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Abstract 

Access to affordable healthcare is a nationwide concern that impacts a large majority 

of the United States population. Medicare is a Federal Government healthcare program 

that provides affordable health insurance to the elderly population and individuals 

with select disabilities. Unfortunately, there is a significant amount of fraud, waste, 

and abuse within the Medicare system that costs taxpayers billions of dollars and puts 

beneficiaries’ health and welfare at risk. Previous work has shown that publicly available 

Medicare claims data can be leveraged to construct machine learning models capable 

of automating fraud detection, but challenges associated with class-imbalanced big 

data hinder performance. With a minority class size of 0.03% and an opportunity to 

improve existing results, we use the Medicare fraud detection task to compare six deep 

learning methods designed to address the class imbalance problem. Data-level tech-

niques used in this study include random over-sampling (ROS), random under-sam-

pling (RUS), and a hybrid ROS–RUS. The algorithm-level techniques evaluated include 

a cost-sensitive loss function, the Focal Loss, and the Mean False Error Loss. A range of 

class ratios are tested by varying sample rates and desirable class-wise performance is 

achieved by identifying optimal decision thresholds for each model. Neural networks 

are evaluated on a 20% holdout test set, and results are reported using the area under 

the receiver operating characteristic curve (AUC). Results show that ROS and ROS–RUS 

perform significantly better than baseline and algorithm-level methods with aver-

age AUC scores of 0.8505 and 0.8509, while ROS–RUS maximizes efficiency with a 4× 

speedup in training time. Plain RUS outperforms baseline methods with up to 30× 

improvements in training time, and all algorithm-level methods are found to produce 

more stable decision boundaries than baseline methods. Thresholding results suggest 

that the decision threshold always be optimized using a validation set, as we observe 

a strong linear relationship between the minority class size and the optimal threshold. 

To the best of our knowledge, this is the first study to compare multiple data-level and 

algorithm-level deep learning methods across a range of class distributions. Additional 

contributions include a unique analysis of the relationship between minority class size 

and optimal decision threshold and state-of-the-art performance on the given Medi-

care fraud detection task.
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Introduction

Medicare is a United States (U.S.) healthcare program established and funded by 

the Federal Government that provides affordable health insurance to individuals 65 

years and older, and other select individuals with permanent disabilities [1]. Accord-

ing to the 2018 Medicare Trustees Report [2], in 2017 Medicare provided coverage to 

58.4 million beneficiaries and exceeded $710 billion in total expenditures. Medicare 

enrollment has grown to 60.6 million as of February 2019 [3]. There are many factors 

that drive the costs of healthcare and health insurance, including fraud, waste, and 

abuse (FWA) within the healthcare system. The Federal Bureau of Investigation (FBI) 

estimates that fraud accounts for 3–10% of all billings [4], and the Coalition Against 

Insurance Fraud [5] estimates that fraud costs all lines of insurance roughly $80 bil-

lion per year. Based on these estimates, Medicare is losing between $21 and $71 bil-

lion per year to FWA. Examples of fraud include billing for appointments that the 

patient did not keep, billing for services more complex than those performed, or bill-

ing for services not provided. Abusive practice is practice inconsistent with providing 

patients medically necessary services according to recognized standards, e.g. billing 

for unnecessary medical services or misusing billing codes for personal gain. Federal 

laws are in place to govern Medicare fraud and abuse, for example the False Claims 

Act (FCA) and Anti-Kickback Statute [6].

One way to improve the cost, efficiency, and quality of Medicare services is to reduce 

the amount of FWA. Manually auditing and investigating all Medicare claims data for 

fraud is very tedious and inefficient when compared to machine learning and data min-

ing approaches  [7]. As of 2017, 86% of office-based physicians and more than 96% of 

reported hospitals have adopted electronic health record (EHR) systems in accordance 

with the Health Information Technology for Economic and Clinical Health Act of 2009 

and the Federal Health IT Strategic Plan [8, 9]. This explosion in healthcare-related data 

encourages the use of data mining and machine learning for detecting patterns and mak-

ing predictions. The Centers for Medicare and Medicaid Services (CMS) joined this data-

driven effort by making Medicare data sets publicly available, stating that bad actors 

intent on abusing federal health care programs cost taxpayers billions of dollars and 

risks the well-being of beneficiaries [6].

Fraud detection using CMS Medicare data presents several challenges. The problem 

is characterized by the four Vs of big data: volume, variety, velocity, and veracity  [10, 

11]. The 9 million records released by CMS each year satisfies both high volume and 

velocity. Variety arises from the mixed-type high-dimensional features and the combin-

ing of multiple data sources. These data sets also exhibit veracity, or trustworthiness, as 

they are provided by reputable government resources with transparent quality controls 

and detailed documentation [12, 13]. The processing of big data often exceeds the capa-

bilities of traditional systems and demands specialized architectures or distributed sys-

tems [14]. Another challenge is that the positive class of interest makes up just 0.03% of 

all records, creating a severe class-imbalanced distribution. Learning from such distribu-

tions can be very difficult, and standard machine learning algorithms will typically over-

predict the majority class [15]. This paper expresses the level of class imbalance within a 

given data distribution as Nneg :Npos , where Nneg and Npos correspond to the percentage 

of samples in the negative and positive classes, respectively.
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We believe that deep learning is an important area of research that will play a critical 

role in the future of modeling class-imbalanced big data. Over the last 10 years, deep 

learning methods have grown in popularity as they have improved the state-of-the-art 

in speech recognition, computer vision, and other domains  [16]. Their recent success 

can be attributed to an increased availability of data, improvements in hardware and 

software  [17–21], and various algorithmic breakthroughs that speed up training and 

improve generalization to new data [22]. Deep learning is a sub-field of machine learning 

that uses the artificial neural network (ANN) with two or more hidden layers to approxi-

mate some function f ∗ , where f ∗ can be used to map input data to new representations 

or make predictions [23]. The ANN, inspired by the biological neural network, is a set 

of interconnected neurons, or nodes, where connections are weighted and each neuron 

transforms its input into a single output by applying a non-linear activation function to 

the sum of its weighted inputs. In a feedforward network, input data propagates through 

the network in a forward pass, each hidden layer receiving its input from the previous 

layer’s output, producing a final output that is dependent on the input data, the choice 

of activation function, and the weight parameters  [24]. Gradient descent optimization 

adjusts the network’s weight parameters in order to minimize the loss function, i.e. the 

error between expected output and actual output. Composing multiple non-linear trans-

formations creates hierarchical representations of the input data, increasing the level of 

abstraction through each transformation. The deep learning architecture, i.e. deep neu-

ral network (DNN), achieves its power through this composition of increasingly complex 

abstract representations [23]. Despite the success of DNN models in various domains, 

there is limited research that evaluates the use of deep learning for addressing class 

imbalance [25].

This study compares six deep learning methods for addressing class imbalance and 

assesses the importance of identifying optimal decision thresholds when training data 

is imbalanced. We expand upon existing Medicare fraud detection work [26] using the 

Medicare Provider Utilization and Payment Data: Physician and Other Supplier Public 

Use File provided by CMS, as it provides a firm baseline with traditional machine learn-

ing methods. This data set, referred to as Part B data hereafter, provides information on 

the services and procedures provided to Medicare beneficiaries and is currently avail-

able on the CMS website for years 2012–2016  [27]. The Part B data set includes both 

provider-level and procedure-level attributes, including the amounts charged for proce-

dures, the number of beneficiaries receiving the procedure, and the payment reimbursed 

by Medicare. To enable supervised learning, fraud labels are mapped to the Part B claims 

data using the List of Excluded Individuals and Entities (LEIE) [13]. Since we are most 

interested in detecting fraud, we refer to the group of fraudulent samples as the positive 

class and the group of non-fraudulent samples as the negative class. The LEIE is main-

tained by the Office of Inspector General (OIG), and its monthly releases list providers 

that are prohibited from participating in Federal healthcare programs. Under the Exclu-

sion Statute [28], the OIG must exclude providers convicted of program-related crimes, 

patient abuse, and healthcare fraud.

With three data-level and three algorithm-level methods for addressing class imbal-

ance, multiple configurations for each method, and two network architectures, we evalu-

ate the performance of 42 distinct DNN models. Data-level methods for addressing 
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class imbalance include random over-sampling (ROS), random under-sampling (RUS), 

and combinations of random over-sampling and random under-sampling (ROS–RUS). 

Multiple class distributions are tested for each method, i.e. 40:60, 50:50, 60:40, 80:20, 

and 99:1. Algorithm-level methods include cost-sensitive learning and two loss func-

tions specifically designed to increase the impact of the minority class during training, 

i.e. Mean False Error Loss (MFE) [29] and Focal Loss (FL) [30]. To further offset the bias 

towards the majority class, we calculate an optimal decision threshold for each method 

using a validation set. For each method configuration, we train 30 models and report the 

average area under the receiver operating characteristic curve (ROC AUC) [31] score on 

a 20% holdout test set. Analysis of variance (ANOVA) [32] and Tukey’s HSD (honestly 

significant difference) [33] tests are used to estimate the significance of the results. The 

mean optimal decision threshold, true positive rate (TPR), true negative rate (TNR), geo-

metric mean, and training time are also reported for each method.

Results indicate that eliminating class imbalance from the training data through ROS 

or ROS–RUS produces significantly better AUC scores than all other methods, i.e. 

0.8509 and 0.8505. While ROS methods perform best using the 50:50 class ratio, plain 

RUS outperforms baseline methods and achieves its highest AUC score with a 99:1 class 

ratio. Tukey’s HSD test shows that there is no significant difference between AUC scores 

of algorithm-level methods and baseline models, but we show that the algorithm-level 

methods yield more stable decision boundaries than the baseline models. Analysis of 

training times further suggests combining ROS and RUS when working with big data 

and class imbalance, as the balanced training distribution yields superior results and the 

under-sampling component improves efficiency. Results also show that the optimal deci-

sion threshold is highly correlated with the minority class size. Hence, we suggest that 

the decision threshold always be optimized with a validation set when training data is 

imbalanced. To the best of our knowledge, this is the first study to compare DNN loss 

functions designed for addressing class imbalance with random sampling methods that 

consider multiple class distributions. Additional contributions include a unique thresh-

olding assessment that stresses the importance of optimizing classification decision 

thresholds and state-of-the-art performance on the given Medicare Part B fraud detec-

tion task.

The remainder of this paper is outlined as follows. The  "Related works" section dis-

cusses other works related to CMS Medicare data, fraud detection, and deep learning 

with class-imbalanced data. The CMS and LEIE data sets are described in full, including 

all pre-processing steps, in the "Data sets" section. The "Methodology" section explains 

the experiment framework, hyperparameter tuning, class imbalance methods, and per-

formance criteria. Results are presented in the  "Results and discussion" section, and 

the "Conclusion" section concludes the study with areas for future works.

Related works

Since CMS released the Public Use Files (PUF) in 2014, a number of studies relating to 

Medicare anomaly and fraud detection have been conducted. We have selected this data 

set to evaluate deep learning methods for addressing class imbalance because it exhib-

its severe class imbalance (99.97:0.03) and previous work has left an opportunity for 

improvement. This section discusses the fraud-related works performed by our research 
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group and others and outlines studies that consider the effects of class imbalance on 

deep learning.

Medicare fraud detection

Our research group has performed extensive research on detecting anomalous provider 

behavior using the CMS PUF data. In [34], Bauder and Khoshgoftaar proposed an out-

lier detection method based on Bayesian inference that detected fraud within Medi-

care. This study used a small subset of the 2012–2014 Medicare Part B data by selecting 

dermatology and optometry claims from Florida office clinics for analysis. The authors 

demonstrated the model’s ability to identify outliers with credibility intervals, and suc-

cessfully validated the model using claims data from a known Florida provider that was 

under criminal investigation for excessive billing. In another study  [35], Bauder and 

Khoshgoftaar use a subset of the 2012–2013 Medicare Part B data, i.e. Florida claims 

only, to model expected amounts paid to providers for services rendered to patients. 

Claims data is grouped by provider type, and five different regression models are used 

to model expected payment amounts. Actual payment amount deviations from the 

expected payment amounts are then used to flag potential fraudulent providers. Of the 

five regression methods tested, the multivariate adaptive regression splines  [36] model 

is shown to outperform others in most cases, but the authors state that model selec-

tion varies between provider types. In  [37], Bauder et al. used a Naive Bayes classifier 

to predict provider specialty types, suggesting that providers practicing outside their 

specialty norm warrant further investigation. This study also used a Florida-only subset 

of 2013 Medicare Part B claims data, but it included all 82 provider types, or classes, 

yielding 40,490 unique physicians and 2789 unique procedure codes. Recall, precision, 

and F1-scores were used to evaluate the model, showing that 7 of 82 classes scored very 

highly ( F1-score > 0.90 ), and 18 classes scored reasonably ( 0.5 < F1-score < 0.90 ). The 

authors conclude that specialties with unique billing procedures, e.g. audiologist or 

chiropractic, are able to be classified with high precision and recall. Herland et al. [38] 

expanded upon the work from  [37] by incorporating 2014 Medicare Part B data and 

real-world fraud labels defined by the LEIE data set. Providers are labeled as fraudulent 

when the Naive Bayes model misclassifies the provider’s specialty type, and LEIE ground 

truth fraud labels are used to evaluate performance. They found that removing specialty 

types that have many overlapping procedures improves overall performance, e.g. Inter-

nal Medicine and Family Practice. Similarly, the authors showed that grouping like spe-

cialties improves performance further still, yielding an overall accuracy of 67%. In a later 

study, Bauder and Khoshgoftaar [39] merge 2012–2015 Medicare Part B data sets, map 

fraud labels using LEIE data, and compare multiple learners on all available data. Rather 

than focus on Florida-specific claims, like earlier reports, this study includes all available 

data for the given years, yielding 37,147,213 instances. Class imbalance is addressed with 

RUS, and various class distributions are generated to identify the optimal imbalance 

ratio for training. ANOVA is used to evaluate the statistical significance of ROC AUC 

scores, and the C4.5 decision tree and logistic regression (LR) learners are shown to sig-

nificantly outperform the support vector machine (SVM). The 80:20 class distribution 

outperformed all other distributions tested, i.e. 50:50, 65:35, and 75:25. These studies 
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jointly show that Medicare Part B claims data contains sufficient variability to detect bad 

actors and that the LEIE data set can be reliably used for ground truth fraud labels.

Our study is most closely related to the work performed by Herland et al. in  [26], 

which uses three different 2012–2015 CMS Medicare PUF data sets, i.e. Part B, 

Part D  [40], and DMEPOS  [41]. Part B, Part D, and DMEPOS claims data are used 

independently to perform cross-validation with LR, random forest (RF), and Gradi-

ent Boosted Tree (GBT) learners. The authors also construct a combined data set by 

merging Part B, Part D, and DMEPOS and assess the performance of each learner to 

determine if models should be trained on individual sectors of Medicare claims or 

all available claims data. The combined and Part B data sets scored the best on ROC 

AUC, and the LR learner was shown to perform significantly better than GBT and 

RF with a maximum ROC AUC score 0.816. We follow the same protocol in prepar-

ing data for supervised learning, described in the "Data sets" section, so that we may 

compare deep learning results to those of traditional learners.

A number of other research groups have explored the use of CMS Medicare and 

LEIE data for the purpose of identifying patterns, anomalies, and potentially fraud-

ulent activity. Feldman and Chawla  [42] explored the relationship between medical 

school training and the procedures performed by physicians in practice in order to 

detect anomalies. The 2012 Medicare Part B data set was linked with provider-level 

medical school data obtained through the CMS physician compare data set [43]. Sig-

nificant procedures for schools were used to evaluate school similarities and present 

a geographical analysis of procedure charges and payment distributions. Ko et al. [44] 

used the 2012 CMS data to analyze the variability of service utilization and payments, 

and found that the number of patient visits was strongly correlated with Medicare 

reimbursement. They also found that in terms of services per visit there was a high 

utilization variability and a possible 9% savings within the field of Urology. Chandola 

et al. [45] use healthcare claims and fraudulent provider labels provided by the Texas 

Office of Inspector General’s exclusion database to detect anomalies and bad actors. 

They employ social network analysis, text mining, and temporal analysis to show that 

typical treatment profiles can be used to compare providers and highlight abuse. A 

weighted LR model was used to classify bad actors, and experimental results showed 

that the inclusion of the provider specialty attribute increases the ROC AUC score 

from 0.716 to 0.814. Branting et al. [46] propose a graph-based method for estimating 

healthcare fraud risk within the 2012–2014 CMS PUF and LEIE data sets. Since the 

LEIE data set contains many missing NPI values, the authors use the National Plan 

and Provider Enumeration System (NPPES) [47] data set from 2015 to identify addi-

tional NPIs within the LEIE data set. This allowed the authors to increase the total 

positive fraudulent provider count to 12,000, which they then combined with 12,000 

randomly selected non-fraudulent providers. Features are constructed from behavio-

ral similarity between known fraudulent providers and non-fraudulent providers and 

risk propagation through geospatial collocation, i.e. shared addresses. A J48 decision 

tree learner was used to classify fraud with tenfold cross-validation, yielding a mean 

ROC AUC of 0.96. We believe this high AUC score is misleading, however, as the 

class-balanced context created by the authors is not representative of the naturally 

imbalanced population.
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Deep learning with class imbalance

In a recent paper [25], we surveyed deep learning methods for addressing class imbal-

ance. Despite advances in deep learning, and its increasing popularity, many researchers 

agree that the subject of deep learning with class-imbalanced data is understudied [29, 

48–52]. For the purpose of this study, we have selected a subset of data-level and algo-

rithm-level methods for addressing class imbalance to be applied to Medicare fraud 

detection.

Anand et  al.  [53] studied the effects of class imbalance on the backpropagation 

algorithm in shallow networks. The authors show that when training networks with 

class-imbalanced data, the length of the majority class’s gradient component that is 

responsible for updating network weights dominates the component derived by the 

minority class. This often reduces the error of the majority group very quickly during 

early iterations while consequently increasing the error of the minority group, causing 

the network to get stuck in a slow convergence mode. The authors of the related works 

in this section apply class imbalance methods to counter this effect and improve the 

classification of imbalanced data with neural networks.

The related works in this section often use Eq. (1) to describe the maximum between-

class imbalance level, i.e. the size of the largest class divided by the size of the smallest 

class. Ci is a set of examples in class i, and maxi{|Ci|} and mini{|Ci|} return the maximum 

and minimum class size over all i classes, respectively. This can be used interchangeably 

with our notation, e.g. a class distribution of 80:20 can be denoted by ρ = 4.

Data‑level methods

Hensman and Masko [54] explored the effects of ROS on class imbalanced image data 

generated from the CIFAR-10 [55] data set. The authors generated ten imbalanced dis-

tributions by varying levels of imbalance across classes, testing a maximum imbalance 

ratio of ρ = 2.3 . The ROS method duplicates minority class examples until all classes 

are balanced, where any class whose size is less than that of the largest is considered 

to be a minority. This increases the size of the training data, therefore increasing train-

ing time, and has also been shown to cause over-fitting in traditional machine learning 

models  [56]. Applying ROS until class imbalance was eliminated succeeded in restor-

ing model performance, and achieved results comparable to the baseline model that was 

trained on the original balanced data set.

Buda et al. [52] presented similar results and showed that ROS generally outperforms 

RUS and two-phase learning. The RUS method used by Buda et al. randomly removes 

samples from the majority group until all classes are of equal size, where any class larger 

than the smallest class is treated as a majority class. If the data is highly imbalanced, 

under-sampling until class balance is achieved may result in discarding many samples. 

This can be problematic with high capacity neural network learners, as more training 

data is one of the most effective ways to improve performance on the test set [23]. Two-

phase learning addresses this issue by first training a model on a balanced data set, gen-

erated through ROS or RUS, and then fine-tuning the model on the complete data set. 

(1)ρ =
maxi{|Ci|}

mini{|Ci|}
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By simulating class imbalance ratios in the range ρ ∈ [10, 100] on three popular image 

benchmarks, it was shown that applying ROS until class imbalance is eliminated out-

performs both RUS and two-phase learning in nearly all cases. Results from Buda et al. 

discourage the use of RUS, as it generally performs the worst. Experiments by Dong 

et al. [57] support these findings and show that over-sampling outperforms under-sam-

pling on the CelebA data set [58] with a max imbalance ratio of ρ = 49.

In this paper, we explore the use of ROS and RUS to address class imbalance at the 

data-level. Due to time constraints, we leave two-phase learning and other advanced 

data sampling strategies for future works, e.g. dynamic sampling [50]. The related works 

listed here conclude that over-sampling the minority class until the imbalance is elimi-

nated from the training data yields the best results. They do not, however, consider big 

data problems exhibiting class rarity, i.e. where very few positive examples exist. Con-

trary to these related works, comprehensive experiments by Van Hulse et al.  [15] sug-

gest that RUS outperforms ROS when using traditional machine learning algorithms, 

i.e. non-deep learning. We believe that RUS will play an important role in training deep 

models with big data. We extend these related works by testing various levels of class 

imbalance and combining ROS with RUS to generate class-balanced training data. This 

is the first study to compare ROS, RUS, and ROS–RUS deep learning methods across a 

range of class distributions.

Algorithm‑level methods

Wang et  al.  [59] employed a cost-sensitive deep neural network (CSDNN) method to 

detect hospital readmissions, a class imbalanced problem where a small percentage of 

patients are readmitted to a hospital shortly after their original visit. The authors used a 

Weighted CE loss (Eq. 2) to incorporate misclassification costs directly into the training 

process, where pi is the model output activation that denotes the estimated probability 

of observing the ground truth label yi.

The weighted CE loss multiplies the loss for each class i ∈ C , i.e. yi · log(pi) , by the cor-

responding class weight wi . They show that increasing the weight of the minority class 

to 1.5× and 2× that of the majority class improves classification results and outperforms 

several baselines, e.g. decision trees, SVM, and a baseline ANN. Incorporating the cost 

matrix into the CE loss is a minor implementation detail that is often built into modern 

deep learning frameworks, making the selection of an optimal cost matrix the most dif-

ficult task. Cost matrices can be defined by empirical work, domain knowledge, class 

priors, or through a search process that tests a range of values while monitoring perfor-

mance on a validation set.

Wang et al. [29] present the novel Mean False Error (MFE) loss function and com-

pare it to the Mean Squared Error (MSE) loss function using imbalanced text and 

image data. They constructed eight imbalanced data sets with ρ ∈ [5, 20] by sampling 

the CIFAR-100 [60] and 20 Newsgroup [61] image and text data sets. After demon-

strating how the MSE loss is dominated by the majority class, and their models fail 

(2)Weighted CE loss = −

C∑

i

wi · yi · log(pi)
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to converge, they proposed the MFE loss to increase the sensitivity of errors in the 

minority class. The proposed loss function was derived by splitting the MSE loss into 

two components, Mean False Positive Error (FPE) and Mean False Negative Error 

(FNE). The FPE (Eq. 3) and FNE (Eq. 4) values are combined to define the total system 

loss, MFE (Eq. 5), as the sum of the mean errors from each class. The proposed MFE 

loss function, and its Mean Squared False Error (MSFE) (Eq. 6) variant, are shown to 

outperform the MSE loss in nearly all cases. Improvements over the baseline MSE 

loss are most apparent when class imbalance is greatest, i.e. imbalance levels of 95:5. 

For example, the MSFE loss improved the classification of Household image data and 

increased the F1-score from 0.1143 to 0.2353 when compared to MSE.

It is unclear if Wang et al. performed mini-batch stochastic gradient descent (SGD) or 

standard batch gradient descent. We feel that this should be considered in future works, 

because when class imbalance levels are high, mini-batch gradient descent may contain 

many batches with no positive samples. This leads to many weight updates uninfluenced 

by the positive class of interest. Larger mini-batches or batch gradient descent will allevi-

ate this problem, but the benefits of smaller mini-batches may prove more valuable [23].

Lin et al. [30] proposed the FL (Eq. 7) function to address the class imbalance inher-

ent to object detection problems, where positive foreground samples are heavily out-

numbered by negative background samples. The FL reshapes the CE loss in order to 

reduce the impact that easily classified samples have on the loss by multiplying the 

CE loss by a modulating factor, αt(1 − pt)
γ . Hyper parameter γ ≥ 0 adjusts the rate 

at which easy examples are down-weighted, and αt ≥ 0 is a class-wise weight that 

is used to increase the importance of the minority class. Easily classified examples, 

where pt → 1 , cause the modulating factor to approach 0 and reduce the sample’s 

impact on the loss.

The proposed one-stage FL model, RetinaNet, is evaluated against several state-of-

the-art one-stage and two-stage detectors on the COCO [62] data set. It outscores the 

runner-up one-stage detector (DSSD513  [63]) and the best two-stage detector (Faster 

R-CNN with TDM [64]) by 7.6-point and 4.0-point precision gains, respectively. When 

compared to several Online Hard Example Mining (OHEM)  [65] methods, RetinaNet 

outscores the best method with an increase in AP from 32.8 to 36.0. By down-weight-

ing the loss of easily learned samples, the FL lends itself to not just class imbalanced 

(3)FPE =

1

N

N∑

i=1

∑

n

1

2
(d(i)

n − y(i)
n )2

(4)FNE =

1

P

P∑

i=1

∑

n

1

2
(d(i)

n − y(i)
n )2

(5)MFE =FPE + FNE

(6)MSFE =FPE
2
+ FNE

2

(7)FL(pt) = −αt(1 − pt)
γ log(pt)
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problems, but also hard-sample problems. Nemoto et al.  [66] later used the FL for the 

automated detection of rare building changes, e.g. new construction, and concluded that 

FL improves problems related to class imbalance and over-fitting. The results provided 

by Nemoto et al. are difficult to interpret, however, because the FL and baseline experi-

ments are conducted on different data distributions.

The final algorithm-level technique we consider is output thresholding, i.e. adjusting 

the output decision threshold that computes class labels from the model’s output acti-

vation. Buda et al. applied output thresholding to all experiments by dividing network 

outputs for each class by their estimated priors and found that combining ROS with 

thresholding worked especially well. Appropriate decision thresholds can also be identi-

fied by varying the threshold and comparing results on a validation set. While it is rarely 

discussed in related deep learning work, we believe that thresholding is a critical compo-

nent of training neural networks with class imbalanced data.

In this study, we evaluate the use of cost-sensitive learning, MFE loss, FL, and output 

thresholding. The first three methods are modifications to the loss function that influ-

ence network weight updates by increasing the impact of the minority class during train-

ing. Output thresholding, on the other hand, does not affect training and only changes 

the cutoff threshold that is used for determining class labels from output scores. Unlike 

data-level methods, these algorithm-level methods do not change the data distribution 

and should only have a marginal effect on training times. One disadvantage is that two 

of the three algorithm-level methods increase the number of tunable hyperparameters, 

making the process of searching for appropriate hyperparameters more time consuming.

Data sets

In this paper we use the Medicare Part B data set provided by CMS [27] for years 2012–

2016, namely the Medicare Provider Utilization and Payment Data: Physician and Other 

Supplier PUF. To enable supervised learning, a second data set, the List of Excluded Indi-

viduals and Entities (LEIE)  [13], is used to label providers within the Medicare Part B 

data set as fraudulent or non-fraudulent. In this section, we describe these data sets in 

detail and discuss the pre-processing steps that we take to create the final labeled data 

set. This process follows the procedures outlined by Herland et al. [26].

Medicare Part B data

The Medicare Part B claims data set describes the services and procedures that health-

care professionals provide to Medicare’s Fee-For-Service beneficiaries. Records within 

the data set contain various provider-level attributes, e.g. National Provider Identifier 

(NPI), first and last name, gender, credentials, and address. The NPI is a unique 10-digit 

identification number for healthcare providers [67]. In addition to provider-level details, 

records contain claims information that describe a provider’s activity within Medicare 

over a single year. Examples of claims data include the procedure performed, the average 

charge amount submitted to Medicare, the average amount paid by Medicare, and the 

place of service. The procedures rendered are encoded using the Healthcare Common 

Procedures Coding System (HCPCS) [68]. For example, HCPCS codes 99219 and 88346 

are used to bill for hospital observation care and antibody evaluation, respectively. Also 
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included in the claims data is the provider type, a categorical value describing the pro-

vider’s specialty that is derived from the original claim.

For each annual release, CMS aggregates the data over: (1) provider NPI, (2) HCPCS 

code, and (3) place of service. This produces multiple records for each provider, with one 

record for each HCPCS code and place of service combination. CMS decided to separate 

claims data by place of service, i.e. facility versus non-facility, because procedure fees 

will vary depending on where the service was performed [12]. An example of the 2016 

Part B data set is presented in Table 1.

With 28 attributes describing the claims submitted by Medicare providers, and over 

9 million rows per year, this publicly available data set is an excellent candidate for data 

analysis and machine learning. Unfortunately, it is not readily prepared for fraud detec-

tion. In the next section, we introduce a second data set that is used for the purpose of 

mapping fraud labels to the providers listed in the Medicare Part B data set.

LEIE data

Real-world Medicare provider fraud labels are identified using the publicly available 

LEIE data. The LEIE is maintained by the OIG in accordance with Sections  1128 and 

1156 of the Social Security Act [69] and is updated on a monthly basis. The OIG has the 

authority to exclude providers from Federally funded health care programs for a variety 

of reasons. Excluded individuals are unable to receive payment from Federal healthcare 

programs for any services, and must apply for reinstatement once their exclusion period 

has been satisfied. The current LEIE data format contains 18 attributes that describe the 

provider and the reason for their exclusion. Table 2 provides a sample of the February 

2019 LEIE data set. Some additional attributes not listed include first and last name, date 

of birth, address, and the provider’s reinstation date.

The LEIE exclusion type attribute is a categorical value that describes the offense 

and its severity. Following the work by Bauder and Khoshgoftaar  [35], a subset of 

Table 1 Sample of Part B data set

NPI Provider type Place 
of service

HCPCS code Number 
of services

Avg. 
submitted 
charge

1003000142 Anesthesiology F 20611 15 137.20

1003000142 Anesthesiology F 62311 88 145.00

1003000142 Anesthesiology O 99205 11 305.00

1003000142 Anesthesiology O 99213 65 109.00

1003000142 Anesthesiology F 77003 95 48.00

Table 2 Sample of February 2019 LEIE data set

Specialty NPI City Excltype Excldate

Podiatry practice 1598041998 Foresthills 1128a1 20190320

Pharmacy 1275750374 Lynbrook 1128a1 20190320

Transporation Co 0 Phoenix 1128a1 20190320

Adult Day Care Facil 0 Santa Rosa 1128a1 20190320
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exclusion rules that are most indicative of fraud is selected for labeling Medicare pro-

viders. Table  3 lists the exclusion rules used in this paper along with their manda-

tory exclusion periods. We use the NPI numbers of excluded individuals that have 

been convicted under one of these rules to identify fraudulent providers within the 

Medicare Part B data set. For these providers in the Medicare Part B data set, whose 

NPI number matches those of the LEIE data set, claims that are dated prior to the 

provider’s exclusion date are labeled as fraudulent. In doing so, we are making the 

assumption that a provider’s claims activity prior to the date that they were excluded 

from Medicare reflects fraudulent activity, as they were soon after convicted.

The LEIE data set is incomplete and contains missing values, e.g. missing NPI num-

bers denoted by 0 values. In addition, there are likely many more Medicare providers 

guilty of malpractice that have not been convicted and are therefore not included in 

the LEIE. Since this is the only mechanism by which we label Medicare providers as 

fraudulent, there will be a number of fraudulent providers that are mislabeled as non-

fraudulent, i.e. class noise. This is taken into consideration when evaluating results.

Fraud labeling

Fraudulent provider labels are generated by matching the NPI numbers of excluded 

individuals from the LEIE data set to the Medicare Part B data set. By matching on 

NPI numbers only, we can be fairly confident that we are not incorrectly labeling pro-

viders as fraudulent. One shortcoming to this approach is that the LEIE data set only 

lists NPI numbers for a small fraction of the excluded individuals, e.g. 25% in Febru-

ary of 2019. We believe that we can increase the total number of fraudulent labels by 

looking up missing NPI numbers in the NPPES registry, similar to [46], and we leave 

this for future work.

Since Medicare PUF and LEIE data have different release schedules, Herland et al. 

decided to round exclusion end dates to the nearest year. Under certain circum-

stances, the OIG has the right to waive an exclusion and allow providers to continue 

practicing, and this is denoted by the waiver date attribute. Taking the exclusion end 

date as the minimum of the exclusion date and the waiver date, providers are labeled 

as fraudulent for a given year if they are on the exclusion list for the majority of that 

year. For example, if a provider has an exclusion end date of September 2015, their 

exclusion end date will be rounded to 2016 because they were listed as fraudulent for 

Table 3 Fraud related LEIE rules [69]

Social Security Act Description Minimum exclusion period

1128(a)(1) Conviction of program-related crimes 5 years

1128(a)(2) Conviction relating to patient abuse or neglect 5 years

1128(a)(3) Felony conviction relating to health care fraud 5 years

1128(b)(4) License revocation, suspension, or surrender State dependent

1128(b)(7) Fraud, kickbacks, and other prohibited activities None

1128(c)(3)(G)(i) Conviction of second mandatory exclusion offenses 10 years

1128(c)(3)(g)(ii) Conviction of third mandatory exclusion offenses Permanent exclusion
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more than half of 2015. On the other hand, if a provider has an exclusion end date of 

February 2015, their exclusion end date will be rounded to 2015.

If a provider has an exclusion end date of 2016, then all claims activity prior to 2016 

are labeled as fraudulent for this given provider. As another example, a provider with 

an exclusion date of 2016-02-20 will have a newly defined exclusion end date of 2016. 

This provider is matched in the Part B data on NPI and all claims submitted prior to the 

year 2016 are labeled as fraudulent, i.e. 2012–2015 claims. This fraud labeling process 

accounts for both fraudulent claims activity and Medicare providers practicing during 

their mandatory exclusion period.

Data processing

All Medicare Part B data provided by CMS to date is utilized by combining years 

2012–2016. We apply feature matching to remove those features not available across 

all 5 years. Consequently, standard deviation and standardized payment attributes were 

removed from years 2012–2013 and 2014–2016, respectively. Missing data was handled 

by removing Part B records with missing NPI numbers and missing HCPCS codes. Rows 

containing HCPCS codes corresponding to prescription drugs were also removed, limit-

ing the data set to medical procedures. Unlike medical procedures, whose line_srvc_cnt 

feature quantifies the number of procedures performed, the line_srvc_cnt feature of pre-

scription-related records quantifies the volume of a specific drug, and the removal of 

prescription-related claims eliminates this inconsistency.

As we are primarily interested in detecting fraud through claims activity, many of the 

provider-level attributes are removed from the Medicare data, e.g. name and address. Of 

the Medicare data’s original 28 attributes, we keep six procedure-level attributes along 

with the provider’s NPI and gender. The resulting feature set and their corresponding 

data types are outlined in Table 4.

We then organize the data by provider for each year by grouping records on year, 

NPI, provider type, and gender. These groups contain a unique provider’s annual 

claims data, with one row for every combination of HCPCS code and place of ser-

vice. The provider type is included in the grouping because it has been shown that 

providers sometimes list different specialties on different claims  [26]. Each group is 

then aggregated, converting the multiple rows into a single row than contains sum-

mary attributes for each of the original numeric attributes, i.e. mean, sum, median, 

Table 4 Description of features chosen from the Part B data set [26]

Feature Description Type

Npi Unique provider identification number Categorical

Provider_type Medical provider’s specialty (or practice) Categorical

Nppes_provider_gender Provider’s gender Categorical

Line_srvc_cnt Number of procedures/services the provider performed Numeric

Bene_unique_cnt Number of distinct Medicare beneficiaries receiving the service Numeric

Bene_day_srvc_cnt Number of distinct Medicare beneficiary/per day services Numeric

Average_submitted_chrg_amt Average of the charges that the provider submitted for the 
service

Numeric

Average_medicare_payment_amt Average payment made to a provider per claim for the service Numeric

Exclusion Fraud labels from the LEIE data set Categorical
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standard deviation, minimum, and maximum. Stratified random sampling [24] with-

out replacement is used to create the 20% test set.

Categorical attributes, i.e. provider type and gender, must be properly encoded 

before they can be ingested by a neural network. Following the work of Herland 

et al. [26], we employ one-hot encoding, or one-of-K encoding, to convert these cate-

gorical attributes to numeric type. This process replaces the categorical variables with 

sparse one-hot vectors and increases the dimensionality of the data set from 34 to 

126. A disadvantage of one-hot encoding is that it drastically increases dimensional-

ity and fails to capture the relationship between similar providers, relationships that 

were shown to exist in previous works [38]. An alternative method that we leave for 

future work is to convert the categorical provider type variable to a dense, semantic 

embedding by following a learning procedure similar to Guo and Berkhahn  [70] or 

Mikolov et al. [71].

Data normalization is a critical step that speeds up training and influences model 

performance [72]. In this study, min–max scaling is used to map numeric input values 

to the range [0, 1] in order to preserve outlier relationships. The normalizer is fit to the 

training data and then used to scale both train and test sets.

Once all data processing steps are completed, the final Medicare Part B data set 

contains 4,692,370 samples, 125 predictors, and a fraud label. The details of the train-

ing and test sets, including class imbalance levels, are detailed in Table 5.

As illustrated in Table 5, the Medicare data set combines the challenges of both big 

data and class rarity. The total number of fraudulent samples available for training 

(1206) will be further reduced to just 1085 after holding out 10% for validation. In 

the next section, we will discuss the methods used in this case study to address these 

challenges.

Methodology

Deep learning methods for addressing class imbalance are evaluated on the Medicare 

Part B data set by fitting models on the 80% training data and evaluating performance 

on the 20% test set. First, a validation phase holds out 10% of the training data to 

evaluate model performance and tune hyperparameters. Once optimal network set-

tings are defined, models are fitted to the full training set and then applied to the test 

set. This protocol ensures that the test set does not influence hyperparameter tuning.

This section begins by discussing the runtime environment and deep learning 

frameworks used to carry out experiments. We then describe the DNN architectures 

and hyperparameters used throughout the experiments, as well as the class imbalance 

methods employed and their implementation details. Finally, we discuss the perfor-

mance metrics and statistical analysis that are used to evaluate results.

Table 5 Training and test set details

Data set Total samples Fraudulent samples % fraudulent

Training data 3,753,896 1206 0.032

Test data 938,474 302 0.032
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Runtime environment

All experiments are conducted using a high-performance computing (HPC) environ-

ment running Scientific Linux 7.4 (Nitrogen) [73]. Jobs are dispatched onto CPU nodes 

with 20 Intel(R) Xeon(R) CPU E5-2660 v3 2.60GHz processors and 128GB of RAM. 

Neural networks are implemented using the Keras  [19] open-source deep learning 

library written in Python with its default backend, i.e. TensorFlow [17]. Advantages of 

the Keras library include a simplistic Python API that enables fast prototyping, seamless 

compatibility with multiple backends and extensibility that allows for custom compo-

nents, e.g. loss functions. The specific library implementations used in this study are the 

default configurations of Keras 2.1.6-tf and TensorFlow 1.10.0.

Baseline models

The baseline neural network architecture and its hyperparameters are discovered 

through a random search procedure that evaluates models on a validation set. The num-

ber of hidden layers, the number of neurons per layer, and regularization techniques are 

the primary focus of hyperparameter tuning in this study. With the 80% of Medicare 

Part B data set aside for training, stratified random sampling is used to holdout 10% vali-

dation sets for the purpose of identifying optimal network settings. Each set of hyper-

parameters is evaluated by training ten models, using a new random 10% holdout set 

to validate each model. We compare the effectiveness of each hyperparameter set by 

averaging the ROC AUC and loss scores of the ten models and visualizing results across 

100 epochs. Experiments are restricted to deep neural networks, i.e. networks contain-

ing two or more hidden layers. Preliminary experiments sought a model with sufficient 

capacity to learn the training data, while successive experiments aimed to reduce overfit-

ting and improve generalization to new data.

We use mini-batch stochastic gradient descent (SGD) with a mini-batch size of 256. 

Mini-batch SGD approximates the gradient of the loss function by computing the loss 

over a subset of examples. This is preferred over batch gradient descent because it is 

computationally expensive to compute the loss over the entire data set, and increas-

ing the number of samples that contribute to the gradient provides less than linear 

returns  [23]. It has also been suggested that smaller batch sizes offer a regularization 

effect by introducing noise into the learning process [74]. We employ an advanced form 

of SGD that adapts parameter-specific learning rates through training, i.e. the Adam 

optimizer, as it has been shown to outperform other popular optimizers [75]. The default 

learning rate of 0.001 is used along with default moment estimate decay rates of β1 = 0.9 

and β2 = 0.999. The rectified linear unit (ReLU) activation function is used in all hid-

den layer neurons, and the sigmoid activation function is used at the output layer to 

estimate posterior probabilities  [76]. The non-saturating ReLU activation function has 

been shown to alleviate the vanishing gradient problem and allow for faster training [22]. 

These settings yielded the most desirable validation results during preliminary experi-

ments, and we therefore use these across all experiments.

The network topology was defined by first iteratively increasing architecture depth and 

width while monitoring training and validation performance. We determined that two 

hidden layers containing 32 neurons per layer provided sufficient capacity to overfit the 
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model to the training data. This was indicated by observing near-perfect performance 

on the training set and an increasing error rate on the validation set. We then explored 

regularization techniques to eliminate overfitting and improve validation performance. 

One way to reduce overfitting is to reduce the total number of learnable parameters, i.e. 

reducing network depth or width. L1 or L2 regularization methods, or weight decay, add 

parameter penalties to the objective function that constrain the network’s weights to lie 

within a region that is defined by a coefficient α [23]. Dropout simulates the ensembling 

of many models by randomly disabling non-output neurons with a probability P ∈ [0, 1] 

during each iteration, preventing neurons from co-adapting and forcing the model to 

learn more robust features [77]. Although originally designed to address internal covari-

ate shift and speed up training, batch normalization has also been shown to add regu-

larizing effects to neural networks  [78]. Batch normalization is similar to normalizing 

input data to have a fixed mean and variance, except that it normalizes the inputs to hid-

den layers across each batch. Through monitoring validation results, we determine that 

dropout with probability P = 0.5 combined with batch normalization is most effective. 

Batch normalization is applied before the activation function in each hidden unit.

Table  6 describes the baseline architecture that we have selected for Medicare fraud 

detection. This multilayer neural network contains two hidden layers and 5249 trainable 

parameters. All experiments conducted in this study use this multilayer architecture with 

the learning parameters that have been defined in this section. To determine if network 

depth affects performance, we extend this model to four hidden layers following the same 

pattern, i.e. using 32 neurons, batch normalization, ReLU activations, and dropout in 

each hidden layer. For all class imbalance methods tested, we report results for both two-

hidden-layer networks and four-hidden-layer networks across all experiments.

Class imbalance methods

We explore both data-level and algorithm-level methods for addressing class imbal-

ance. The data methods that we use consist of altering the training data distribu-

tion with ROS and RUS. The algorithm-level methods modify the loss function to 

strengthen the impact of the minority class on model training. We also identify opti-

mal decision thresholds for each model to improve overall class-wise performance.

Table 6 Baseline architecture

Layer type # of neurons # of parameters

Input 125 0

Dense 32 4032

Batch normalization 32 128

ReLU activation 32 0

Dropout P = 0.5 32 0

Dense 32 1056

Batch normalization 32 128

ReLU activation 32 0

Dropout P = 0.5 32 0

Dense 1 33

Sigmoid activation 1 0



Page 17 of 35Johnson and Khoshgoftaar  J Big Data            (2019) 6:63 

Data-level methods

Data-level methods explored in this paper include ROS, RUS, and combinations of ROS 

and RUS (ROS–RUS). For each method, we adjust the sampling rates and create dis-

tributions with varying levels of class imbalance to better understand how class imbal-

ance levels affect model training and classification performance. These distributions are 

listed in Table 7. The first row describes the training data prior to data sampling, and the 

remaining rows provide the size of the positive and negative classes after applying data 

sampling. Ntrain = nneg + npos denotes the total number of samples in the training set, 

where nneg and npos correspond to the total number of negative and positive samples, 

respectively. The level of class imbalance within each experiment’s training data is rep-

resented as the ratio of total negative samples to total positive samples, i.e. Nneg :Npos . 

Of the 3,378,506 total Medicare claims available for model training, a mere 0.03% are 

labeled positive for fraud, i.e. 1085 fraudulent samples. This combination of big data and 

class rarity poses data sampling challenges that are often ignored in related works.

The RUS procedure employed in this paper consists of randomly sampling from the 

majority class without replacement. The sampled majority class is combined with all minor-

ity samples to create the training set. Hence, class imbalance levels within the training data 

are strictly determined by the size of the sample that is selected from the majority class. Cre-

ating a 50:50 class-balanced training set with RUS requires combining all positive samples 

from the training set with a randomly selected subset of 1085 negative samples. We vary the 

size of the sampled negative class to create class ratios of 99:1, 80:20, 60:40, 50:50, and 40:60. 

These distributions effectively cover minority class sizes between 1 and 50%, and then pro-

ceed to test what happens when the minority becomes the majority, i.e. 40:60.

One advantage of applying RUS is that the resulting training set size is reduced 

significantly, drastically decreasing the time required to train a model. This feature 

decreases turnaround time and allows for fast prototyping and hyperparameter tun-

ing. Unfortunately, due to the extreme level of class imbalance in the Medicare data, 

very high reduction rates are required to create semi-balanced and balanced data 

sets. To create a class ratio of 99:1, which is still highly imbalanced, RUS-1 combines 

Table 7 Varying levels of class imbalance with ROS and RUS

Method nneg npos Ntrain nneg:npos

– 3,377,421 1085 3,378,506 99.97:0.03

RUS-1 107,402 1085 108,487 99:1

RUS-2 4390 1085 5475 80:20

RUS-3 1620 1085 2705 60:40

RUS-4 1085 1085 2170 50:50

RUS-5 710 1085 1795 40:60

ROS-1 3,377,421 33,635 3,411,046 99:1

ROS-2 3,377,421 844,130 4,221,551 80:20

ROS-3 3,377,421 2,251,375 5,628,796 60:40

ROS-4 3,377,421 3,377,421 6,754,842 50:50

ROS-5 3,377,421 5,064,780 8,442,201 40:60

ROS–RUS-1 1,688,710 1,688,710 3,377,420 50:50

ROS–RUS-2 844,355 844,355 1,688,710 50:50

ROS–RUS-3 337,742 337,742 675,484 50:50
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the positive group with a negative class sample that is just 3.18% of the original nega-

tive group. This reduces the size of the negative class training set from 3,377,421 to 

just 107,402, discarding millions of samples and likely depriving the model of valu-

able training data. As outlined in Table 7, the size of the negative class decreases as 

the levels of class imbalance decrease in methods RUS-2 through RUS-5. We expect 

to see high variance in performance when using RUS because the representation of 

the negative class in the training data will likely be very different from one run to 

the next. RUS results may be unpredictable and difficult to reproduce, as each model 

trained will learn a different subset of the majority class.

The ROS method employed in this paper consists of duplicating minority class 

samples until the desired level of class imbalance is achieved. Since there are many 

more non-fraud cases than there are fraud, the fraud cases must be over-sampled 

at high rates in order to balance out the class distributions. For example, creating a 

50:50 class-balanced training set with ROS requires sampling the minority class at 

a rate of 3.112%. In other words, 3112 positive samples are created for every single 

positive instance, increasing the size of the minority class from 1085 samples up to 

3,377,421 and approximately doubling the size of the training data set. The added data 

may improve model generalization, but at the cost of increased training times. This is 

especially exacerbated by big data and class rarity.

Finally, we combine ROS and RUS (ROS–RUS) to produce three class-balanced 

training sets. We test three ROS–RUS distributions, reducing the majority class 

by 90%, 75%, and 50% while simultaneously over-sampling the minority class until 

class balance is achieved. Higher reduction rates have the advantage of decreasing 

the size of the training set and improving efficiency. On the other hand, lower reduc-

tion rates preserve valuable information and provide a better representation of the 

majority class. For example, ROS–RUS-1 reduces the size of the majority class by 50% 

and ROS–RUS-3 reduces the size of the majority class by 90%, producing training set 

sizes of 3,777,420 samples and 675,484 samples, respectively. We expect ROS–RUS-1 

to outperform ROS–RUS-3, as both experiments have 50:50 class-balanced distribu-

tions and ROS–RUS-1 has 5× more unique training samples than ROS–RUS-3.

Unlike plain RUS, the ROS–RUS method allows us to keep a greater percentage 

of the majority class, reducing the risk of discarding too many negative samples and 

under-representing the majority class. Since the majority group has been decreased 

in size through RUS, the over-sampling rate required to balance the classes is going 

to be less than would be required if using plain ROS. As shown in Table 7, the largest 

ROS–RUS training set has 3,377,420 samples, which is still smaller than the original 

training set. We find these methods most favorable when working with big data and 

class rarity, as they simultaneously maximize efficiency and performance.

We naively implement data sampling by creating a new training set from the original, 

where the new training set contains randomly duplicated minority samples, a random 

subset of the majority group, or a combination of the two and the respective over-sam-

pling and under-sampling rates are defined by the desired class distribution. Alterna-

tively, the same effect can be achieved by building the data sampling component into the 

mini-batch SGD implementation. When over-sampling with big data and class rarity, the 

latter implementation can significantly reduce memory requirements during training.
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Algorithm-level methods

We assess the use of three algorithm-level methods that address class imbalance by 

modifying the loss function. Cost-sensitive learning is used to increase the importance 

of the positive class by incorporating class weights into the CE loss. Two new loss func-

tions designed for class-imbalanced data, MFE  [29] and FL  [30], are also evaluated. 

Unlike data-level methods for addressing class imbalance, these methods do not alter 

the underlying class distributions.

The weighted CE loss (Eq.  2) is used to create a cost-sensitive deep neural network 

(CoSen), similar to the work by Wang et al. [59]. We consider two approaches for balanc-

ing the loss contributions made by each class, increasing the contribution of the positive 

class and decreasing the contribution of the majority class. Both approaches are defined 

by the estimated class priors, and their corresponding cost matrices are listed in Table 8. 

The Keras deep learning library provides built-in support for class weights, allowing 

these costs to be supplied to the training step in the form of (label, weight) pairs.

Cost-sensitive learning is similar to ROS and RUS in the sense that both methods 

increase or decrease the loss contribution of a particular class. For example, in ROS-4 we 

balance the contribution to the network loss by showing the model 3112 copies of each 

positive sample. In the CoSen-1 method, on the other hand, we multiply the loss gener-

ated from one sample by 3112. In both cases, we are increasing the loss that one sample 

generates by 3.112%. Unlike CoSen-1, however, ROS-4 has the advantage of training the 

model with batches that contain an equal number of positive and negative samples. On 

the other hand, models trained with CoSen-1 will see many mini-batches with no posi-

tive samples in them, resulting in many weight updates that are not influenced by the 

positive class. For this reason, we expect the cost-sensitive learning progress to be less 

stable than the data sampling methods.

In our second set of algorithm-level experiments, we address class imbalance by 

replacing the CE loss with the MFE loss (Eq. 5) [29]. This loss function helps to balance 

class-wise loss contributions by computing the loss as the sum of the average positive 

class error and the average negative class error. We also consider the variant proposed 

by Wang et al., the MSFE loss (Eq. 6). We have not provided a table summarizing these 

experiments, MFE and MSFE, because they do not contain any tunable hyperparameters.

The final algorithm-level method explored in this paper is the FL (Eq. 7) that was pro-

posed by Lin et al. [30]. We expect this loss to down-weight the easily classified negative 

samples, allowing the difficult positive samples to contribute more to the loss and better 

influence weight updates. One important detail provided by Lin et  al. is the use of class 

priors in initializing output layer bias weights, a strategy explained further in [23]. This ini-

tialization proved very important to our FL experiments, as preliminary experiments with 

default bias initialization yielded poor results (AUC < 0.70). Through observing training 

and validation scores, we found initializing output bias weights with the prior π = 0.01 

Table 8 Cost-sensitive learning experiments

Method wpos wneg

CoSen-1 3112 1

CoSen-2 0.9997 0.0003
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to be most effective, and we used this value for all FL experiments. We use a fixed value 

for the FL weight parameter, i.e. α = 0.25 while varying the modulating factor in the range 

γ ∈ [2, 5] , as outlined in Table 9.

Performance metrics

This study utilizes multiple complementary evaluation metrics to provide a clear under-

standing of model performance and class-wise score trade-offs [79]. The confusion matrix 

(Table 10) is constructed by comparing predicted labels to ground truth labels, where the 

predicted labels are dependent on output scores and the decision threshold.

We report the true positive rate (TPR), true negative rate (TNR), and geometric mean 

(G-Mean) scores on all experiments. The TPR (Eq. 8), or Recall, measures the percentage of 

the positive group that was correctly predicted to be positive, while the TNR (Eq. 9) meas-

ures the percentage of the negative group correctly predicted to be negative. Since the TPR 

and TNR scores are each derived from just one class, i.e. the positive or negative class, they 

are insensitive to class imbalance. For this same reason, reporting one without the other 

would be misleading and incomplete. For example, baseline models always predicting the 

negative class will have a TNR of 100%, but this model is useless as it fails to capture any 

of the positive class. The G-Mean (Eq. 10) summarizes a model’s total predictive power by 

combining TPR and TNR.

The performance metrics listed thus far are all dependent on the decision threshold 

that is used to assign labels to output probability estimates. In this study, we find that 

a default threshold of 0.5 causes baseline models to always predict the non-fraudulent 

label. Therefore, we rely on the threshold-agnostic ROC AUC score to determine how 

well a model can discriminate between the positive and negative class. The ROC curve is 

(8)TPR =
TP

TP + FN

(9)TNR =
TN

TN + FP

(10)G-Mean =
√
TPR × TNR

Table 9 Focal loss experiments

Method α γ

FL-1 0.25 2

FL-2 0.25 3

FL-3 0.25 4

FL-4 0.25 5

Table 10 Confusion matrix

Actual positive Actual negative

Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)
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constructed by plotting the TPR against the false positive rate (FPR) over a range of deci-

sion thresholds, and the AUC is the area under the ROC curve. By the very derivation of 

the AUC score, if a model outputs class probability scores that produce reasonable AUC 

scores ( > 0.70 ), then there must exist a decision threshold that will yield reasonable TPR 

and TNR scores.

We have found that the level of class imbalance within the training data has a signifi-

cant impact on the range of output probability scores produced by neural networks. 

Therefore, we believe that selecting an optimal decision threshold using a validation set 

is a critical component of learning from class-imbalanced data. In the next section, we 

explain how optimal decision thresholds are identified.

Threshold moving

Through monitoring ROC AUC scores on baseline models during training and valida-

tion, we observe reasonable ROC AUC scores ( > 0.70 ). However, consistent TPR and 

TNR scores of 0.0 and 1.0 suggested that the default decision threshold of 0.5 was too 

high, causing the model to always predict the negative class. To improve overall accuracy 

and better illustrate the efficacy of DNNs in detecting Medicare fraud, we apply thresh-

old moving to each method independently.

Selecting an optimal decision threshold should be driven by the problem definition 

and requirements. For example, a cancer detection system will usually maximize recall 

because false negatives are life-threatening. In our Medicare fraud detection system we 

prefer a high TPR over a high TNR, as detecting fraud is more important than detecting 

non-fraud. Additionally, we wish to approximately balance the TPR and TNR rates in 

order to maximize the model’s total predictive power. We use these goals to construct 

a procedure (Algorithm 1) for identifying optimal decision boundaries using validation 

data. For every experiment, the optimal decision threshold is calculated for each of the 

ten validation models, averaged, and then applied to the test set.

input : targets y, output activations p

output: optimal threshold

best thresh ← curr thresh ← max gmean ← 0;

delta thresh ← 0.0005;

while curr thresh < 1.0 do

ŷ ← ApplyThreshold(y, p, curr thresh);
tpr, tnr, gmean ← CalcPerformance(y, ŷ);
if tpr < tnr then

return best thresh;

end

if gmean > max gmean then

max gmean ← gmean;

best thresh ← curr thresh;

end

curr thresh ← curr thresh + delta thresh;

end

return best thresh;

Algorithm 1: Optimal Decision Threshold

The TPR, TNR, and G-Mean results presented in this study are dependent on this thresh-

old selection procedure. Class-wise scores can be adjusted to increase or decrease bias 

towards the positive class by defining a new threshold selection procedure.
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Significance testing

One-way ANOVA and Tukey’s HSD test are used to estimate the significance of ROC 

AUC results with a significance level of α = 0.05 . ANOVA calculates a p-value from the 

between-method variance, within-method variance, and degrees of freedom. If p < α , we 

reject the null hypothesis that method means are statistically equal and conclude that there 

exists a significant difference between class imbalance methods based on ROC AUC scores 

with 95% confidence. Tukey’s HSD test is a multiple comparison procedure that determines 

which method means are statistically different from each other by identifying differences 

that are greater than the expected standard error. Methods are assigned to alphabetic 

groups based on the statistical difference of AUC means, e.g. group a is significantly differ-

ent from group b.

Results and discussion

We present the average ROC AUC, TPR, TNR, and G-Mean scores for each set of experi-

ments, grouped by method type, e.g. ROS, RUS, cost-sensitive, etc. When discussing 

method results, -2 or -4 are appended to method names to distinguish between network 

architectures containing two and four hidden layers, respectively. Within each group, the 

highest average AUC score is listed in bold font. The best methods from each group are 

then selected for further analysis. The ANOVA and Tukey’s HSD tests are used to estimate 

the statistical significance of the results of these methods and to identify the best method 

for this problem with a confidence greater than 95%. Finally, training times, decision 

boundaries, and G-Mean scores are compared across the best methods from each group.

Baseline model performance

Table 11 lists the results of the baseline DNNs defined in the "Baseline models" section. To 

better establish a firm baseline for the 2012–2016 Medicare Part B fraud detection prob-

lem, we have included scores of three traditional machine learning algorithms. Table 12 

lists AUC scores for LR, RF, and GBT learners, averaged across 10 runs of fivefold cross-

validation. No class imbalance methods are applied when obtaining these baseline results. 

The DNN Baseline-2 performed second best with an average ROC AUC of 0.8058, run-

ner up to the LR learner with an average ROC AUC of 0.8076. The LR and DNN learners 

all outperformed the two tree-based learners. Baseline-2 outperforms Baseline-4 based 

Table 11 Average baseline DNN results (30 runs)

Italic font indicates the maximum ROC AUC score

Method Hidden layers Decision 
threshold

ROC AUC TPR TNR G‑Mean

Baseline-2 2 0.0002 0.8058 0.8280 0.6099 0.7088

Baseline-4 4 0.0003 0.8018 0.7488 0.7135 0.7301

Table 12 Average results of traditional learners (10 runs)

Italic font indicates the maximum ROC AUC score

Logistic regression Random forest Gradient Boosted Tree

Avg ROC AUC 0.8076 0.7937 0.7990
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on average AUC scores, suggesting that increasing network depth does not improve 

results.

We would like to stress the importance of the decision threshold, noting that it was 

not until the threshold was decreased to 0.0002 and 0.0003 that the baseline DNNs 

achieved reasonable TPR and TNR. Using a default threshold of 0.5 causes the model to 

predict the negative class (non-fraud) for all test samples. If ROC AUC was not moni-

tored and thresholding was not applied, this model would appear to be useless since the 

default threshold would predict all new samples to be non-fraudulent. We also observe 

that the optimal decision threshold is approximately the same as the minority class size, 

i.e. 0.03%. This relationship is investigated further in the "Analysis of decision thresholds" 

section.

RUS performance

Table 13 lists the results obtained when using RUS to vary the level of class imbalance 

within the training data. RUS-1-2, with a 99:1 class distribution, scored the highest of 

the RUS methods and outperformed all baseline learners, with an average ROC AUC 

of 0.8124 and G-Mean of 0.7383. RUS-2-2, with an 80:20 class distribution, did not per-

form as well as RUS-1-2, but it does outperform the baseline DNN models.

Results show that the average performance decreases as the level of class imbalance 

decreases through RUS, i.e. the size of the negative class available for training decreases. 

Recall that the Medicare Part B data set exhibits both big data and class rarity, and that 

creating class-balanced training sets with RUS requires discarding millions of negative 

samples. These results suggest that maintaining a sufficient representation of the major-

ity class is more important than reducing the level of class imbalance, and that under-

sampling until classes are balanced can degrade performance. We continue to observe 

that two-hidden-layer networks outperform four-hidden-layer networks and that there 

exists a strong relationship between the level of class imbalance and the optimal decision 

threshold.

Since the AUC performance increases as the size of the majority class increases, two 

additional RUS experiments were conducted to determine if further increasing the 

majority class size will continue to increase performance. Following the same protocol 

as other experiments, class ratios of 99.5:0.5 and 99.9:0.1 are evaluated. Results in Fig. 1 

Table 13 Average RUS results (30 runs)

Italic font indicates the maximum ROC AUC score

Method nneg:npos Hidden 
layers

Decision 
threshold

ROC AUC TPR TNR G‑Mean

RUS-1-2 99:1 2 0.0110 0.8124 0.7807 0.6987 0.7383

RUS-1-4 4 0.0145 0.8040 0.7581 0.7002 0.7265

RUS-2-2 80:20 2 0.2680 0.8076 0.7521 0.7163 0.7338

RUS-2-4 4 0.3520 0.7920 0.7674 0.6853 0.7228

RUS-3-2 60:40 2 0.4200 0.8043 0.7783 0.6700 0.7212

RUS-3-4 4 0.5370 0.7907 0.7978 0.6288 0.7021

RUS-4-2 50:50 2 0.4970 0.8027 0.7864 0.6601 0.7195

RUS-4-4 4 0.6078 0.7913 0.7778 0.6422 0.6966

RUS-5-2 40:60 2 0.5730 0.7994 0.7802 0.6588 0.7154

RUS-5-4 4 0.7060 0.7802 0.7226 0.6462 0.6412
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show that increasing the size of the majority class beyond 99% does not improve perfor-

mance beyond that of RUS-1-2. This suggests that both the class imbalance level and the 

representation of the majority class are important and that a validation set is required to 

find the best configuration.

ROS performance

Table 14 lists the results obtained by varying the training set’s class distribution through 

ROS. Method ROS-4-2, with a 50:50 class distribution, performed the best with an aver-

age ROC AUC of 0.8505 and average G-Mean of 0.7692. ROS-4-2 also shows improve-

ments to class-wise accuracy scores when compared to RUS, scoring a 0.8084 TPR 

and 0.7324 TNR. ROS-5-2 achieved similar results (0.8503 AUC) by over-sampling 

the minority class until there were more positive samples than negative samples, i.e. 

60:40. ROS-1-4, with the highest level of class imbalance in its training set, performed 

the worst with an average ROC AUC of 0.8325, but still outperformed all RUS methods 

from Table 13.

Fig. 1 RUS: majority class size vs average AUC (30 runs)

Table 14 Average ROS results (30 runs)

Italic font indicates the maximum ROC AUC score

Method nneg:npos Hidden 
layers

Decision 
threshold

ROC AUC TPR TNR G‑Mean

ROS-1-2 99:1 2 0.0110 0.8383 0.8572 0.6334 0.7338

ROS-1-4 4 0.0130 0.8325 0.8064 0.6857 0.7372

ROS-2-2 80:20 2 0.2410 0.8484 0.8282 0.6926 0.7549

ROS-2-4 4 0.3000 0.8440 0.8497 0.6165 0.7109

ROS-3-2 60:40 2 0.4080 0.8454 0.8056 0.7198 0.7582

ROS-3-4 4 0.4370 0.8438 0.8163 0.6820 0.7385

ROS-4-2 50:50 2 0.4530 0.8505 0.8084 0.7324 0.7692

ROS-4-4 4 0.4740 0.8389 0.8066 0.6861 0.7365

ROS-5-2 40:60 2 0.5630 0.8503 0.8163 0.7272 0.7701

ROS-5-4 4 0.5950 0.8423 0.8086 0.7023 0.7508
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Similar to related works by Hensman and Masko [54] and Buda et al. [52], our results 

suggest that over-sampling until class imbalance is eliminated from the training data is 

best for neural networks. We find that ROS outperforms RUS in all cases, which also 

supports related works  [52, 57]. Networks with two hidden layers consistently outper-

form those with four hidden layers, and optimal decision thresholds increase near-line-

arly with the class imbalance level.

ROS–RUS performance

Results from the six ROS–RUS experiments are illustrated in Table  15. The Neg. 

Class Reduction column denotes the amount of the majority class that was discarded 

prior to applying over-sampling. For example, ROS–RUS-2 creates a 50:50 class dis-

tribution in the training data by first removing 75% of the negative class, and then 

over-sampling the positive class until they are balanced. All three ROS–RUS meth-

ods compete closely with the best ROS method and outperform both baseline and 

RUS learners. ROS–RUS-2-2 performs the best across all data-level methods with an 

average ROC AUC of 0.8509 and G-Mean of 0.7710. ROS-1-2 and ROS-3-2 perform 

nearly as well, with average AUC scores of 0.8500 and 0.8477, respectively. ROS–RUS-

3, with the highest reduction rate, performs the worst of all the ROS–RUS methods.

ROS–RUS results continue to show that balanced training distributions yield bet-

ter ROC AUC and G-Mean scores. Results also suggest that when working with big 

data containing millions of records, training with a sufficiently large random sam-

ple of the majority class will perform as well as the full majority class. For this data 

set, we observe that reducing the size of the majority class representation to just 10% 

(ROS–RUS-3) begins to degrade performance. The exact value of the reduction rate 

that will cause performance to degrade significantly is problem-specific, however, and 

will depend on various factors including class distributions and data redundancy.

One of the greatest achievements of the ROS–RUS methods is that they maintain 

model performance while drastically reducing training costs due to the reduced size 

of the training set. For example, ROS–RUS-2 methods train approximately 4× faster 

than ROS-4 methods. This allows for faster turnaround times during preliminary 

experiments and hyperparameter tuning and is particularly useful when working with 

big data.

Table 15 Average ROS–RUS results (30 runs)

Italic font indicates the maximum ROC AUC score

Method Neg. Class 
Reduction 
(%)

nneg:npos Hidden 
layers

Decision 
threshold

ROC AUC TPR TNR G‑Mean

ROS–RUS-1-2 50 50:50 2 0.5090 0.8500 0.8029 0.7354 0.7665

ROS–RUS-1-4 4 0.4820 0.8454 0.8064 0.7189 0.7597

ROS–RUS-2-2 75 50:50 2 0.5218 0.8509 0.7876 0.7553 0.7710

ROS–RUS-2-4 4 0.5140 0.8443 0.7992 0.7175 0.7526

ROS–RUS-3-2 90 50:50 2 0.4850 0.8477 0.8104 0.7209 0.7625

ROS–RUS-3-4 4 0.5020 0.8425 0.8063 0.7161 0.7585



Page 26 of 35Johnson and Khoshgoftaar  J Big Data            (2019) 6:63 

Cost‑sensitive performance

Table  16 lists the average cost-sensitive learning results. Based on AUC scores, 

CoSen-1-2 slightly outperforms CoSen-2-2 with scores of 0.8075 and 0.8072, respec-

tively. Based on G-Mean scores, however, CoSen-2-2 scores higher than CoSen-1-2 

with scores of 0.7290 and 0.7283, respectively. There is similarly little difference 

between CoSen-1-2 and CoSen-2-2 TPR and TNR scores, and we conclude that these 

two methods perform approximately the same. These AUC scores are only marginally 

better than those of the baseline models. The networks comprised of two hidden lay-

ers continue to outperform those with four hidden layers.

One notable difference between the cost-sensitive method and the data-level meth-

ods is that the cost-sensitive method has produced an output decision boundary near 

0.5. Similar to the ROS and RUS methods with 50:50 balanced distributions, the cost-

sensitive method is completely balancing out the loss contributions made by the neg-

ative and positive class. This allows the model to receive weight updates equally from 

both classes and arrive at a default decision boundary of 0.5. We believe that this is 

dependent on the cost-matrices defined in Table 8 and that less balanced class-wise 

costs would produce a different decision boundary.

MFE and MSFE performance

Table 17 summarizes the MFE and MSFE loss function results. All four of the MFE 

and MSFE loss results have AUC scores in the range [0.8003,  0.8065] and G-Mean 

scores in the range [0.7200, 0.7257], i.e. there is very little difference in performance. 

MSFE-2 does perform the best with a AUC of 0.8065, and for both variants of the loss 

function the two-hidden-layer networks outperform their four-hidden-layer alterna-

tives. Based on AUC scores, the CoSen-1-2 and LR learners perform better than the 

MFE and MSFE learners.

Table 16 Average cost-sensitive results (30 runs)

Italic font indicates the maximum ROC AUC score

Method wpos wneg Hidden 
layers

Decision 
threshold

ROC AUC TPR TNR G‑Mean

CoSen-1-2 3112 1 2 0.4760 0.8075 0.7574 0.7031 0.7283

CoSen-1-4 4 0.4480 0.8011 0.8008 0.6522 0.7213

CoSen-2-2 0.9997 0.0003 2 0.4780 0.8072 0.7529 0.7086 0.7291

CoSen-2-4 4 0.4825 0.8028 0.7265 0.7389 0.7318

Table 17 Average MFE and MSFE loss results (30 runs)

Italic font indicates the maximum ROC AUC score

Method Hidden layers Decision 
threshold

ROC AUC TPR TNR G‑Mean

MFE-2 2 0.0350 0.8041 0.7727 0.6828 0.7249

MFE-4 4 0.0290 0.8003 0.7741 0.6727 0.7200

MSFE-2 2 0.2890 0.8065 0.7862 0.6707 0.7251

MSFE-4 4 0.2980 0.8010 0.7715 0.6847 0.7257
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Despite the class imbalance levels in the training data, we observe that the optimal 

decision thresholds are significantly closer to 0.5 than those of the baseline models. 

This is expected, as these learners compute the loss as the sum of average false posi-

tive errors and average false negative errors, preventing one single class from domi-

nating the training process.

Focal loss performance

Results in Table 18 show that the best FL score (AUC 0.8073) is achieved by FL-2-2 

with γ = 3 and two hidden layers. The average AUC of FL-2-2 is nearly the same 

as that of CoSen-1-2, i.e. 0.8073 vs. 0.8075, and it shows a slight improvement over 

MSFE-2’s AUC of 0.8065.

Adjusting the rate γ at which easy samples are down-weighted appears to have a 

minimal impact on the average performance, but increasing γ does move the optimal 

decision threshold closer to 0.5. If we were using a default decision threshold of 0.5, 

we would observe progressively better TPR and TNR results as γ increases. Unlike the 

results of Lin et al. [30], we do not observe the best results with parameters α = 0.25 

and γ = 2 . We can see that these values do produce the strongest bias towards the 

positive class, however, as it yields very unbalanced TPR and TNR scores of 0.8741 

and 0.5202, respectively. These results suggest that the use of FL will require addi-

tional hyperparameter tuning, as weighting parameters appear to be problem specific.

Statistical analysis

Area under the curve scores are used to select the best methods from each group 

for further analysis, i.e. Baseline-2, RUS-1-2, ROS-4-2, ROS–RUS-2-2, CoSen-1-2, 

MSFE-2, and FL-2-2. A one-way ANOVA test (Table 19) with a significance level of 

Table 18 Average focal loss results (30 runs)

Italic font indicates the maximum ROC AUC score

Method α γ Hidden 
layers

Decision 
threshold

ROC AUC TPR TNR G‑Mean

FL-1-2 0.25 2 2 0.0315 0.8015 0.8741 0.5202 0.6722

FL-1-4 4 0.0315 0.8019 0.8167 0.6264 0.7115

FL-2-2 0.25 3 2 0.0730 0.8073 0.7616 0.7019 0.7295

FL-2-4 4 0.0730 0.8020 0.7912 0.6595 0.7184

FL-3-2 0.25 4 2 0.1195 0.8071 0.7342 0.7309 0.7310

FL-3-4 4 0.1190 0.8025 0.7769 0.6781 0.7230

FL-4-2 0.25 5 2 0.1615 0.8072 0.7574 0.7018 0.7267

FL-4-4 4 0.1615 0.8030 0.7646 0.6952 0.7267

Table 19 One-way ANOVA results (AUC)

Source DF Sum Sq Variance F‑value p‑value

Between 6 0.0793 0.0132 1935 < 2.0e−16

Within 203 0.00138 7.00e−06

Total 209 0.0807
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α = 0.05 is used to estimate the significance of the difference between method AUC 

scores. With p < 2.0e−6 < α , we can conclude that mean AUC results are signifi-

cantly different between methods.

Tukey’s HSD results (Table 20) further groups these select class imbalance methods 

into three distinct categories, i.e. a, b, and c. These groups are defined by the pair-

wise statistical differences between method AUC scores, and each group is statisti-

cally different from the other with a confidence of at least 95%.

ROS–RUS-2-2 and ROS-4-2 in group a obtain significantly higher scores than all 

other methods, with a mean AUC of 0.8509 and 0.8505, respectively. RUS-1-2, placed 

in group b with an average AUC score of 0.8124, performs significantly better than the 

baseline and algorithm-level methods. All algorithm-level methods perform approxi-

mately the same as the baseline DNNs, according to ROC AUC scores. Subsequent sec-

tions will compare these methods across additional criteria, as this method ranking is 

based solely on AUC scores.

Training time analysis

Table 21 lists the average time to complete one training epoch for each method, where 

averages are computed across 50 epochs. We have included the size of the training 

set, Ntrain , because this has the greatest influence on total training time. Other fac-

tors that will impact the total training time include network topology, activation func-

tions, and loss functions, i.e. any hyperparameter that affects the total number of matrix 

Table 20 Tukey’s HSD test results (AUC)

Method Group AUC sd Min Max

ROS–RUS-2-2 a 0.8509 0.0038 0.8433 0.8591

ROS-4-2 a 0.8505 0.0038 0.8430 0.8594

RUS-1-2 b 0.8124 0.0030 0.8045 0.8170

CoSen-1-2 c 0.8075 0.0012 0.8048 0.8100

FL-2-2 c 0.8073 0.0013 0.8045 0.8102

MSFE-2 c 0.8065 0.0023 0.7972 0.8090

Baseline-2 c 0.8058 0.0013 0.8029 0.8080

Table 21 Average training time per epoch

Method Time (s) sd Ntrain

RUS-1-2 1.9213 0.0294 108,487

ROS–RUS-2-2 31.0784 0.7683 1,688,710

MSFE-2 59.8842 1.2310 3,378,506

FL-2-2 62.3954 1.3034 3,378,506

Baseline-2 63.0775 1.8798 3,378,506

CoSen-1-2 65.4384 1.8057 3,378,506

ROS-4-2 128.2847 3.8514 6,754,842
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operations. Since all methods were trained for exactly 50 epochs, we can compare meth-

ods directly using the time to train one epoch.

Taking training times into consideration, we prefer ROS–RUS-2-2 over ROS-4-2 

because AUC scores are statistically the same and ROS–RUS-2-2 trains approximately 

4× faster. The speed up of ROS–RUS-2-2 is the result of the majority class being 

reduced by 75% before over-sampling the minority class. This produces a training set 

approximately 4× smaller than that of ROS-4-2 and 2× smaller than the baseline and 

algorithm-level methods. RUS-1-2 sees more than a 30× speed up in training when 

compared to baseline and algorithm-level methods.

Based on these timings and Tukey’s HSD test, we find that combining ROS and RUS 

is very effective when training neural networks on big data with severe class imbalance. 

We suggest the use of plain RUS for preliminary experimentation and hyperparameter 

tuning, as RUS has been shown to outperform baseline and algorithm-level methods 

while providing significant improvements to turnaround times.

Analysis of decision thresholds

When comparing the ROS and RUS method results, and their varying class distribu-

tions, a relationship between the level of class imbalance within the training data and 

the optimal decision threshold is apparent. More specifically, when training networks 

comprised of two hidden layers with the cross-entropy loss, the learned decision bound-

ary appears to fall near the minority class distribution size. For example, Baseline-2 has a 

minority class ratio of 0.0003, and the average optimal decision boundary calculated on 

the trained model is 0.0002. On the other hand, ROS-4-2 has a minority class ratio near 

0.5, and the average optimal decision boundary was found to be 0.4530.

To add rigor to this observation, we fit linear models to this data with the Ordinary 

Least Squares [80] method. For each of the baseline, ROS, RUS, and ROS–RUS valida-

tion runs, i.e. 10 runs per method/architecture pair, the minority class ratio size is plot-

ted against the calculated optimal decision threshold. Furthermore, we group this data 

by network topology to observe how architecture type impacts the learned decision 

boundary. These results are illustrated in Fig. 2 with 0.01 horizontal jitter and 95% confi-

dence interval bands.

The two-hidden-layer networks show a strong linear relationship between the 

minority class size and the optimal decision threshold, with r2 = 0.987 and p-value = 

6.70e−132. The strength of this relationship is weakened slightly when the network 

depth is increased to four hidden layers, with an r2 = 0.964 and p-value = 1.73e−102.

Figure 2 shows that the number of hidden layers impacts the learned decision bound-

ary. Visually examining the optimal decision thresholds from the other methods, it is 

clear that the loss function also has a significant impact on the output decision bound-

ary. For example, Baseline-2 and FL-2-2 are both fit to data with a minority size of 0.03%, 

but the FL-2-2 threshold is an order of magnitude larger than Baseline-2. In addition, we 

observed that some methods produce a larger between-class margin at the output layer. 

With a larger between-class margin at the output layer, the decision threshold will be 

more stable and the classifier will be more confident in its predictions.

We analyze the decision boundary margins further by calculating the range of accept-

able decision thresholds for each method. For this problem, we loosely define this range 
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as the difference between the minimum and maximum decision thresholds that satisfy 

G-Mean > 0.7 . Using the best methods from each group, we calculate these thresholds 

using the decision threshold data from the validation step. We average the threshold 

range across each method’s ten validation runs. Since the baseline learner’s threshold is 

orders of magnitude smaller than those learned by the class imbalance methods, we pre-

sent these results in Fig. 3 in logarithmic scale.

Through visualizing the approximate range of acceptable decision thresholds, we find 

that all three algorithm-level methods produce larger decision boundaries at the output 

layer than the baseline DNNs. We believe that these larger class-separating boundaries 

make the model more robust to threshold selection and should therefore improve class-

wise performance scores. This is further supported by the average G-Mean scores pre-

sented in Fig. 4. We observe that algorithm-level methods yield higher average G-Mean 

scores when compared to the baseline models and that G-Mean scores improve over-

all as the decision boundary increases. The Baseline-2 model, which has the small-

est margin, has the greatest G-Mean variance and lowest overall G-Mean scores. The 

methods with more balanced class distributions, i.e. RUS-1-2, ROS-4-2, and ROS–RUS-

2-2, perform the best with the highest G-Mean averages and little variance. Of the three 

remaining algorithm-level methods, FL-2-2 performs the best, on average, based on the 

G-Mean scores. We conclude that, although average AUC scores between the baseline 

and algorithm-level methods are statistically the same, all three algorithm-level methods 

are preferred over the baseline as their decision boundary is more stable and should gen-

eralize better to new data.

Fig. 2 Minority class ratio vs optimal decision threshold (CE loss)

Fig. 3 Average decision threshold intervals (30 runs)
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Conclusion

The Medicare program provides affordable healthcare to more than 60 million U.S. resi-

dents. It has been estimated that Medicare loses between $20 and $70 billion per year to 

fraud, waste and abuse. This costs taxpayers billions of dollars and risks the well-being of 

its beneficiaries. In an effort to increase transparency and reduce fraud, CMS has made 

several Medicare data sets available to the public. Related works have shown that this big 

data is suitable for anomaly and fraud detection tasks, but that non-standard techniques 

are required to address the severe class imbalance. This study evaluates the performance 

of six deep learning methods for addressing class imbalance using CMS Medicare data 

with LEIE fraud labels. Additionally, we consider a range of class distributions and study 

the relationship between the minority class size and the optimal decision threshold. 

Through deep learning with methods for addressing class imbalance, we achieve the 

highest ROC AUC scores to date on the given CMS/LEIE data set.

Eliminating class imbalance from the training data through ROS or ROS–RUS outper-

forms all algorithm-level methods and baseline models, with average ROC AUC scores 

of 0.8505 and 0.8509. With 4× faster training times compared to baseline models, we 

conclude that deep learning with ROS–RUS is the preferred method for detecting fraud 

within the CMS Medicare data sets. RUS performs significantly better than algorithm-

level and baseline methods using a class distribution of 99:1, but further decreasing 

imbalance levels with RUS degrades performance. Algorithm-level methods perform 

statistically the same as baseline methods, based on ROC AUC scores, but analysis of 

decision threshold intervals and G-Mean scores suggest that algorithm-level methods 

yield more stable decision boundaries than baseline models. A strong linear relationship 

is observed between the minority class size and the optimal decision threshold, suggest-

ing that classification decision thresholds should always be optimized with a validation 

set when training neural networks with imbalanced data.

Future work in the area of class-imbalanced big data should reinforce these findings 

by comparing these methods across a variety of domains and data types. The ROS–

RUS method can be improved by identifying more efficient techniques for determining 

Fig. 4 Average G-Mean scores (30 runs)
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effective sample sizes. Regarding Medicare fraud detection, data quality can be improved 

by leveraging the NPPES registry to look up NPI numbers that are currently missing 

from the LEIE database. Provider specialty types can be converted from sparse one-hot 

vectors to dense embeddings that capture relationships between provider types, and 

HCPCS codes can be incorporated into the feature space in a similar manner. These 

latent semantic embeddings can be learned through various unsupervised deep learn-

ing methods [81]. Finally, several more advanced deep learning methods for addressing 

class imbalance can also be explored, e.g. dynamic sampling [50], LMLE [51], deep over-

sampling [82], and the class rectification loss [57].
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