procedure

T121 Chemicals & Drugs Pharmacologic Substance

T122 Chemicals & Drugs Biomedical or Dental Material

T123 Chemicals & Drugs Biologically Active Substance

T184 Disorders Sign or Symptom
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representations, the combination of seven interpretable

clinical feature representations with two vector represen-

tation methods (term frequency and tf-idf weighting) as

well as the paragraph vector representation, and seven

supervised shallow learning algorithms. The latter included

multinomial naïve Bayes (NB) algorithm as the baseline al-

gorithm and compared against L1- or L2-regularized

multinomial logistic regression, regularized SVM with lin-

ear kernel [43, 44], regularized linear SVM with stochastic

gradient descent (SGD), and two ensemble algorithms,

random forest and adaptive boosting. Classifiers output the

class probability of all medical subdomain labels, and the

label with the highest probability was regarded as the

predicted result and compared against the ground truth

label for evaluation.

To minimize the effect of model overfitting and model

instability, repeated five-fold cross-validation was adopted

in all modeling processes. Binary one-versus-rest classi-

fiers rather than multi-class classifiers were used to reduce

the evaluation complexity.

Deep learning classifiers

The performance of neural network architectures was com-

pared with the performance of the best-performing shallow

machine learning algorithms. Two neural network architec-

tures, CNN and convolutional recurrent neural network

(CRNN) with two distributed word representations, were

built based on the basic structure proposed by Kim and Shi

et al. [40, 45] The CNN architecture has three sets of a

one-dimensional convolutional layer with a filter size of 3

and rectified linear unit (ReLU) activation, followed by a

max-pooling layer with pooling size of 2. Then a fully con-

nected layer and a dense layer were applied for classifica-

tion with a softmax function. The CRNN architecture

combined CNN and bidirectional LSTM by adding the 64-

cell bidirectional LSTM layer after three sets of convolution

[26, 45], and before the dense layer with softmax function.

We used cross entropy as the objective function and

adopted the Adam optimization algorithm with the param-

eters provided in the original paper [46].

Portability test

To examine the model portability across the clinical

note datasets, we applied the best feature-interpretable

classifier of each dataset to classify the medical subdomains

in the other dataset. In the portability test we did not con-

sider the classifiers using distributed word or document

representations due to the issue of feature interpretability.

Evaluation

To evaluate the performance of binary classifiers, we

used balanced accuracy 1
2
�

True positive
All positive

�
True negative
All negative

� �

,

[47], precision, recall, F1 score, and area under receiver

operating characteristic curve (AUC) as performance

metrics. Statistical analyses of unequal variances t-tests

(Welch’s t-test) between groups were used as the signifi-

cance test.

Tools

The pipeline was built on cTAKES and python version

2.7.11. The Natural Language Toolkit (‘nltk’) package

was used for lexical normalization (word tokenization and

stemming process) of bag-of-words features generation,

and for the tf-idf weighting adjustment. ‘scikit-learn’ pack-

age was selected for the supervised learning algorithms

implementation and model evaluation. ‘gensim’ was used

for document embeddings. ‘tensorflow’ and ‘keras’ were

adopted for building deep neural networks, and neural

word embeddings. Data processing, statistical analysis,

and figure generation were done in Python 2.7.11 and R

3.3.2 with customized scripts. The source code of the

pipeline is available online [48].

Results

Optimized model for medical subdomain classification

We represented the clinical features in two sets of clin-

ical notes using different feature representation methods

(Table 2).

We first investigated 105 combinations of data repre-

sentations and supervised shallow learning algorithms to

generate medical subdomain classifiers for clinical notes.

The baseline classifier used the bag-of-words, term fre-

quency representation, and NB algorithm. In the iDASH

dataset, combining the hybrid features of bag-of-words +

UMLS concepts restricted to five semantic groups, with

tf-idf weighting and linear SVM algorithm yielded the best

performing classifier for medical subdomain classification

(F1 score of 0.932, AUC of 0.957), followed by bag-of-

words + all UMLS concepts or using the bag-of-words +

UMLS concepts restricted to 15 semantic types as the fea-

ture representation with tf-idf and linear SVM. The classi-

fiers built by these combinations outperformed the

Table 2 Dimension of feature sets using different data

representations

Dimension of the feature set iDASH MGH

Bag-of-words (Vocabulary size) 8704 145,991

UMLS concepts 4751 25,457

UMLS concepts restricted to five semantic groups 4532 24,458

UMLS concepts restricted to 15 semantic types 3635 18,521

Bag-of-words + UMLS concepts 13,455 171,448

Bag-of-words + UMLS concepts restricted to five
semantic groups

13,236 170,449

Bag-of-words + UMLS concepts restricted to 15
semantic types

12,339 164,512

Paragraph vector (distributed memory model) 600 600
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baseline classifier with statistical significance (p < 0.01)

(Table 3, Fig. 2 for F1 score, Additional file 1: Figure S2

for AUC).

In the MGH dataset, the linear SVM classifier with tf-

idf weighting and the hybrid feature representation of

bag-of-words + UMLS concepts restricted to five seman-

tic groups also yielded the best performance (F1 score of

0.934, AUC of 0.964), which significantly outperformed

the baseline NB classifier with the term frequency and

bag-of-words combination (Table 3, Fig. 2 for F1 score,

Additional file 1: Figure S2 for AUC). Relaxing the seman-

tic feature representation also yielded optimally perform-

ing classifiers (Fig. 2). Overall, classifiers constructed by

the combination of the hybrid feature representation of

bag-of-words + UMLS concepts restricted to five semantic

groups or 15 semantic types, with tf-idf weighting repre-

sentation and linear SVM algorithms yielded better per-

formance on classifying the clinical notes into the correct

medical subdomain in both iDASH and MGH datasets.

We further examined important features by ranking

coefficients of variables in the L1-regularized multi-

nomial logistic regression classifier. The top important

features of six medical subdomains in the iDASH and

MGH classifiers are listed in Additional file 1: Table S2.

Next, we compared the performance of the combina-

tions of two word embedding vectors and two neural net-

work architecture to the best classifier built by shallow

learning algorithms. In the iDASH dataset, utilizing pre-

trained fastText word embedding vectors with CRNN

architecture yielded the comparable performing classifier

for medical subdomain classification (AUC of 0.975, F1

score of 0.845), followed by fastText + CNN (AUC of

0.973, F1 score of 0.858) (Fig. 3). In the MGH dataset,

using our input data for word embedding training with

CRNN yielded the best performance (AUC of 0.990, F1

score of 0.881), which significantly outperformed the other

classifiers, and followed by adopting fastText word em-

bedding vectors with CRNN (Fig. 3). The deep learning

architecture with distributed word representation yielded

a lower F1 score in two datasets compared to the best-

performing shallow learning classifier. Features in the

deep learning with neural word embedding approach are

not clinically interpretable due to the nature of the distrib-

uted representation.

Error analysis

For each dataset, we compared all performance metrics

between the baseline and the best-performing feature-

interpretable classifiers. Balanced accuracies of the base-

line and the best classifiers of iDASH dataset are 0.896

and 0.932, respectively, and balanced accuracies of the

baseline and the best classifiers of MGH dataset are 0.763

and 0.925, respectively. Regardless of different combina-

tions of the clinical feature representation and machine

learning algorithm, the specificity and negative predictive

value (NPV) are consistently high. However, the recall

(sensitivity) and precision (positive predictive value) are

low in some medical subdomains (Fig. 4).

The best-performing iDASH and MGH classifiers,

which used the hybrid feature representation of bag-of-

words + UMLS concepts restricted to five semantic groups,

with tf-idf weighting and linear SVM, performed better

compared to other classifiers. Figure 4(a) shows that the

precision and F1 score of the baseline iDASH classifier

are low in medical subdomains of “Pulmonary disease”

(F1 score of 0.749 and precision of 0.667) and ‘Nephrol-

ogy’ (F1 score of 0.715 and precision of 0.667). The re-

call is low in ‘Psychiatry’ (F1 score of 0.914 and recall

Table 3 Top five best-performing interpretable shallow classifiers in iDASH and MGH datasets

Data Feature Vector Algorithm F1 AUC p-value

iDASH Bag-of-words + UMLS (5SG) Tf-idf SVM-Lin 0.932 0.957 <0.01

Bag-of-words + UMLS (All) Tf-idf SVM-Lin 0.931 0.957 <0.01

Bag-of-words + UMLS (15ST) Tf-idf SVM-Lin 0.930 0.957 <0.01

Bag-of-words + UMLS (All) Tf-idf SVM-Lin-SGD 0.928 0.955 <0.01

Bag-of-words Tf-idf SVM-Lin 0.927 0.955 <0.01

Bag-of-words Tf NB 0.893 0.935 Baseline

MGH Bag-of-words + UMLS (5SG) Tf-idf SVM-Lin 0.934 0.964 <0.01

Bag-of-words + UMLS (15ST) Tf-idf SVM-Lin 0.931 0.962 <0.01

Bag-of-words + UMLS (All) Tf-idf SVM-Lin 0.930 0.962 <0.01

Bag-of-words Tf-idf SVM-Lin 0.924 0.958 <0.01

Bag-of-words + UMLS (5SG) Tf LR-L1 0.915 0.953 <0.01

Bag-of-words Tf NB 0.755 0.867 Baseline

Abbreviation: SG Semantic groups, ST Semantic types, Tf Term frequency, Tf-idf Term frequency-inverse document frequency weighting, SVM-Lin Linear support

vector machine, SVM-Lin-SGD Linear support vector machine with stochastic gradient descent training, LR-L1 L1-regularized multinomial logistic regression,

NB Multinomial naïve Bayes. Baseline combinations are shown in bold face

Weng et al. BMC Medical Informatics and Decision Making  (2017) 17:155 Page 6 of 13



of 0.841). In the best iDASH classifier, the F1 score and

precision in the medical subdomain “Pulmonary disease”

are 0.833 and 0.804, and in ‘Nephrology’ are 0.857 and

0.818, respectively. The F1 score and recall of ‘Psychiatry’

are 0.968 and 0.938, respectively. Confusion matrices of

classification tasks using the baseline and the best iDASH

classifiers are shown in Additional file 1: Table S3.

Figure 4(b) demonstrated that the baseline classifier

for the MGH dataset yielded low precision in many

medical subdomains. Nine of 24 medical subdomains

have precision lower than 0.6 (‘Anesthesiology’, “General

surgery”, ‘Hematology’, “Infectious diseases” “Intensive

care”, ‘Neurosurgery’, “Obstetrics and gynecology”, ‘Oto-

laryngology’ and “Pulmonary disease”) and four of 24

Fig. 2 The performance of interpretable shallow learning-based classifiers (using F1 scores) built by different combinations of the clinical feature

representation method with supervised learning algorithm. In both sets of clinical notes, the combination of the hybrid features of bag-of-words +

UMLS concepts restricted to five semantic groups with tf-idf weighting and linear SVM yielded the optimal performance for clinical note classification

based on the medical subdomain of the document. a F1 score of classifiers trained on iDASH dataset, b F1 score of classifiers trained on MGH dataset.

The lines connecting data points for different clinical feature representation methods only serve to tie together the visual results from specific

algorithms on different sets of features, but should not imply continuity in the horizontal axis features
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medical subdomains have recall lower than 0.6 (“Geriatric

medicine”, “Medical oncology”, ‘Pediatrics’ and “Pediatric

neurology”). The best classifier of MGH data, however,

improves most of the measurements to above 0.8, except

precision of classifying the “Infectious disease” and “Inten-

sive care” subdomains (precision of 0.797 and 0.776, re-

spectively). F1 score of classifying all medical subdomains

are above 0.83.

Model portability

The portability of feature-interpretable classifiers built

by shallow learning algorithms shows that the overall ac-

curacy using the best iDASH classifier (with six medical

subdomains) to classify medical subdomains of MGH

clinical notes is 0.734. The classifier yielded the highest

performance in the subdomain ‘Cardiology’ (F1 score of

0.806, precision of 0.923 and recall of 0.715), and had

the lowest performance in the subdomain “Pulmonary

disease” with F1 score of 0.307, precision of 0.197 and

recall of 0.692. Other subdomains fall in between (Table 4).

The overall accuracy of using the best MGH classifier

(with 24 medical subdomains) to classify medical subdo-

mains of iDASH notes and reports is 0.520. The medical

subdomain ‘Psychiatry’ had the best classification per-

formance with F1 score of 0.844, precision of 0.794 and

recall of 0.900, followed by ‘Gastroenterology’, ‘Neurology’,

‘Cardiology’, ‘Nephrology’, then “Pulmonary disease”. The

overall accuracy of using the best iDASH deep learning

classifier to predict MGH medical subdomain is 0.244,

and the accuracy of using the best MGH deep learning

classifier to predict iDASH label is 0.534.

Among top 200, 500 and 1500 features of two data-

sets, 6.67%, 10.93% and 16.60% of features are shared

(Additional file 1: Table S4 provides the top features of

each medical subdomain), respectively.

Discussion
In this study, we found that the selection of a classifier-

building combination of the data representation and su-

pervised learning algorithm is important to yield a

better-performing and portable medical subdomain clas-

sifier for clinical notes, and we show that medical subdo-

mains can be classified accurately using the clinically

interpretable supervised learning-based NLP approach.

The contributions of this study include that (1) we first

evaluate and compare the performance of the combina-

tions of different data representations and supervised

shallow/deep learning algorithms, including CNN and

CRNN, on the medical subdomain classification using

real-world unstructured clinical notes, (2) the proposed

method can be a solution for building portable medical

subdomain classifiers for clinical notes without medical

specialization information, and (3) we have developed an

open-source pipeline for future research use [48].

Fig. 3 The performance comparison of different deep learning architecture and word embeddings with the best-performing shallow learning

classifiers. In both datasets, the best shallow learning classifier, the combination of the hybrid features of bag-of-words + UMLS concepts restricted to

five semantic groups with tf-idf weighting and linear SVM yielded the best F1 score, and comparable AUC in the medical subdomain classification task.

In iDASH dataset, CNN and CRNN with pre-trained fastText word embeddings have better performance compared with using iDASH notes-trained

word embedding vectors. On the contrary, CNN and CRNN with word embedding vectors trained by MGH notes yielded better performance

compared with pre-trained fastText word embeddings in MGH dataset
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Fig. 4 (See legend on next page.)
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Regarding previous studies for medical subdomain de-

tection in clinical documents, Doing-Harris et al. used

unsupervised clustering methods with bag-of-words plus

bag-of-UMLS concepts representation to cluster clinical

documents and identify clinical sublanguage [28].

However, the clustering method may not yield consist-

ent results since they are highly dependent on the

initialization step. The study also only provided limited

performance measurements. Kocbek et al. used the su-

pervised solution, SVM, with the bag-of-UMLS con-

cepts representation but focused more on disease

categorization for admission notes rather than clinical

subdomain classification for different note types [5]. In

contrast, we tackled the medical subdomain classifica-

tion by utilizing the existing information of specialty

labels as the proxy of clinical subdomain and performed

the supervised learning task with different shallow and

deep learning algorithms. We examined the performance

of using different word, concept and distributed represen-

tations as well. Similar to the finding of the sentence-level

text classification task [22], our results also show that the

AUCs of deep learning architecture (CNN and CRNN)

with distributed word representation performs better than

other top-performing shallow supervised learning algo-

rithms, such as linear SVM and regularized multinomial

logistic regression, at document classification. However,

F1 scores of deep learning-based classifiers are lower than

shallow classifiers. Even though shallow machine learning

algorithms with clinical lexical features yielded slightly

lower AUC, they can still achieve a faster and more inter-

pretable model with reliable results and higher F1 scores,

which may be practical for clinical decision making.

Among 105 classifiers with different classifier-building

combinations of feature representations and shallow

learning algorithms, the classifier constructed by the

combination of tf-idf weighted bag-of-words + UMLS con-

cepts restricted to specific semantic groups or semantic

types as the feature representations, and linear SVM algo-

rithm outperformed other combinations in both the iDASH

and MGH clinical note datasets. For feature representation,

Yetisgen-Yildiz et al. also achieved the best model perform-

ance using the word and phrase hybrid approach for clin-

ical note classification [33]. We also adopted the similar

bag-of-words and UMLS concept hybrid, which allows us

to capture interpretable and important tokenized words

and medical phrases that can’t be identified in concepts-

only or words-only models. For example, combined fea-

tures identify both the word ‘heart’ and the concept “con-

gestive heart failure” when “congestive heart failure”

appears in the text. The word ‘heart’ and the phrase con-

cept “congestive heart failure” are both important features

for a cardiology note, yet concepts-only models would

identify “congestive heart failure” while words-only

models would identify ‘heart’ and miss the full concept

“congestive heart failure”. Using both word and concept

level features can therefore maximize the utilization of in-

formation and improve clinical interpretability.

Adding UMLS concepts restricted to semantic groups

or semantic types on the basis of the bag-of-words fea-

ture slightly augments the classifier performance, yet

using the bag-of-words feature is necessary to yield the

optimal result. Previous studies also used the feature

space with both vocabulary and selected semantic con-

cepts to cluster clinical notes with good performance

[28, 49]. Semantic restriction reduces the size of the fea-

ture space by removing clinically irrelevant concepts and

therefore decreases the model complexity. However, the

bag-of-words feature includes some words, which may

not be recognized as medical concepts by clinical NLP

systems (e.g. abbreviations, neologisms), but would be

(See figure on previous page.)

Fig. 4 The performance across different medical subdomains in the baseline and the best interpretable classifiers on iDASH and MGH datasets.

All measurements, including precision, recall, F1 score, balanced accuracy, and AUC were compared in the a baseline (white) and the best (black)

iDASH classifiers, and the b baseline (white) and the best (black) MGH classifiers. Significantly improved performance is observed in the best

classifier, especially in difficult to separate medical subdomains, such as ‘Anesthesiology’, “Pulmonary disease”, “Intensive care” and “Infectious diseases”

Table 4 Model portability test

From iDASH to MGH From MGH to iDASH

Subdomain AUC Precision Recall F1 Subdomain AUC Precision Recall F1

Cardiology 0.828 0.923 0.715 0.806 Cardiology 0.731 0.829 0.500 0.624

Gastroenterology 0.802 0.396 0.691 0.503 Gastroenterology 0.832 1.000 0.664 0.798

Neurology 0.877 0.745 0.859 0.798 Neurology 0.775 0.902 0.567 0.696

Psychiatry 0.803 0.907 0.613 0.732 Psychiatry 0.941 0.794 0.900 0.844

Pulmonary 0.820 0.197 0.692 0.307 Pulmonary 0.545 1.000 0.089 0.164

Nephrology 0.770 0.573 0.561 0.567 Nephrology 0.634 0.750 0.273 0.400

The performance of using the best interpretable iDASH classifier to classify the medical subdomain of MGH clinical notes, and using the best interpretable MGH

model to classify the medical subdomain of iDASH documents
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important for identifying the medical subdomain of a

clinical document. Therefore, combining the bag-of-

words feature with semantic restricted medical concepts

is useful to compensate for the disadvantages of missing

those words in the pure concept approach. Many spe-

cific medical subdomains, such as ‘Psychiatry’ and ‘Neur-

ology’, yielded good performance and portability across

clinical datasets. However, some paired medical subdo-

mains such as “Pulmonary disease” and ‘Nephrology’ are

difficult to distinguish by classifiers because they often

share patients with similar clinical conditions. In the

iDASH classifiers, we found that the subdomains “Pul-

monary disease” and ‘Nephrology’ have lower precision,

and ‘Cardiology’ has relatively poor recall. This may imply

that some pulmonology and nephrology cases are misclas-

sified to cardiology. The possible cause is that patients in

pulmonology and nephrology clinics may share the same

features, such as dyspnea, with patients in cardiology

clinics. Overlapping features lead to a harder classification

task between these medical subdomains. The issue of

mixed sublanguage also resulted in the limited perform-

ance in the unsupervised approach [28]. The relatively

poor performance in ‘Anesthesiology’, “Infectious disease”,

and “Intensive care” subdomains can also be explained by

the patient similarity with other subdomains. By contrast,

certain medical subdomains, for example, ‘Neurology’,

“Orthopedic surgery”, ‘Psychiatry’, “Radiation oncology”,

and ‘Urology’, usually yield better performance because of

the uniqueness of their features.

Clinically interpretable and important features of clas-

sifiers are useful for clinicians to understand how the

classifier makes its decisions. It can also be used for de-

veloping a domain ontology for NLP-driven research in

specific medical domains [50]. Even though the deep

learning-based approach yielded better AUCs, the inter-

pretability of the model is still an issue, and we would

suggest to use shallow models for practical use. We

identified the top features of different medical subdo-

mains in the top shallow model, but some ambiguous or

clinically unrelated words and phrases also appear on

the list, which indicates that the classifier fitted not only

meaningful data but also noise. We also found that the

important features in different datasets are both

meaningful but varied. Additional file 1: Table S2 and

Table S4 show that the number of overlapping features

is limited. This is because the characteristics of the

two sets of clinical notes are different. Notes and re-

ports in the iDASH dataset include outpatient notes,

inpatient summaries, procedure reports, and examin-

ation reports, while MGH clinical notes are mainly

outpatient notes. The small overlapping of top features

may also be helpful for validating our methods. The sub-

optimal performance of the MGH classifier portability also

revealed the issue that the content of the MGH dataset is

more homogeneous in comparison with the iDASH data-

set. To achieve better performance of model portability,

source and target data may need to have similar features.

The strength of the study is that we took advantage

of the combination of clinical word and concept repre-

sentations, distributed representations, and supervised

shallow and deep learning algorithms for medical sub-

domain classification of clinical notes, which has not,

to our knowledge, been explored. We used standardized

terminology in the UMLS Metathesaurus for clinical

feature representation, and we further identified clinic-

ally relevant UMLS concepts using semantic groups

and semantic types in the Semantic Network. Using

standardized terminology can be a good knowledge rep-

resentation approach, which also provides the possibil-

ity of future clinical EHR system integration. We also

compared the performance of word embedding vectors

generated from our datasets with the publicly available

pre-trained word vectors, fastText [41, 42]. The word

vectors trained by our datasets may also be useful for

future clinical machine learning tasks.

There are also some limitations of the study. First, we

only adopted the NLP analysis tools from cTAKES. We

did not examine other clinical NLP systems for perform-

ance comparison. Though cTAKES includes an NLP

pipeline with promising performance [34], there are still

other options, such as MetaMap from the National Li-

brary of Medicine (NLM) [51], the Clinical Language

Annotation, Modeling and Processing Toolkit (CLAMP)

developed by the NLP team at The University of Texas

Health Science Center at Houston, and the name entity-

specific tool Clinical Named Entity Recognition system

(CliNER) [52]. Further investigation on different clinical

NLP systems is required to understand whether cTAKES

is the most suitable tool for use in predicting the medical

subdomain of a clinical document. Additionally, we inves-

tigated only two clinical note datasets. To be generalizable,

further investigation on more datasets is required. We also

found that a few physicians’ first names appear in our fea-

ture spaces of MGH classifiers, which indicates that the

process of deidentification was not perfect. Further im-

provement of deidentification is still required to prevent

classification tasks from using the information of specific

healthcare providers. For example, using deep learning to

replace the current dictionary-based approach might

improve performance of deidentification [53]. We also used

the UMLS Metathesaurus only for concept matching, and

ignored other information such as concept relationships.

Searching for the possibility of increasing the interpretabil-

ity of deep neural network may also further improve the

performance of similar tasks. Finally, we would need to do

additional external validation by experienced clinicians to

integrate the medical subdomain classification into real-

world clinical decision support system.
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Conclusions
Our study shows that a supervised learning-based NLP

approach is useful to develop medical subdomain classifiers.

The deep learning architecture with distributed word repre-

sentation yields better performance, yet the shallow learn-

ing algorithm with interpretable clinical data representation

has comparable results and may be more understandable

and acceptable in the clinical setting. Portable classifiers

may also be used across datasets from different institutions.

The supervised machine learning-based NLP approach to

classify the medical subdomain of a clinical note may assist

clinicians to redirect patient’s unsolved problems to ad-

equate medical specialties and experts in time purely based

on the content of clinical notes. Often clinicians encounter

patients’ clinical problems and dilemmas beyond their do-

main of expertise, which may leave questions unanswered,

and result in misdiagnosis, delayed clinical care, delayed or

failure to refer and even lead to inappropriate treatment

and management [54]. Identifying the medical subdomain

of a clinical note can also help with NLP. For example, the

subdomains may generate topics, and topics may generate

concepts, phrases and words via generative models for fur-

ther NLP applications. We plan to integrate the informa-

tion of both medical subdomains and clinical experts to

build hierarchical models to improve our methods, and will

adopt domain adaptation and transfer learning techniques

to improve the performance of model portability to con-

struct a generalizable solution.

Additional file

Additional file 1: Figure S1. The Final Dataset Selection Process of

MGH Dataset. Figure S2 The performance of classifiers (using AUC) built

by different combinations of the clinical feature representation method,

vector representation method and supervised learning algorithm. In both

datasets, the combination of the hybrid feature of bag-of-words + UMLS

concepts restricted to five semantic groups with tf-idf weighting and linear

SVM yielded the optimal performance for clinical note classification based

on the medical subdomain of the document. (a) AUC of classifiers trained

on iDASH dataset, (b) AUC of classifiers trained on MGH dataset. The lines

connecting data points for different clinical feature representation methods

only serve to tie together the visual results from specific algorithms on

different sets of features, but should not imply continuity in the horizontal

axis features. Table S1 Representative medical subdomains in the iDASH and

MGH dataset. We selected the top 24 medical subdomains from 105 medical

specialties in the MGH dataset. Table S2 Ranked top post-stemming

important features (bag-of-words + UMLS concepts restricted to five

semantic groups) of six medical subdomains identified by iDASH and

MGH classifiers. The phrases in the parentheses are the UMLS descriptions

of the corresponding UMLS CUIs. Table S3 The confusion matrices of the

classification tasks using the (a) baseline and (b) the best iDASH classifiers.

Table S4 Percentage of overlapping ranked top features of iDASH and

MGH datasets (DOCX 555 kb)
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