
Medicare fraud detection using neural
networks

Justin M. Johnson* and Taghi M. Khoshgoftaar

Abstract

Access to affordable healthcare is a nationwide concern that impacts a large majority

of the United States population. Medicare is a Federal Government healthcare program

that provides affordable health insurance to the elderly population and individuals

with select disabilities. Unfortunately, there is a significant amount of fraud, waste,

and abuse within the Medicare system that costs taxpayers billions of dollars and puts

beneficiaries’ health and welfare at risk. Previous work has shown that publicly available

Medicare claims data can be leveraged to construct machine learning models capable

of automating fraud detection, but challenges associated with class-imbalanced big

data hinder performance. With a minority class size of 0.03% and an opportunity to

improve existing results, we use the Medicare fraud detection task to compare six deep

learning methods designed to address the class imbalance problem. Data-level tech-

niques used in this study include random over-sampling (ROS), random under-sam-

pling (RUS), and a hybrid ROS–RUS. The algorithm-level techniques evaluated include

a cost-sensitive loss function, the Focal Loss, and the Mean False Error Loss. A range of

class ratios are tested by varying sample rates and desirable class-wise performance is

achieved by identifying optimal decision thresholds for each model. Neural networks

are evaluated on a 20% holdout test set, and results are reported using the area under

the receiver operating characteristic curve (AUC). Results show that ROS and ROS–RUS

perform significantly better than baseline and algorithm-level methods with aver-

age AUC scores of 0.8505 and 0.8509, while ROS–RUS maximizes efficiency with a 4×

speedup in training time. Plain RUS outperforms baseline methods with up to 30×

improvements in training time, and all algorithm-level methods are found to produce

more stable decision boundaries than baseline methods. Thresholding results suggest

that the decision threshold always be optimized using a validation set, as we observe

a strong linear relationship between the minority class size and the optimal threshold.

To the best of our knowledge, this is the first study to compare multiple data-level and

algorithm-level deep learning methods across a range of class distributions. Additional

contributions include a unique analysis of the relationship between minority class size

and optimal decision threshold and state-of-the-art performance on the given Medi-

care fraud detection task.

Keywords: Class imbalance, Big data, Thresholding, Deep learning, Medicare, CMS,

LEIE, Fraud detection

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Johnson and Khoshgoftaar J Big Data (2019) 6:63

https://doi.org/10.1186/s40537-019-0225-0

*Correspondence:

jjohn273@fau.edu

Florida Atlantic University,

777 Glades Road, Boca Raton,

FL, USA

http://orcid.org/0000-0003-3511-0624
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0225-0&domain=pdf

Page 2 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Introduction

Medicare is a United States (U.S.) healthcare program established and funded by

the Federal Government that provides affordable health insurance to individuals 65

years and older, and other select individuals with permanent disabilities [1]. Accord-

ing to the 2018 Medicare Trustees Report [2], in 2017 Medicare provided coverage to

58.4 million beneficiaries and exceeded $710 billion in total expenditures. Medicare

enrollment has grown to 60.6 million as of February 2019 [3]. There are many factors

that drive the costs of healthcare and health insurance, including fraud, waste, and

abuse (FWA) within the healthcare system. The Federal Bureau of Investigation (FBI)

estimates that fraud accounts for 3–10% of all billings [4], and the Coalition Against

Insurance Fraud [5] estimates that fraud costs all lines of insurance roughly $80 bil-

lion per year. Based on these estimates, Medicare is losing between $21 and $71 bil-

lion per year to FWA. Examples of fraud include billing for appointments that the

patient did not keep, billing for services more complex than those performed, or bill-

ing for services not provided. Abusive practice is practice inconsistent with providing

patients medically necessary services according to recognized standards, e.g. billing

for unnecessary medical services or misusing billing codes for personal gain. Federal

laws are in place to govern Medicare fraud and abuse, for example the False Claims

Act (FCA) and Anti-Kickback Statute [6].

One way to improve the cost, efficiency, and quality of Medicare services is to reduce

the amount of FWA. Manually auditing and investigating all Medicare claims data for

fraud is very tedious and inefficient when compared to machine learning and data min-

ing approaches [7]. As of 2017, 86% of office-based physicians and more than 96% of

reported hospitals have adopted electronic health record (EHR) systems in accordance

with the Health Information Technology for Economic and Clinical Health Act of 2009

and the Federal Health IT Strategic Plan [8, 9]. This explosion in healthcare-related data

encourages the use of data mining and machine learning for detecting patterns and mak-

ing predictions. The Centers for Medicare and Medicaid Services (CMS) joined this data-

driven effort by making Medicare data sets publicly available, stating that bad actors

intent on abusing federal health care programs cost taxpayers billions of dollars and

risks the well-being of beneficiaries [6].

Fraud detection using CMS Medicare data presents several challenges. The problem

is characterized by the four Vs of big data: volume, variety, velocity, and veracity [10,

11]. The 9 million records released by CMS each year satisfies both high volume and

velocity. Variety arises from the mixed-type high-dimensional features and the combin-

ing of multiple data sources. These data sets also exhibit veracity, or trustworthiness, as

they are provided by reputable government resources with transparent quality controls

and detailed documentation [12, 13]. The processing of big data often exceeds the capa-

bilities of traditional systems and demands specialized architectures or distributed sys-

tems [14]. Another challenge is that the positive class of interest makes up just 0.03% of

all records, creating a severe class-imbalanced distribution. Learning from such distribu-

tions can be very difficult, and standard machine learning algorithms will typically over-

predict the majority class [15]. This paper expresses the level of class imbalance within a

given data distribution as Nneg :Npos , where Nneg and Npos correspond to the percentage

of samples in the negative and positive classes, respectively.

Page 3 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

We believe that deep learning is an important area of research that will play a critical

role in the future of modeling class-imbalanced big data. Over the last 10 years, deep

learning methods have grown in popularity as they have improved the state-of-the-art

in speech recognition, computer vision, and other domains [16]. Their recent success

can be attributed to an increased availability of data, improvements in hardware and

software [17–21], and various algorithmic breakthroughs that speed up training and

improve generalization to new data [22]. Deep learning is a sub-field of machine learning

that uses the artificial neural network (ANN) with two or more hidden layers to approxi-

mate some function f ∗ , where f ∗ can be used to map input data to new representations

or make predictions [23]. The ANN, inspired by the biological neural network, is a set

of interconnected neurons, or nodes, where connections are weighted and each neuron

transforms its input into a single output by applying a non-linear activation function to

the sum of its weighted inputs. In a feedforward network, input data propagates through

the network in a forward pass, each hidden layer receiving its input from the previous

layer’s output, producing a final output that is dependent on the input data, the choice

of activation function, and the weight parameters [24]. Gradient descent optimization

adjusts the network’s weight parameters in order to minimize the loss function, i.e. the

error between expected output and actual output. Composing multiple non-linear trans-

formations creates hierarchical representations of the input data, increasing the level of

abstraction through each transformation. The deep learning architecture, i.e. deep neu-

ral network (DNN), achieves its power through this composition of increasingly complex

abstract representations [23]. Despite the success of DNN models in various domains,

there is limited research that evaluates the use of deep learning for addressing class

imbalance [25].

This study compares six deep learning methods for addressing class imbalance and

assesses the importance of identifying optimal decision thresholds when training data

is imbalanced. We expand upon existing Medicare fraud detection work [26] using the

Medicare Provider Utilization and Payment Data: Physician and Other Supplier Public

Use File provided by CMS, as it provides a firm baseline with traditional machine learn-

ing methods. This data set, referred to as Part B data hereafter, provides information on

the services and procedures provided to Medicare beneficiaries and is currently avail-

able on the CMS website for years 2012–2016 [27]. The Part B data set includes both

provider-level and procedure-level attributes, including the amounts charged for proce-

dures, the number of beneficiaries receiving the procedure, and the payment reimbursed

by Medicare. To enable supervised learning, fraud labels are mapped to the Part B claims

data using the List of Excluded Individuals and Entities (LEIE) [13]. Since we are most

interested in detecting fraud, we refer to the group of fraudulent samples as the positive

class and the group of non-fraudulent samples as the negative class. The LEIE is main-

tained by the Office of Inspector General (OIG), and its monthly releases list providers

that are prohibited from participating in Federal healthcare programs. Under the Exclu-

sion Statute [28], the OIG must exclude providers convicted of program-related crimes,

patient abuse, and healthcare fraud.

With three data-level and three algorithm-level methods for addressing class imbal-

ance, multiple configurations for each method, and two network architectures, we evalu-

ate the performance of 42 distinct DNN models. Data-level methods for addressing

Page 4 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

class imbalance include random over-sampling (ROS), random under-sampling (RUS),

and combinations of random over-sampling and random under-sampling (ROS–RUS).

Multiple class distributions are tested for each method, i.e. 40:60, 50:50, 60:40, 80:20,

and 99:1. Algorithm-level methods include cost-sensitive learning and two loss func-

tions specifically designed to increase the impact of the minority class during training,

i.e. Mean False Error Loss (MFE) [29] and Focal Loss (FL) [30]. To further offset the bias

towards the majority class, we calculate an optimal decision threshold for each method

using a validation set. For each method configuration, we train 30 models and report the

average area under the receiver operating characteristic curve (ROC AUC) [31] score on

a 20% holdout test set. Analysis of variance (ANOVA) [32] and Tukey’s HSD (honestly

significant difference) [33] tests are used to estimate the significance of the results. The

mean optimal decision threshold, true positive rate (TPR), true negative rate (TNR), geo-

metric mean, and training time are also reported for each method.

Results indicate that eliminating class imbalance from the training data through ROS

or ROS–RUS produces significantly better AUC scores than all other methods, i.e.

0.8509 and 0.8505. While ROS methods perform best using the 50:50 class ratio, plain

RUS outperforms baseline methods and achieves its highest AUC score with a 99:1 class

ratio. Tukey’s HSD test shows that there is no significant difference between AUC scores

of algorithm-level methods and baseline models, but we show that the algorithm-level

methods yield more stable decision boundaries than the baseline models. Analysis of

training times further suggests combining ROS and RUS when working with big data

and class imbalance, as the balanced training distribution yields superior results and the

under-sampling component improves efficiency. Results also show that the optimal deci-

sion threshold is highly correlated with the minority class size. Hence, we suggest that

the decision threshold always be optimized with a validation set when training data is

imbalanced. To the best of our knowledge, this is the first study to compare DNN loss

functions designed for addressing class imbalance with random sampling methods that

consider multiple class distributions. Additional contributions include a unique thresh-

olding assessment that stresses the importance of optimizing classification decision

thresholds and state-of-the-art performance on the given Medicare Part B fraud detec-

tion task.

The remainder of this paper is outlined as follows. The "Related works" section dis-

cusses other works related to CMS Medicare data, fraud detection, and deep learning

with class-imbalanced data. The CMS and LEIE data sets are described in full, including

all pre-processing steps, in the "Data sets" section. The "Methodology" section explains

the experiment framework, hyperparameter tuning, class imbalance methods, and per-

formance criteria. Results are presented in the "Results and discussion" section, and

the "Conclusion" section concludes the study with areas for future works.

Related works

Since CMS released the Public Use Files (PUF) in 2014, a number of studies relating to

Medicare anomaly and fraud detection have been conducted. We have selected this data

set to evaluate deep learning methods for addressing class imbalance because it exhib-

its severe class imbalance (99.97:0.03) and previous work has left an opportunity for

improvement. This section discusses the fraud-related works performed by our research

Page 5 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

group and others and outlines studies that consider the effects of class imbalance on

deep learning.

Medicare fraud detection

Our research group has performed extensive research on detecting anomalous provider

behavior using the CMS PUF data. In [34], Bauder and Khoshgoftaar proposed an out-

lier detection method based on Bayesian inference that detected fraud within Medi-

care. This study used a small subset of the 2012–2014 Medicare Part B data by selecting

dermatology and optometry claims from Florida office clinics for analysis. The authors

demonstrated the model’s ability to identify outliers with credibility intervals, and suc-

cessfully validated the model using claims data from a known Florida provider that was

under criminal investigation for excessive billing. In another study [35], Bauder and

Khoshgoftaar use a subset of the 2012–2013 Medicare Part B data, i.e. Florida claims

only, to model expected amounts paid to providers for services rendered to patients.

Claims data is grouped by provider type, and five different regression models are used

to model expected payment amounts. Actual payment amount deviations from the

expected payment amounts are then used to flag potential fraudulent providers. Of the

five regression methods tested, the multivariate adaptive regression splines [36] model

is shown to outperform others in most cases, but the authors state that model selec-

tion varies between provider types. In [37], Bauder et al. used a Naive Bayes classifier

to predict provider specialty types, suggesting that providers practicing outside their

specialty norm warrant further investigation. This study also used a Florida-only subset

of 2013 Medicare Part B claims data, but it included all 82 provider types, or classes,

yielding 40,490 unique physicians and 2789 unique procedure codes. Recall, precision,

and F1-scores were used to evaluate the model, showing that 7 of 82 classes scored very

highly (F1-score > 0.90), and 18 classes scored reasonably (0.5 < F1-score < 0.90). The

authors conclude that specialties with unique billing procedures, e.g. audiologist or

chiropractic, are able to be classified with high precision and recall. Herland et al. [38]

expanded upon the work from [37] by incorporating 2014 Medicare Part B data and

real-world fraud labels defined by the LEIE data set. Providers are labeled as fraudulent

when the Naive Bayes model misclassifies the provider’s specialty type, and LEIE ground

truth fraud labels are used to evaluate performance. They found that removing specialty

types that have many overlapping procedures improves overall performance, e.g. Inter-

nal Medicine and Family Practice. Similarly, the authors showed that grouping like spe-

cialties improves performance further still, yielding an overall accuracy of 67%. In a later

study, Bauder and Khoshgoftaar [39] merge 2012–2015 Medicare Part B data sets, map

fraud labels using LEIE data, and compare multiple learners on all available data. Rather

than focus on Florida-specific claims, like earlier reports, this study includes all available

data for the given years, yielding 37,147,213 instances. Class imbalance is addressed with

RUS, and various class distributions are generated to identify the optimal imbalance

ratio for training. ANOVA is used to evaluate the statistical significance of ROC AUC

scores, and the C4.5 decision tree and logistic regression (LR) learners are shown to sig-

nificantly outperform the support vector machine (SVM). The 80:20 class distribution

outperformed all other distributions tested, i.e. 50:50, 65:35, and 75:25. These studies

Page 6 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

jointly show that Medicare Part B claims data contains sufficient variability to detect bad

actors and that the LEIE data set can be reliably used for ground truth fraud labels.

Our study is most closely related to the work performed by Herland et al. in [26],

which uses three different 2012–2015 CMS Medicare PUF data sets, i.e. Part B,

Part D [40], and DMEPOS [41]. Part B, Part D, and DMEPOS claims data are used

independently to perform cross-validation with LR, random forest (RF), and Gradi-

ent Boosted Tree (GBT) learners. The authors also construct a combined data set by

merging Part B, Part D, and DMEPOS and assess the performance of each learner to

determine if models should be trained on individual sectors of Medicare claims or

all available claims data. The combined and Part B data sets scored the best on ROC

AUC, and the LR learner was shown to perform significantly better than GBT and

RF with a maximum ROC AUC score 0.816. We follow the same protocol in prepar-

ing data for supervised learning, described in the "Data sets" section, so that we may

compare deep learning results to those of traditional learners.

A number of other research groups have explored the use of CMS Medicare and

LEIE data for the purpose of identifying patterns, anomalies, and potentially fraud-

ulent activity. Feldman and Chawla [42] explored the relationship between medical

school training and the procedures performed by physicians in practice in order to

detect anomalies. The 2012 Medicare Part B data set was linked with provider-level

medical school data obtained through the CMS physician compare data set [43]. Sig-

nificant procedures for schools were used to evaluate school similarities and present

a geographical analysis of procedure charges and payment distributions. Ko et al. [44]

used the 2012 CMS data to analyze the variability of service utilization and payments,

and found that the number of patient visits was strongly correlated with Medicare

reimbursement. They also found that in terms of services per visit there was a high

utilization variability and a possible 9% savings within the field of Urology. Chandola

et al. [45] use healthcare claims and fraudulent provider labels provided by the Texas

Office of Inspector General’s exclusion database to detect anomalies and bad actors.

They employ social network analysis, text mining, and temporal analysis to show that

typical treatment profiles can be used to compare providers and highlight abuse. A

weighted LR model was used to classify bad actors, and experimental results showed

that the inclusion of the provider specialty attribute increases the ROC AUC score

from 0.716 to 0.814. Branting et al. [46] propose a graph-based method for estimating

healthcare fraud risk within the 2012–2014 CMS PUF and LEIE data sets. Since the

LEIE data set contains many missing NPI values, the authors use the National Plan

and Provider Enumeration System (NPPES) [47] data set from 2015 to identify addi-

tional NPIs within the LEIE data set. This allowed the authors to increase the total

positive fraudulent provider count to 12,000, which they then combined with 12,000

randomly selected non-fraudulent providers. Features are constructed from behavio-

ral similarity between known fraudulent providers and non-fraudulent providers and

risk propagation through geospatial collocation, i.e. shared addresses. A J48 decision

tree learner was used to classify fraud with tenfold cross-validation, yielding a mean

ROC AUC of 0.96. We believe this high AUC score is misleading, however, as the

class-balanced context created by the authors is not representative of the naturally

imbalanced population.

Page 7 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Deep learning with class imbalance

In a recent paper [25], we surveyed deep learning methods for addressing class imbal-

ance. Despite advances in deep learning, and its increasing popularity, many researchers

agree that the subject of deep learning with class-imbalanced data is understudied [29,

48–52]. For the purpose of this study, we have selected a subset of data-level and algo-

rithm-level methods for addressing class imbalance to be applied to Medicare fraud

detection.

Anand et al. [53] studied the effects of class imbalance on the backpropagation

algorithm in shallow networks. The authors show that when training networks with

class-imbalanced data, the length of the majority class’s gradient component that is

responsible for updating network weights dominates the component derived by the

minority class. This often reduces the error of the majority group very quickly during

early iterations while consequently increasing the error of the minority group, causing

the network to get stuck in a slow convergence mode. The authors of the related works

in this section apply class imbalance methods to counter this effect and improve the

classification of imbalanced data with neural networks.

The related works in this section often use Eq. (1) to describe the maximum between-

class imbalance level, i.e. the size of the largest class divided by the size of the smallest

class. Ci is a set of examples in class i, and maxi{|Ci|} and mini{|Ci|} return the maximum

and minimum class size over all i classes, respectively. This can be used interchangeably

with our notation, e.g. a class distribution of 80:20 can be denoted by ρ = 4.

Data‑level methods

Hensman and Masko [54] explored the effects of ROS on class imbalanced image data

generated from the CIFAR-10 [55] data set. The authors generated ten imbalanced dis-

tributions by varying levels of imbalance across classes, testing a maximum imbalance

ratio of ρ = 2.3 . The ROS method duplicates minority class examples until all classes

are balanced, where any class whose size is less than that of the largest is considered

to be a minority. This increases the size of the training data, therefore increasing train-

ing time, and has also been shown to cause over-fitting in traditional machine learning

models [56]. Applying ROS until class imbalance was eliminated succeeded in restor-

ing model performance, and achieved results comparable to the baseline model that was

trained on the original balanced data set.

Buda et al. [52] presented similar results and showed that ROS generally outperforms

RUS and two-phase learning. The RUS method used by Buda et al. randomly removes

samples from the majority group until all classes are of equal size, where any class larger

than the smallest class is treated as a majority class. If the data is highly imbalanced,

under-sampling until class balance is achieved may result in discarding many samples.

This can be problematic with high capacity neural network learners, as more training

data is one of the most effective ways to improve performance on the test set [23]. Two-

phase learning addresses this issue by first training a model on a balanced data set, gen-

erated through ROS or RUS, and then fine-tuning the model on the complete data set.

(1)ρ =
maxi{|Ci|}

mini{|Ci|}

Page 8 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

By simulating class imbalance ratios in the range ρ ∈ [10, 100] on three popular image

benchmarks, it was shown that applying ROS until class imbalance is eliminated out-

performs both RUS and two-phase learning in nearly all cases. Results from Buda et al.

discourage the use of RUS, as it generally performs the worst. Experiments by Dong

et al. [57] support these findings and show that over-sampling outperforms under-sam-

pling on the CelebA data set [58] with a max imbalance ratio of ρ = 49.

In this paper, we explore the use of ROS and RUS to address class imbalance at the

data-level. Due to time constraints, we leave two-phase learning and other advanced

data sampling strategies for future works, e.g. dynamic sampling [50]. The related works

listed here conclude that over-sampling the minority class until the imbalance is elimi-

nated from the training data yields the best results. They do not, however, consider big

data problems exhibiting class rarity, i.e. where very few positive examples exist. Con-

trary to these related works, comprehensive experiments by Van Hulse et al. [15] sug-

gest that RUS outperforms ROS when using traditional machine learning algorithms,

i.e. non-deep learning. We believe that RUS will play an important role in training deep

models with big data. We extend these related works by testing various levels of class

imbalance and combining ROS with RUS to generate class-balanced training data. This

is the first study to compare ROS, RUS, and ROS–RUS deep learning methods across a

range of class distributions.

Algorithm‑level methods

Wang et al. [59] employed a cost-sensitive deep neural network (CSDNN) method to

detect hospital readmissions, a class imbalanced problem where a small percentage of

patients are readmitted to a hospital shortly after their original visit. The authors used a

Weighted CE loss (Eq. 2) to incorporate misclassification costs directly into the training

process, where pi is the model output activation that denotes the estimated probability

of observing the ground truth label yi.

The weighted CE loss multiplies the loss for each class i ∈ C , i.e. yi · log(pi) , by the cor-

responding class weight wi . They show that increasing the weight of the minority class

to 1.5× and 2× that of the majority class improves classification results and outperforms

several baselines, e.g. decision trees, SVM, and a baseline ANN. Incorporating the cost

matrix into the CE loss is a minor implementation detail that is often built into modern

deep learning frameworks, making the selection of an optimal cost matrix the most dif-

ficult task. Cost matrices can be defined by empirical work, domain knowledge, class

priors, or through a search process that tests a range of values while monitoring perfor-

mance on a validation set.

Wang et al. [29] present the novel Mean False Error (MFE) loss function and com-

pare it to the Mean Squared Error (MSE) loss function using imbalanced text and

image data. They constructed eight imbalanced data sets with ρ ∈ [5, 20] by sampling

the CIFAR-100 [60] and 20 Newsgroup [61] image and text data sets. After demon-

strating how the MSE loss is dominated by the majority class, and their models fail

(2)Weighted CE loss = −

C∑

i

wi · yi · log(pi)

Page 9 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

to converge, they proposed the MFE loss to increase the sensitivity of errors in the

minority class. The proposed loss function was derived by splitting the MSE loss into

two components, Mean False Positive Error (FPE) and Mean False Negative Error

(FNE). The FPE (Eq. 3) and FNE (Eq. 4) values are combined to define the total system

loss, MFE (Eq. 5), as the sum of the mean errors from each class. The proposed MFE

loss function, and its Mean Squared False Error (MSFE) (Eq. 6) variant, are shown to

outperform the MSE loss in nearly all cases. Improvements over the baseline MSE

loss are most apparent when class imbalance is greatest, i.e. imbalance levels of 95:5.

For example, the MSFE loss improved the classification of Household image data and

increased the F1-score from 0.1143 to 0.2353 when compared to MSE.

It is unclear if Wang et al. performed mini-batch stochastic gradient descent (SGD) or

standard batch gradient descent. We feel that this should be considered in future works,

because when class imbalance levels are high, mini-batch gradient descent may contain

many batches with no positive samples. This leads to many weight updates uninfluenced

by the positive class of interest. Larger mini-batches or batch gradient descent will allevi-

ate this problem, but the benefits of smaller mini-batches may prove more valuable [23].

Lin et al. [30] proposed the FL (Eq. 7) function to address the class imbalance inher-

ent to object detection problems, where positive foreground samples are heavily out-

numbered by negative background samples. The FL reshapes the CE loss in order to

reduce the impact that easily classified samples have on the loss by multiplying the

CE loss by a modulating factor, αt(1 − pt)
γ . Hyper parameter γ ≥ 0 adjusts the rate

at which easy examples are down-weighted, and αt ≥ 0 is a class-wise weight that

is used to increase the importance of the minority class. Easily classified examples,

where pt → 1 , cause the modulating factor to approach 0 and reduce the sample’s

impact on the loss.

The proposed one-stage FL model, RetinaNet, is evaluated against several state-of-

the-art one-stage and two-stage detectors on the COCO [62] data set. It outscores the

runner-up one-stage detector (DSSD513 [63]) and the best two-stage detector (Faster

R-CNN with TDM [64]) by 7.6-point and 4.0-point precision gains, respectively. When

compared to several Online Hard Example Mining (OHEM) [65] methods, RetinaNet

outscores the best method with an increase in AP from 32.8 to 36.0. By down-weight-

ing the loss of easily learned samples, the FL lends itself to not just class imbalanced

(3)FPE =

1

N

N∑

i=1

∑

n

1

2
(d(i)

n − y(i)
n)2

(4)FNE =

1

P

P∑

i=1

∑

n

1

2
(d(i)

n − y(i)
n)2

(5)MFE =FPE + FNE

(6)MSFE =FPE
2
+ FNE

2

(7)FL(pt) = −αt(1 − pt)
γ log(pt)

Page 10 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

problems, but also hard-sample problems. Nemoto et al. [66] later used the FL for the

automated detection of rare building changes, e.g. new construction, and concluded that

FL improves problems related to class imbalance and over-fitting. The results provided

by Nemoto et al. are difficult to interpret, however, because the FL and baseline experi-

ments are conducted on different data distributions.

The final algorithm-level technique we consider is output thresholding, i.e. adjusting

the output decision threshold that computes class labels from the model’s output acti-

vation. Buda et al. applied output thresholding to all experiments by dividing network

outputs for each class by their estimated priors and found that combining ROS with

thresholding worked especially well. Appropriate decision thresholds can also be identi-

fied by varying the threshold and comparing results on a validation set. While it is rarely

discussed in related deep learning work, we believe that thresholding is a critical compo-

nent of training neural networks with class imbalanced data.

In this study, we evaluate the use of cost-sensitive learning, MFE loss, FL, and output

thresholding. The first three methods are modifications to the loss function that influ-

ence network weight updates by increasing the impact of the minority class during train-

ing. Output thresholding, on the other hand, does not affect training and only changes

the cutoff threshold that is used for determining class labels from output scores. Unlike

data-level methods, these algorithm-level methods do not change the data distribution

and should only have a marginal effect on training times. One disadvantage is that two

of the three algorithm-level methods increase the number of tunable hyperparameters,

making the process of searching for appropriate hyperparameters more time consuming.

Data sets

In this paper we use the Medicare Part B data set provided by CMS [27] for years 2012–

2016, namely the Medicare Provider Utilization and Payment Data: Physician and Other

Supplier PUF. To enable supervised learning, a second data set, the List of Excluded Indi-

viduals and Entities (LEIE) [13], is used to label providers within the Medicare Part B

data set as fraudulent or non-fraudulent. In this section, we describe these data sets in

detail and discuss the pre-processing steps that we take to create the final labeled data

set. This process follows the procedures outlined by Herland et al. [26].

Medicare Part B data

The Medicare Part B claims data set describes the services and procedures that health-

care professionals provide to Medicare’s Fee-For-Service beneficiaries. Records within

the data set contain various provider-level attributes, e.g. National Provider Identifier

(NPI), first and last name, gender, credentials, and address. The NPI is a unique 10-digit

identification number for healthcare providers [67]. In addition to provider-level details,

records contain claims information that describe a provider’s activity within Medicare

over a single year. Examples of claims data include the procedure performed, the average

charge amount submitted to Medicare, the average amount paid by Medicare, and the

place of service. The procedures rendered are encoded using the Healthcare Common

Procedures Coding System (HCPCS) [68]. For example, HCPCS codes 99219 and 88346

are used to bill for hospital observation care and antibody evaluation, respectively. Also

Page 11 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

included in the claims data is the provider type, a categorical value describing the pro-

vider’s specialty that is derived from the original claim.

For each annual release, CMS aggregates the data over: (1) provider NPI, (2) HCPCS

code, and (3) place of service. This produces multiple records for each provider, with one

record for each HCPCS code and place of service combination. CMS decided to separate

claims data by place of service, i.e. facility versus non-facility, because procedure fees

will vary depending on where the service was performed [12]. An example of the 2016

Part B data set is presented in Table 1.

With 28 attributes describing the claims submitted by Medicare providers, and over

9 million rows per year, this publicly available data set is an excellent candidate for data

analysis and machine learning. Unfortunately, it is not readily prepared for fraud detec-

tion. In the next section, we introduce a second data set that is used for the purpose of

mapping fraud labels to the providers listed in the Medicare Part B data set.

LEIE data

Real-world Medicare provider fraud labels are identified using the publicly available

LEIE data. The LEIE is maintained by the OIG in accordance with Sections 1128 and

1156 of the Social Security Act [69] and is updated on a monthly basis. The OIG has the

authority to exclude providers from Federally funded health care programs for a variety

of reasons. Excluded individuals are unable to receive payment from Federal healthcare

programs for any services, and must apply for reinstatement once their exclusion period

has been satisfied. The current LEIE data format contains 18 attributes that describe the

provider and the reason for their exclusion. Table 2 provides a sample of the February

2019 LEIE data set. Some additional attributes not listed include first and last name, date

of birth, address, and the provider’s reinstation date.

The LEIE exclusion type attribute is a categorical value that describes the offense

and its severity. Following the work by Bauder and Khoshgoftaar [35], a subset of

Table 1 Sample of Part B data set

NPI Provider type Place
of service

HCPCS code Number
of services

Avg.
submitted
charge

1003000142 Anesthesiology F 20611 15 137.20

1003000142 Anesthesiology F 62311 88 145.00

1003000142 Anesthesiology O 99205 11 305.00

1003000142 Anesthesiology O 99213 65 109.00

1003000142 Anesthesiology F 77003 95 48.00

Table 2 Sample of February 2019 LEIE data set

Specialty NPI City Excltype Excldate

Podiatry practice 1598041998 Foresthills 1128a1 20190320

Pharmacy 1275750374 Lynbrook 1128a1 20190320

Transporation Co 0 Phoenix 1128a1 20190320

Adult Day Care Facil 0 Santa Rosa 1128a1 20190320

Page 12 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

exclusion rules that are most indicative of fraud is selected for labeling Medicare pro-

viders. Table 3 lists the exclusion rules used in this paper along with their manda-

tory exclusion periods. We use the NPI numbers of excluded individuals that have

been convicted under one of these rules to identify fraudulent providers within the

Medicare Part B data set. For these providers in the Medicare Part B data set, whose

NPI number matches those of the LEIE data set, claims that are dated prior to the

provider’s exclusion date are labeled as fraudulent. In doing so, we are making the

assumption that a provider’s claims activity prior to the date that they were excluded

from Medicare reflects fraudulent activity, as they were soon after convicted.

The LEIE data set is incomplete and contains missing values, e.g. missing NPI num-

bers denoted by 0 values. In addition, there are likely many more Medicare providers

guilty of malpractice that have not been convicted and are therefore not included in

the LEIE. Since this is the only mechanism by which we label Medicare providers as

fraudulent, there will be a number of fraudulent providers that are mislabeled as non-

fraudulent, i.e. class noise. This is taken into consideration when evaluating results.

Fraud labeling

Fraudulent provider labels are generated by matching the NPI numbers of excluded

individuals from the LEIE data set to the Medicare Part B data set. By matching on

NPI numbers only, we can be fairly confident that we are not incorrectly labeling pro-

viders as fraudulent. One shortcoming to this approach is that the LEIE data set only

lists NPI numbers for a small fraction of the excluded individuals, e.g. 25% in Febru-

ary of 2019. We believe that we can increase the total number of fraudulent labels by

looking up missing NPI numbers in the NPPES registry, similar to [46], and we leave

this for future work.

Since Medicare PUF and LEIE data have different release schedules, Herland et al.

decided to round exclusion end dates to the nearest year. Under certain circum-

stances, the OIG has the right to waive an exclusion and allow providers to continue

practicing, and this is denoted by the waiver date attribute. Taking the exclusion end

date as the minimum of the exclusion date and the waiver date, providers are labeled

as fraudulent for a given year if they are on the exclusion list for the majority of that

year. For example, if a provider has an exclusion end date of September 2015, their

exclusion end date will be rounded to 2016 because they were listed as fraudulent for

Table 3 Fraud related LEIE rules [69]

Social Security Act Description Minimum exclusion period

1128(a)(1) Conviction of program-related crimes 5 years

1128(a)(2) Conviction relating to patient abuse or neglect 5 years

1128(a)(3) Felony conviction relating to health care fraud 5 years

1128(b)(4) License revocation, suspension, or surrender State dependent

1128(b)(7) Fraud, kickbacks, and other prohibited activities None

1128(c)(3)(G)(i) Conviction of second mandatory exclusion offenses 10 years

1128(c)(3)(g)(ii) Conviction of third mandatory exclusion offenses Permanent exclusion

Page 13 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

more than half of 2015. On the other hand, if a provider has an exclusion end date of

February 2015, their exclusion end date will be rounded to 2015.

If a provider has an exclusion end date of 2016, then all claims activity prior to 2016

are labeled as fraudulent for this given provider. As another example, a provider with

an exclusion date of 2016-02-20 will have a newly defined exclusion end date of 2016.

This provider is matched in the Part B data on NPI and all claims submitted prior to the

year 2016 are labeled as fraudulent, i.e. 2012–2015 claims. This fraud labeling process

accounts for both fraudulent claims activity and Medicare providers practicing during

their mandatory exclusion period.

Data processing

All Medicare Part B data provided by CMS to date is utilized by combining years

2012–2016. We apply feature matching to remove those features not available across

all 5 years. Consequently, standard deviation and standardized payment attributes were

removed from years 2012–2013 and 2014–2016, respectively. Missing data was handled

by removing Part B records with missing NPI numbers and missing HCPCS codes. Rows

containing HCPCS codes corresponding to prescription drugs were also removed, limit-

ing the data set to medical procedures. Unlike medical procedures, whose line_srvc_cnt

feature quantifies the number of procedures performed, the line_srvc_cnt feature of pre-

scription-related records quantifies the volume of a specific drug, and the removal of

prescription-related claims eliminates this inconsistency.

As we are primarily interested in detecting fraud through claims activity, many of the

provider-level attributes are removed from the Medicare data, e.g. name and address. Of

the Medicare data’s original 28 attributes, we keep six procedure-level attributes along

with the provider’s NPI and gender. The resulting feature set and their corresponding

data types are outlined in Table 4.

We then organize the data by provider for each year by grouping records on year,

NPI, provider type, and gender. These groups contain a unique provider’s annual

claims data, with one row for every combination of HCPCS code and place of ser-

vice. The provider type is included in the grouping because it has been shown that

providers sometimes list different specialties on different claims [26]. Each group is

then aggregated, converting the multiple rows into a single row than contains sum-

mary attributes for each of the original numeric attributes, i.e. mean, sum, median,

Table 4 Description of features chosen from the Part B data set [26]

Feature Description Type

Npi Unique provider identification number Categorical

Provider_type Medical provider’s specialty (or practice) Categorical

Nppes_provider_gender Provider’s gender Categorical

Line_srvc_cnt Number of procedures/services the provider performed Numeric

Bene_unique_cnt Number of distinct Medicare beneficiaries receiving the service Numeric

Bene_day_srvc_cnt Number of distinct Medicare beneficiary/per day services Numeric

Average_submitted_chrg_amt Average of the charges that the provider submitted for the
service

Numeric

Average_medicare_payment_amt Average payment made to a provider per claim for the service Numeric

Exclusion Fraud labels from the LEIE data set Categorical

Page 14 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

standard deviation, minimum, and maximum. Stratified random sampling [24] with-

out replacement is used to create the 20% test set.

Categorical attributes, i.e. provider type and gender, must be properly encoded

before they can be ingested by a neural network. Following the work of Herland

et al. [26], we employ one-hot encoding, or one-of-K encoding, to convert these cate-

gorical attributes to numeric type. This process replaces the categorical variables with

sparse one-hot vectors and increases the dimensionality of the data set from 34 to

126. A disadvantage of one-hot encoding is that it drastically increases dimensional-

ity and fails to capture the relationship between similar providers, relationships that

were shown to exist in previous works [38]. An alternative method that we leave for

future work is to convert the categorical provider type variable to a dense, semantic

embedding by following a learning procedure similar to Guo and Berkhahn [70] or

Mikolov et al. [71].

Data normalization is a critical step that speeds up training and influences model

performance [72]. In this study, min–max scaling is used to map numeric input values

to the range [0, 1] in order to preserve outlier relationships. The normalizer is fit to the

training data and then used to scale both train and test sets.

Once all data processing steps are completed, the final Medicare Part B data set

contains 4,692,370 samples, 125 predictors, and a fraud label. The details of the train-

ing and test sets, including class imbalance levels, are detailed in Table 5.

As illustrated in Table 5, the Medicare data set combines the challenges of both big

data and class rarity. The total number of fraudulent samples available for training

(1206) will be further reduced to just 1085 after holding out 10% for validation. In

the next section, we will discuss the methods used in this case study to address these

challenges.

Methodology

Deep learning methods for addressing class imbalance are evaluated on the Medicare

Part B data set by fitting models on the 80% training data and evaluating performance

on the 20% test set. First, a validation phase holds out 10% of the training data to

evaluate model performance and tune hyperparameters. Once optimal network set-

tings are defined, models are fitted to the full training set and then applied to the test

set. This protocol ensures that the test set does not influence hyperparameter tuning.

This section begins by discussing the runtime environment and deep learning

frameworks used to carry out experiments. We then describe the DNN architectures

and hyperparameters used throughout the experiments, as well as the class imbalance

methods employed and their implementation details. Finally, we discuss the perfor-

mance metrics and statistical analysis that are used to evaluate results.

Table 5 Training and test set details

Data set Total samples Fraudulent samples % fraudulent

Training data 3,753,896 1206 0.032

Test data 938,474 302 0.032

Page 15 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Runtime environment

All experiments are conducted using a high-performance computing (HPC) environ-

ment running Scientific Linux 7.4 (Nitrogen) [73]. Jobs are dispatched onto CPU nodes

with 20 Intel(R) Xeon(R) CPU E5-2660 v3 2.60GHz processors and 128GB of RAM.

Neural networks are implemented using the Keras [19] open-source deep learning

library written in Python with its default backend, i.e. TensorFlow [17]. Advantages of

the Keras library include a simplistic Python API that enables fast prototyping, seamless

compatibility with multiple backends and extensibility that allows for custom compo-

nents, e.g. loss functions. The specific library implementations used in this study are the

default configurations of Keras 2.1.6-tf and TensorFlow 1.10.0.

Baseline models

The baseline neural network architecture and its hyperparameters are discovered

through a random search procedure that evaluates models on a validation set. The num-

ber of hidden layers, the number of neurons per layer, and regularization techniques are

the primary focus of hyperparameter tuning in this study. With the 80% of Medicare

Part B data set aside for training, stratified random sampling is used to holdout 10% vali-

dation sets for the purpose of identifying optimal network settings. Each set of hyper-

parameters is evaluated by training ten models, using a new random 10% holdout set

to validate each model. We compare the effectiveness of each hyperparameter set by

averaging the ROC AUC and loss scores of the ten models and visualizing results across

100 epochs. Experiments are restricted to deep neural networks, i.e. networks contain-

ing two or more hidden layers. Preliminary experiments sought a model with sufficient

capacity to learn the training data, while successive experiments aimed to reduce overfit-

ting and improve generalization to new data.

We use mini-batch stochastic gradient descent (SGD) with a mini-batch size of 256.

Mini-batch SGD approximates the gradient of the loss function by computing the loss

over a subset of examples. This is preferred over batch gradient descent because it is

computationally expensive to compute the loss over the entire data set, and increas-

ing the number of samples that contribute to the gradient provides less than linear

returns [23]. It has also been suggested that smaller batch sizes offer a regularization

effect by introducing noise into the learning process [74]. We employ an advanced form

of SGD that adapts parameter-specific learning rates through training, i.e. the Adam

optimizer, as it has been shown to outperform other popular optimizers [75]. The default

learning rate of 0.001 is used along with default moment estimate decay rates of β1 = 0.9

and β2 = 0.999. The rectified linear unit (ReLU) activation function is used in all hid-

den layer neurons, and the sigmoid activation function is used at the output layer to

estimate posterior probabilities [76]. The non-saturating ReLU activation function has

been shown to alleviate the vanishing gradient problem and allow for faster training [22].

These settings yielded the most desirable validation results during preliminary experi-

ments, and we therefore use these across all experiments.

The network topology was defined by first iteratively increasing architecture depth and

width while monitoring training and validation performance. We determined that two

hidden layers containing 32 neurons per layer provided sufficient capacity to overfit the

Page 16 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

model to the training data. This was indicated by observing near-perfect performance

on the training set and an increasing error rate on the validation set. We then explored

regularization techniques to eliminate overfitting and improve validation performance.

One way to reduce overfitting is to reduce the total number of learnable parameters, i.e.

reducing network depth or width. L1 or L2 regularization methods, or weight decay, add

parameter penalties to the objective function that constrain the network’s weights to lie

within a region that is defined by a coefficient α [23]. Dropout simulates the ensembling

of many models by randomly disabling non-output neurons with a probability P ∈ [0, 1]

during each iteration, preventing neurons from co-adapting and forcing the model to

learn more robust features [77]. Although originally designed to address internal covari-

ate shift and speed up training, batch normalization has also been shown to add regu-

larizing effects to neural networks [78]. Batch normalization is similar to normalizing

input data to have a fixed mean and variance, except that it normalizes the inputs to hid-

den layers across each batch. Through monitoring validation results, we determine that

dropout with probability P = 0.5 combined with batch normalization is most effective.

Batch normalization is applied before the activation function in each hidden unit.

Table 6 describes the baseline architecture that we have selected for Medicare fraud

detection. This multilayer neural network contains two hidden layers and 5249 trainable

parameters. All experiments conducted in this study use this multilayer architecture with

the learning parameters that have been defined in this section. To determine if network

depth affects performance, we extend this model to four hidden layers following the same

pattern, i.e. using 32 neurons, batch normalization, ReLU activations, and dropout in

each hidden layer. For all class imbalance methods tested, we report results for both two-

hidden-layer networks and four-hidden-layer networks across all experiments.

Class imbalance methods

We explore both data-level and algorithm-level methods for addressing class imbal-

ance. The data methods that we use consist of altering the training data distribu-

tion with ROS and RUS. The algorithm-level methods modify the loss function to

strengthen the impact of the minority class on model training. We also identify opti-

mal decision thresholds for each model to improve overall class-wise performance.

Table 6 Baseline architecture

Layer type # of neurons # of parameters

Input 125 0

Dense 32 4032

Batch normalization 32 128

ReLU activation 32 0

Dropout P = 0.5 32 0

Dense 32 1056

Batch normalization 32 128

ReLU activation 32 0

Dropout P = 0.5 32 0

Dense 1 33

Sigmoid activation 1 0

Page 17 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Data-level methods

Data-level methods explored in this paper include ROS, RUS, and combinations of ROS

and RUS (ROS–RUS). For each method, we adjust the sampling rates and create dis-

tributions with varying levels of class imbalance to better understand how class imbal-

ance levels affect model training and classification performance. These distributions are

listed in Table 7. The first row describes the training data prior to data sampling, and the

remaining rows provide the size of the positive and negative classes after applying data

sampling. Ntrain = nneg + npos denotes the total number of samples in the training set,

where nneg and npos correspond to the total number of negative and positive samples,

respectively. The level of class imbalance within each experiment’s training data is rep-

resented as the ratio of total negative samples to total positive samples, i.e. Nneg :Npos .

Of the 3,378,506 total Medicare claims available for model training, a mere 0.03% are

labeled positive for fraud, i.e. 1085 fraudulent samples. This combination of big data and

class rarity poses data sampling challenges that are often ignored in related works.

The RUS procedure employed in this paper consists of randomly sampling from the

majority class without replacement. The sampled majority class is combined with all minor-

ity samples to create the training set. Hence, class imbalance levels within the training data

are strictly determined by the size of the sample that is selected from the majority class. Cre-

ating a 50:50 class-balanced training set with RUS requires combining all positive samples

from the training set with a randomly selected subset of 1085 negative samples. We vary the

size of the sampled negative class to create class ratios of 99:1, 80:20, 60:40, 50:50, and 40:60.

These distributions effectively cover minority class sizes between 1 and 50%, and then pro-

ceed to test what happens when the minority becomes the majority, i.e. 40:60.

One advantage of applying RUS is that the resulting training set size is reduced

significantly, drastically decreasing the time required to train a model. This feature

decreases turnaround time and allows for fast prototyping and hyperparameter tun-

ing. Unfortunately, due to the extreme level of class imbalance in the Medicare data,

very high reduction rates are required to create semi-balanced and balanced data

sets. To create a class ratio of 99:1, which is still highly imbalanced, RUS-1 combines

Table 7 Varying levels of class imbalance with ROS and RUS

Method nneg npos Ntrain nneg:npos

– 3,377,421 1085 3,378,506 99.97:0.03

RUS-1 107,402 1085 108,487 99:1

RUS-2 4390 1085 5475 80:20

RUS-3 1620 1085 2705 60:40

RUS-4 1085 1085 2170 50:50

RUS-5 710 1085 1795 40:60

ROS-1 3,377,421 33,635 3,411,046 99:1

ROS-2 3,377,421 844,130 4,221,551 80:20

ROS-3 3,377,421 2,251,375 5,628,796 60:40

ROS-4 3,377,421 3,377,421 6,754,842 50:50

ROS-5 3,377,421 5,064,780 8,442,201 40:60

ROS–RUS-1 1,688,710 1,688,710 3,377,420 50:50

ROS–RUS-2 844,355 844,355 1,688,710 50:50

ROS–RUS-3 337,742 337,742 675,484 50:50

Page 18 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

the positive group with a negative class sample that is just 3.18% of the original nega-

tive group. This reduces the size of the negative class training set from 3,377,421 to

just 107,402, discarding millions of samples and likely depriving the model of valu-

able training data. As outlined in Table 7, the size of the negative class decreases as

the levels of class imbalance decrease in methods RUS-2 through RUS-5. We expect

to see high variance in performance when using RUS because the representation of

the negative class in the training data will likely be very different from one run to

the next. RUS results may be unpredictable and difficult to reproduce, as each model

trained will learn a different subset of the majority class.

The ROS method employed in this paper consists of duplicating minority class

samples until the desired level of class imbalance is achieved. Since there are many

more non-fraud cases than there are fraud, the fraud cases must be over-sampled

at high rates in order to balance out the class distributions. For example, creating a

50:50 class-balanced training set with ROS requires sampling the minority class at

a rate of 3.112%. In other words, 3112 positive samples are created for every single

positive instance, increasing the size of the minority class from 1085 samples up to

3,377,421 and approximately doubling the size of the training data set. The added data

may improve model generalization, but at the cost of increased training times. This is

especially exacerbated by big data and class rarity.

Finally, we combine ROS and RUS (ROS–RUS) to produce three class-balanced

training sets. We test three ROS–RUS distributions, reducing the majority class

by 90%, 75%, and 50% while simultaneously over-sampling the minority class until

class balance is achieved. Higher reduction rates have the advantage of decreasing

the size of the training set and improving efficiency. On the other hand, lower reduc-

tion rates preserve valuable information and provide a better representation of the

majority class. For example, ROS–RUS-1 reduces the size of the majority class by 50%

and ROS–RUS-3 reduces the size of the majority class by 90%, producing training set

sizes of 3,777,420 samples and 675,484 samples, respectively. We expect ROS–RUS-1

to outperform ROS–RUS-3, as both experiments have 50:50 class-balanced distribu-

tions and ROS–RUS-1 has 5× more unique training samples than ROS–RUS-3.

Unlike plain RUS, the ROS–RUS method allows us to keep a greater percentage

of the majority class, reducing the risk of discarding too many negative samples and

under-representing the majority class. Since the majority group has been decreased

in size through RUS, the over-sampling rate required to balance the classes is going

to be less than would be required if using plain ROS. As shown in Table 7, the largest

ROS–RUS training set has 3,377,420 samples, which is still smaller than the original

training set. We find these methods most favorable when working with big data and

class rarity, as they simultaneously maximize efficiency and performance.

We naively implement data sampling by creating a new training set from the original,

where the new training set contains randomly duplicated minority samples, a random

subset of the majority group, or a combination of the two and the respective over-sam-

pling and under-sampling rates are defined by the desired class distribution. Alterna-

tively, the same effect can be achieved by building the data sampling component into the

mini-batch SGD implementation. When over-sampling with big data and class rarity, the

latter implementation can significantly reduce memory requirements during training.

Page 19 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Algorithm-level methods

We assess the use of three algorithm-level methods that address class imbalance by

modifying the loss function. Cost-sensitive learning is used to increase the importance

of the positive class by incorporating class weights into the CE loss. Two new loss func-

tions designed for class-imbalanced data, MFE [29] and FL [30], are also evaluated.

Unlike data-level methods for addressing class imbalance, these methods do not alter

the underlying class distributions.

The weighted CE loss (Eq. 2) is used to create a cost-sensitive deep neural network

(CoSen), similar to the work by Wang et al. [59]. We consider two approaches for balanc-

ing the loss contributions made by each class, increasing the contribution of the positive

class and decreasing the contribution of the majority class. Both approaches are defined

by the estimated class priors, and their corresponding cost matrices are listed in Table 8.

The Keras deep learning library provides built-in support for class weights, allowing

these costs to be supplied to the training step in the form of (label, weight) pairs.

Cost-sensitive learning is similar to ROS and RUS in the sense that both methods

increase or decrease the loss contribution of a particular class. For example, in ROS-4 we

balance the contribution to the network loss by showing the model 3112 copies of each

positive sample. In the CoSen-1 method, on the other hand, we multiply the loss gener-

ated from one sample by 3112. In both cases, we are increasing the loss that one sample

generates by 3.112%. Unlike CoSen-1, however, ROS-4 has the advantage of training the

model with batches that contain an equal number of positive and negative samples. On

the other hand, models trained with CoSen-1 will see many mini-batches with no posi-

tive samples in them, resulting in many weight updates that are not influenced by the

positive class. For this reason, we expect the cost-sensitive learning progress to be less

stable than the data sampling methods.

In our second set of algorithm-level experiments, we address class imbalance by

replacing the CE loss with the MFE loss (Eq. 5) [29]. This loss function helps to balance

class-wise loss contributions by computing the loss as the sum of the average positive

class error and the average negative class error. We also consider the variant proposed

by Wang et al., the MSFE loss (Eq. 6). We have not provided a table summarizing these

experiments, MFE and MSFE, because they do not contain any tunable hyperparameters.

The final algorithm-level method explored in this paper is the FL (Eq. 7) that was pro-

posed by Lin et al. [30]. We expect this loss to down-weight the easily classified negative

samples, allowing the difficult positive samples to contribute more to the loss and better

influence weight updates. One important detail provided by Lin et al. is the use of class

priors in initializing output layer bias weights, a strategy explained further in [23]. This ini-

tialization proved very important to our FL experiments, as preliminary experiments with

default bias initialization yielded poor results (AUC < 0.70). Through observing training

and validation scores, we found initializing output bias weights with the prior π = 0.01

Table 8 Cost-sensitive learning experiments

Method wpos wneg

CoSen-1 3112 1

CoSen-2 0.9997 0.0003

Page 20 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

to be most effective, and we used this value for all FL experiments. We use a fixed value

for the FL weight parameter, i.e. α = 0.25 while varying the modulating factor in the range

γ ∈ [2, 5] , as outlined in Table 9.

Performance metrics

This study utilizes multiple complementary evaluation metrics to provide a clear under-

standing of model performance and class-wise score trade-offs [79]. The confusion matrix

(Table 10) is constructed by comparing predicted labels to ground truth labels, where the

predicted labels are dependent on output scores and the decision threshold.

We report the true positive rate (TPR), true negative rate (TNR), and geometric mean

(G-Mean) scores on all experiments. The TPR (Eq. 8), or Recall, measures the percentage of

the positive group that was correctly predicted to be positive, while the TNR (Eq. 9) meas-

ures the percentage of the negative group correctly predicted to be negative. Since the TPR

and TNR scores are each derived from just one class, i.e. the positive or negative class, they

are insensitive to class imbalance. For this same reason, reporting one without the other

would be misleading and incomplete. For example, baseline models always predicting the

negative class will have a TNR of 100%, but this model is useless as it fails to capture any

of the positive class. The G-Mean (Eq. 10) summarizes a model’s total predictive power by

combining TPR and TNR.

The performance metrics listed thus far are all dependent on the decision threshold

that is used to assign labels to output probability estimates. In this study, we find that

a default threshold of 0.5 causes baseline models to always predict the non-fraudulent

label. Therefore, we rely on the threshold-agnostic ROC AUC score to determine how

well a model can discriminate between the positive and negative class. The ROC curve is

(8)TPR =
TP

TP + FN

(9)TNR =
TN

TN + FP

(10)G-Mean =
√
TPR × TNR

Table 9 Focal loss experiments

Method α γ

FL-1 0.25 2

FL-2 0.25 3

FL-3 0.25 4

FL-4 0.25 5

Table 10 Confusion matrix

Actual positive Actual negative

Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)

Page 21 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

constructed by plotting the TPR against the false positive rate (FPR) over a range of deci-

sion thresholds, and the AUC is the area under the ROC curve. By the very derivation of

the AUC score, if a model outputs class probability scores that produce reasonable AUC

scores (> 0.70), then there must exist a decision threshold that will yield reasonable TPR

and TNR scores.

We have found that the level of class imbalance within the training data has a signifi-

cant impact on the range of output probability scores produced by neural networks.

Therefore, we believe that selecting an optimal decision threshold using a validation set

is a critical component of learning from class-imbalanced data. In the next section, we

explain how optimal decision thresholds are identified.

Threshold moving

Through monitoring ROC AUC scores on baseline models during training and valida-

tion, we observe reasonable ROC AUC scores (> 0.70). However, consistent TPR and

TNR scores of 0.0 and 1.0 suggested that the default decision threshold of 0.5 was too

high, causing the model to always predict the negative class. To improve overall accuracy

and better illustrate the efficacy of DNNs in detecting Medicare fraud, we apply thresh-

old moving to each method independently.

Selecting an optimal decision threshold should be driven by the problem definition

and requirements. For example, a cancer detection system will usually maximize recall

because false negatives are life-threatening. In our Medicare fraud detection system we

prefer a high TPR over a high TNR, as detecting fraud is more important than detecting

non-fraud. Additionally, we wish to approximately balance the TPR and TNR rates in

order to maximize the model’s total predictive power. We use these goals to construct

a procedure (Algorithm 1) for identifying optimal decision boundaries using validation

data. For every experiment, the optimal decision threshold is calculated for each of the

ten validation models, averaged, and then applied to the test set.

input : targets y, output activations p

output: optimal threshold

best thresh ← curr thresh ← max gmean ← 0;

delta thresh ← 0.0005;

while curr thresh < 1.0 do

ŷ ← ApplyThreshold(y, p, curr thresh);
tpr, tnr, gmean ← CalcPerformance(y, ŷ);
if tpr < tnr then

return best thresh;

end

if gmean > max gmean then

max gmean ← gmean;

best thresh ← curr thresh;

end

curr thresh ← curr thresh + delta thresh;

end

return best thresh;

Algorithm 1: Optimal Decision Threshold

The TPR, TNR, and G-Mean results presented in this study are dependent on this thresh-

old selection procedure. Class-wise scores can be adjusted to increase or decrease bias

towards the positive class by defining a new threshold selection procedure.

Page 22 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Significance testing

One-way ANOVA and Tukey’s HSD test are used to estimate the significance of ROC

AUC results with a significance level of α = 0.05 . ANOVA calculates a p-value from the

between-method variance, within-method variance, and degrees of freedom. If p < α , we

reject the null hypothesis that method means are statistically equal and conclude that there

exists a significant difference between class imbalance methods based on ROC AUC scores

with 95% confidence. Tukey’s HSD test is a multiple comparison procedure that determines

which method means are statistically different from each other by identifying differences

that are greater than the expected standard error. Methods are assigned to alphabetic

groups based on the statistical difference of AUC means, e.g. group a is significantly differ-

ent from group b.

Results and discussion

We present the average ROC AUC, TPR, TNR, and G-Mean scores for each set of experi-

ments, grouped by method type, e.g. ROS, RUS, cost-sensitive, etc. When discussing

method results, -2 or -4 are appended to method names to distinguish between network

architectures containing two and four hidden layers, respectively. Within each group, the

highest average AUC score is listed in bold font. The best methods from each group are

then selected for further analysis. The ANOVA and Tukey’s HSD tests are used to estimate

the statistical significance of the results of these methods and to identify the best method

for this problem with a confidence greater than 95%. Finally, training times, decision

boundaries, and G-Mean scores are compared across the best methods from each group.

Baseline model performance

Table 11 lists the results of the baseline DNNs defined in the "Baseline models" section. To

better establish a firm baseline for the 2012–2016 Medicare Part B fraud detection prob-

lem, we have included scores of three traditional machine learning algorithms. Table 12

lists AUC scores for LR, RF, and GBT learners, averaged across 10 runs of fivefold cross-

validation. No class imbalance methods are applied when obtaining these baseline results.

The DNN Baseline-2 performed second best with an average ROC AUC of 0.8058, run-

ner up to the LR learner with an average ROC AUC of 0.8076. The LR and DNN learners

all outperformed the two tree-based learners. Baseline-2 outperforms Baseline-4 based

Table 11 Average baseline DNN results (30 runs)

Italic font indicates the maximum ROC AUC score

Method Hidden layers Decision
threshold

ROC AUC TPR TNR G‑Mean

Baseline-2 2 0.0002 0.8058 0.8280 0.6099 0.7088

Baseline-4 4 0.0003 0.8018 0.7488 0.7135 0.7301

Table 12 Average results of traditional learners (10 runs)

Italic font indicates the maximum ROC AUC score

Logistic regression Random forest Gradient Boosted Tree

Avg ROC AUC 0.8076 0.7937 0.7990

Page 23 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

on average AUC scores, suggesting that increasing network depth does not improve

results.

We would like to stress the importance of the decision threshold, noting that it was

not until the threshold was decreased to 0.0002 and 0.0003 that the baseline DNNs

achieved reasonable TPR and TNR. Using a default threshold of 0.5 causes the model to

predict the negative class (non-fraud) for all test samples. If ROC AUC was not moni-

tored and thresholding was not applied, this model would appear to be useless since the

default threshold would predict all new samples to be non-fraudulent. We also observe

that the optimal decision threshold is approximately the same as the minority class size,

i.e. 0.03%. This relationship is investigated further in the "Analysis of decision thresholds"

section.

RUS performance

Table 13 lists the results obtained when using RUS to vary the level of class imbalance

within the training data. RUS-1-2, with a 99:1 class distribution, scored the highest of

the RUS methods and outperformed all baseline learners, with an average ROC AUC

of 0.8124 and G-Mean of 0.7383. RUS-2-2, with an 80:20 class distribution, did not per-

form as well as RUS-1-2, but it does outperform the baseline DNN models.

Results show that the average performance decreases as the level of class imbalance

decreases through RUS, i.e. the size of the negative class available for training decreases.

Recall that the Medicare Part B data set exhibits both big data and class rarity, and that

creating class-balanced training sets with RUS requires discarding millions of negative

samples. These results suggest that maintaining a sufficient representation of the major-

ity class is more important than reducing the level of class imbalance, and that under-

sampling until classes are balanced can degrade performance. We continue to observe

that two-hidden-layer networks outperform four-hidden-layer networks and that there

exists a strong relationship between the level of class imbalance and the optimal decision

threshold.

Since the AUC performance increases as the size of the majority class increases, two

additional RUS experiments were conducted to determine if further increasing the

majority class size will continue to increase performance. Following the same protocol

as other experiments, class ratios of 99.5:0.5 and 99.9:0.1 are evaluated. Results in Fig. 1

Table 13 Average RUS results (30 runs)

Italic font indicates the maximum ROC AUC score

Method nneg:npos Hidden
layers

Decision
threshold

ROC AUC TPR TNR G‑Mean

RUS-1-2 99:1 2 0.0110 0.8124 0.7807 0.6987 0.7383

RUS-1-4 4 0.0145 0.8040 0.7581 0.7002 0.7265

RUS-2-2 80:20 2 0.2680 0.8076 0.7521 0.7163 0.7338

RUS-2-4 4 0.3520 0.7920 0.7674 0.6853 0.7228

RUS-3-2 60:40 2 0.4200 0.8043 0.7783 0.6700 0.7212

RUS-3-4 4 0.5370 0.7907 0.7978 0.6288 0.7021

RUS-4-2 50:50 2 0.4970 0.8027 0.7864 0.6601 0.7195

RUS-4-4 4 0.6078 0.7913 0.7778 0.6422 0.6966

RUS-5-2 40:60 2 0.5730 0.7994 0.7802 0.6588 0.7154

RUS-5-4 4 0.7060 0.7802 0.7226 0.6462 0.6412

Page 24 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

show that increasing the size of the majority class beyond 99% does not improve perfor-

mance beyond that of RUS-1-2. This suggests that both the class imbalance level and the

representation of the majority class are important and that a validation set is required to

find the best configuration.

ROS performance

Table 14 lists the results obtained by varying the training set’s class distribution through

ROS. Method ROS-4-2, with a 50:50 class distribution, performed the best with an aver-

age ROC AUC of 0.8505 and average G-Mean of 0.7692. ROS-4-2 also shows improve-

ments to class-wise accuracy scores when compared to RUS, scoring a 0.8084 TPR

and 0.7324 TNR. ROS-5-2 achieved similar results (0.8503 AUC) by over-sampling

the minority class until there were more positive samples than negative samples, i.e.

60:40. ROS-1-4, with the highest level of class imbalance in its training set, performed

the worst with an average ROC AUC of 0.8325, but still outperformed all RUS methods

from Table 13.

Fig. 1 RUS: majority class size vs average AUC (30 runs)

Table 14 Average ROS results (30 runs)

Italic font indicates the maximum ROC AUC score

Method nneg:npos Hidden
layers

Decision
threshold

ROC AUC TPR TNR G‑Mean

ROS-1-2 99:1 2 0.0110 0.8383 0.8572 0.6334 0.7338

ROS-1-4 4 0.0130 0.8325 0.8064 0.6857 0.7372

ROS-2-2 80:20 2 0.2410 0.8484 0.8282 0.6926 0.7549

ROS-2-4 4 0.3000 0.8440 0.8497 0.6165 0.7109

ROS-3-2 60:40 2 0.4080 0.8454 0.8056 0.7198 0.7582

ROS-3-4 4 0.4370 0.8438 0.8163 0.6820 0.7385

ROS-4-2 50:50 2 0.4530 0.8505 0.8084 0.7324 0.7692

ROS-4-4 4 0.4740 0.8389 0.8066 0.6861 0.7365

ROS-5-2 40:60 2 0.5630 0.8503 0.8163 0.7272 0.7701

ROS-5-4 4 0.5950 0.8423 0.8086 0.7023 0.7508

Page 25 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Similar to related works by Hensman and Masko [54] and Buda et al. [52], our results

suggest that over-sampling until class imbalance is eliminated from the training data is

best for neural networks. We find that ROS outperforms RUS in all cases, which also

supports related works [52, 57]. Networks with two hidden layers consistently outper-

form those with four hidden layers, and optimal decision thresholds increase near-line-

arly with the class imbalance level.

ROS–RUS performance

Results from the six ROS–RUS experiments are illustrated in Table 15. The Neg.

Class Reduction column denotes the amount of the majority class that was discarded

prior to applying over-sampling. For example, ROS–RUS-2 creates a 50:50 class dis-

tribution in the training data by first removing 75% of the negative class, and then

over-sampling the positive class until they are balanced. All three ROS–RUS meth-

ods compete closely with the best ROS method and outperform both baseline and

RUS learners. ROS–RUS-2-2 performs the best across all data-level methods with an

average ROC AUC of 0.8509 and G-Mean of 0.7710. ROS-1-2 and ROS-3-2 perform

nearly as well, with average AUC scores of 0.8500 and 0.8477, respectively. ROS–RUS-

3, with the highest reduction rate, performs the worst of all the ROS–RUS methods.

ROS–RUS results continue to show that balanced training distributions yield bet-

ter ROC AUC and G-Mean scores. Results also suggest that when working with big

data containing millions of records, training with a sufficiently large random sam-

ple of the majority class will perform as well as the full majority class. For this data

set, we observe that reducing the size of the majority class representation to just 10%

(ROS–RUS-3) begins to degrade performance. The exact value of the reduction rate

that will cause performance to degrade significantly is problem-specific, however, and

will depend on various factors including class distributions and data redundancy.

One of the greatest achievements of the ROS–RUS methods is that they maintain

model performance while drastically reducing training costs due to the reduced size

of the training set. For example, ROS–RUS-2 methods train approximately 4× faster

than ROS-4 methods. This allows for faster turnaround times during preliminary

experiments and hyperparameter tuning and is particularly useful when working with

big data.

Table 15 Average ROS–RUS results (30 runs)

Italic font indicates the maximum ROC AUC score

Method Neg. Class
Reduction
(%)

nneg:npos Hidden
layers

Decision
threshold

ROC AUC TPR TNR G‑Mean

ROS–RUS-1-2 50 50:50 2 0.5090 0.8500 0.8029 0.7354 0.7665

ROS–RUS-1-4 4 0.4820 0.8454 0.8064 0.7189 0.7597

ROS–RUS-2-2 75 50:50 2 0.5218 0.8509 0.7876 0.7553 0.7710

ROS–RUS-2-4 4 0.5140 0.8443 0.7992 0.7175 0.7526

ROS–RUS-3-2 90 50:50 2 0.4850 0.8477 0.8104 0.7209 0.7625

ROS–RUS-3-4 4 0.5020 0.8425 0.8063 0.7161 0.7585

Page 26 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Cost‑sensitive performance

Table 16 lists the average cost-sensitive learning results. Based on AUC scores,

CoSen-1-2 slightly outperforms CoSen-2-2 with scores of 0.8075 and 0.8072, respec-

tively. Based on G-Mean scores, however, CoSen-2-2 scores higher than CoSen-1-2

with scores of 0.7290 and 0.7283, respectively. There is similarly little difference

between CoSen-1-2 and CoSen-2-2 TPR and TNR scores, and we conclude that these

two methods perform approximately the same. These AUC scores are only marginally

better than those of the baseline models. The networks comprised of two hidden lay-

ers continue to outperform those with four hidden layers.

One notable difference between the cost-sensitive method and the data-level meth-

ods is that the cost-sensitive method has produced an output decision boundary near

0.5. Similar to the ROS and RUS methods with 50:50 balanced distributions, the cost-

sensitive method is completely balancing out the loss contributions made by the neg-

ative and positive class. This allows the model to receive weight updates equally from

both classes and arrive at a default decision boundary of 0.5. We believe that this is

dependent on the cost-matrices defined in Table 8 and that less balanced class-wise

costs would produce a different decision boundary.

MFE and MSFE performance

Table 17 summarizes the MFE and MSFE loss function results. All four of the MFE

and MSFE loss results have AUC scores in the range [0.8003, 0.8065] and G-Mean

scores in the range [0.7200, 0.7257], i.e. there is very little difference in performance.

MSFE-2 does perform the best with a AUC of 0.8065, and for both variants of the loss

function the two-hidden-layer networks outperform their four-hidden-layer alterna-

tives. Based on AUC scores, the CoSen-1-2 and LR learners perform better than the

MFE and MSFE learners.

Table 16 Average cost-sensitive results (30 runs)

Italic font indicates the maximum ROC AUC score

Method wpos wneg Hidden
layers

Decision
threshold

ROC AUC TPR TNR G‑Mean

CoSen-1-2 3112 1 2 0.4760 0.8075 0.7574 0.7031 0.7283

CoSen-1-4 4 0.4480 0.8011 0.8008 0.6522 0.7213

CoSen-2-2 0.9997 0.0003 2 0.4780 0.8072 0.7529 0.7086 0.7291

CoSen-2-4 4 0.4825 0.8028 0.7265 0.7389 0.7318

Table 17 Average MFE and MSFE loss results (30 runs)

Italic font indicates the maximum ROC AUC score

Method Hidden layers Decision
threshold

ROC AUC TPR TNR G‑Mean

MFE-2 2 0.0350 0.8041 0.7727 0.6828 0.7249

MFE-4 4 0.0290 0.8003 0.7741 0.6727 0.7200

MSFE-2 2 0.2890 0.8065 0.7862 0.6707 0.7251

MSFE-4 4 0.2980 0.8010 0.7715 0.6847 0.7257

Page 27 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Despite the class imbalance levels in the training data, we observe that the optimal

decision thresholds are significantly closer to 0.5 than those of the baseline models.

This is expected, as these learners compute the loss as the sum of average false posi-

tive errors and average false negative errors, preventing one single class from domi-

nating the training process.

Focal loss performance

Results in Table 18 show that the best FL score (AUC 0.8073) is achieved by FL-2-2

with γ = 3 and two hidden layers. The average AUC of FL-2-2 is nearly the same

as that of CoSen-1-2, i.e. 0.8073 vs. 0.8075, and it shows a slight improvement over

MSFE-2’s AUC of 0.8065.

Adjusting the rate γ at which easy samples are down-weighted appears to have a

minimal impact on the average performance, but increasing γ does move the optimal

decision threshold closer to 0.5. If we were using a default decision threshold of 0.5,

we would observe progressively better TPR and TNR results as γ increases. Unlike the

results of Lin et al. [30], we do not observe the best results with parameters α = 0.25

and γ = 2 . We can see that these values do produce the strongest bias towards the

positive class, however, as it yields very unbalanced TPR and TNR scores of 0.8741

and 0.5202, respectively. These results suggest that the use of FL will require addi-

tional hyperparameter tuning, as weighting parameters appear to be problem specific.

Statistical analysis

Area under the curve scores are used to select the best methods from each group

for further analysis, i.e. Baseline-2, RUS-1-2, ROS-4-2, ROS–RUS-2-2, CoSen-1-2,

MSFE-2, and FL-2-2. A one-way ANOVA test (Table 19) with a significance level of

Table 18 Average focal loss results (30 runs)

Italic font indicates the maximum ROC AUC score

Method α γ Hidden
layers

Decision
threshold

ROC AUC TPR TNR G‑Mean

FL-1-2 0.25 2 2 0.0315 0.8015 0.8741 0.5202 0.6722

FL-1-4 4 0.0315 0.8019 0.8167 0.6264 0.7115

FL-2-2 0.25 3 2 0.0730 0.8073 0.7616 0.7019 0.7295

FL-2-4 4 0.0730 0.8020 0.7912 0.6595 0.7184

FL-3-2 0.25 4 2 0.1195 0.8071 0.7342 0.7309 0.7310

FL-3-4 4 0.1190 0.8025 0.7769 0.6781 0.7230

FL-4-2 0.25 5 2 0.1615 0.8072 0.7574 0.7018 0.7267

FL-4-4 4 0.1615 0.8030 0.7646 0.6952 0.7267

Table 19 One-way ANOVA results (AUC)

Source DF Sum Sq Variance F‑value p‑value

Between 6 0.0793 0.0132 1935 < 2.0e−16

Within 203 0.00138 7.00e−06

Total 209 0.0807

Page 28 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

α = 0.05 is used to estimate the significance of the difference between method AUC

scores. With p < 2.0e−6 < α , we can conclude that mean AUC results are signifi-

cantly different between methods.

Tukey’s HSD results (Table 20) further groups these select class imbalance methods

into three distinct categories, i.e. a, b, and c. These groups are defined by the pair-

wise statistical differences between method AUC scores, and each group is statisti-

cally different from the other with a confidence of at least 95%.

ROS–RUS-2-2 and ROS-4-2 in group a obtain significantly higher scores than all

other methods, with a mean AUC of 0.8509 and 0.8505, respectively. RUS-1-2, placed

in group b with an average AUC score of 0.8124, performs significantly better than the

baseline and algorithm-level methods. All algorithm-level methods perform approxi-

mately the same as the baseline DNNs, according to ROC AUC scores. Subsequent sec-

tions will compare these methods across additional criteria, as this method ranking is

based solely on AUC scores.

Training time analysis

Table 21 lists the average time to complete one training epoch for each method, where

averages are computed across 50 epochs. We have included the size of the training

set, Ntrain , because this has the greatest influence on total training time. Other fac-

tors that will impact the total training time include network topology, activation func-

tions, and loss functions, i.e. any hyperparameter that affects the total number of matrix

Table 20 Tukey’s HSD test results (AUC)

Method Group AUC sd Min Max

ROS–RUS-2-2 a 0.8509 0.0038 0.8433 0.8591

ROS-4-2 a 0.8505 0.0038 0.8430 0.8594

RUS-1-2 b 0.8124 0.0030 0.8045 0.8170

CoSen-1-2 c 0.8075 0.0012 0.8048 0.8100

FL-2-2 c 0.8073 0.0013 0.8045 0.8102

MSFE-2 c 0.8065 0.0023 0.7972 0.8090

Baseline-2 c 0.8058 0.0013 0.8029 0.8080

Table 21 Average training time per epoch

Method Time (s) sd Ntrain

RUS-1-2 1.9213 0.0294 108,487

ROS–RUS-2-2 31.0784 0.7683 1,688,710

MSFE-2 59.8842 1.2310 3,378,506

FL-2-2 62.3954 1.3034 3,378,506

Baseline-2 63.0775 1.8798 3,378,506

CoSen-1-2 65.4384 1.8057 3,378,506

ROS-4-2 128.2847 3.8514 6,754,842

Page 29 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

operations. Since all methods were trained for exactly 50 epochs, we can compare meth-

ods directly using the time to train one epoch.

Taking training times into consideration, we prefer ROS–RUS-2-2 over ROS-4-2

because AUC scores are statistically the same and ROS–RUS-2-2 trains approximately

4× faster. The speed up of ROS–RUS-2-2 is the result of the majority class being

reduced by 75% before over-sampling the minority class. This produces a training set

approximately 4× smaller than that of ROS-4-2 and 2× smaller than the baseline and

algorithm-level methods. RUS-1-2 sees more than a 30× speed up in training when

compared to baseline and algorithm-level methods.

Based on these timings and Tukey’s HSD test, we find that combining ROS and RUS

is very effective when training neural networks on big data with severe class imbalance.

We suggest the use of plain RUS for preliminary experimentation and hyperparameter

tuning, as RUS has been shown to outperform baseline and algorithm-level methods

while providing significant improvements to turnaround times.

Analysis of decision thresholds

When comparing the ROS and RUS method results, and their varying class distribu-

tions, a relationship between the level of class imbalance within the training data and

the optimal decision threshold is apparent. More specifically, when training networks

comprised of two hidden layers with the cross-entropy loss, the learned decision bound-

ary appears to fall near the minority class distribution size. For example, Baseline-2 has a

minority class ratio of 0.0003, and the average optimal decision boundary calculated on

the trained model is 0.0002. On the other hand, ROS-4-2 has a minority class ratio near

0.5, and the average optimal decision boundary was found to be 0.4530.

To add rigor to this observation, we fit linear models to this data with the Ordinary

Least Squares [80] method. For each of the baseline, ROS, RUS, and ROS–RUS valida-

tion runs, i.e. 10 runs per method/architecture pair, the minority class ratio size is plot-

ted against the calculated optimal decision threshold. Furthermore, we group this data

by network topology to observe how architecture type impacts the learned decision

boundary. These results are illustrated in Fig. 2 with 0.01 horizontal jitter and 95% confi-

dence interval bands.

The two-hidden-layer networks show a strong linear relationship between the

minority class size and the optimal decision threshold, with r2 = 0.987 and p-value =

6.70e−132. The strength of this relationship is weakened slightly when the network

depth is increased to four hidden layers, with an r2 = 0.964 and p-value = 1.73e−102.

Figure 2 shows that the number of hidden layers impacts the learned decision bound-

ary. Visually examining the optimal decision thresholds from the other methods, it is

clear that the loss function also has a significant impact on the output decision bound-

ary. For example, Baseline-2 and FL-2-2 are both fit to data with a minority size of 0.03%,

but the FL-2-2 threshold is an order of magnitude larger than Baseline-2. In addition, we

observed that some methods produce a larger between-class margin at the output layer.

With a larger between-class margin at the output layer, the decision threshold will be

more stable and the classifier will be more confident in its predictions.

We analyze the decision boundary margins further by calculating the range of accept-

able decision thresholds for each method. For this problem, we loosely define this range

Page 30 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

as the difference between the minimum and maximum decision thresholds that satisfy

G-Mean > 0.7 . Using the best methods from each group, we calculate these thresholds

using the decision threshold data from the validation step. We average the threshold

range across each method’s ten validation runs. Since the baseline learner’s threshold is

orders of magnitude smaller than those learned by the class imbalance methods, we pre-

sent these results in Fig. 3 in logarithmic scale.

Through visualizing the approximate range of acceptable decision thresholds, we find

that all three algorithm-level methods produce larger decision boundaries at the output

layer than the baseline DNNs. We believe that these larger class-separating boundaries

make the model more robust to threshold selection and should therefore improve class-

wise performance scores. This is further supported by the average G-Mean scores pre-

sented in Fig. 4. We observe that algorithm-level methods yield higher average G-Mean

scores when compared to the baseline models and that G-Mean scores improve over-

all as the decision boundary increases. The Baseline-2 model, which has the small-

est margin, has the greatest G-Mean variance and lowest overall G-Mean scores. The

methods with more balanced class distributions, i.e. RUS-1-2, ROS-4-2, and ROS–RUS-

2-2, perform the best with the highest G-Mean averages and little variance. Of the three

remaining algorithm-level methods, FL-2-2 performs the best, on average, based on the

G-Mean scores. We conclude that, although average AUC scores between the baseline

and algorithm-level methods are statistically the same, all three algorithm-level methods

are preferred over the baseline as their decision boundary is more stable and should gen-

eralize better to new data.

Fig. 2 Minority class ratio vs optimal decision threshold (CE loss)

Fig. 3 Average decision threshold intervals (30 runs)

Page 31 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

Conclusion

The Medicare program provides affordable healthcare to more than 60 million U.S. resi-

dents. It has been estimated that Medicare loses between $20 and $70 billion per year to

fraud, waste and abuse. This costs taxpayers billions of dollars and risks the well-being of

its beneficiaries. In an effort to increase transparency and reduce fraud, CMS has made

several Medicare data sets available to the public. Related works have shown that this big

data is suitable for anomaly and fraud detection tasks, but that non-standard techniques

are required to address the severe class imbalance. This study evaluates the performance

of six deep learning methods for addressing class imbalance using CMS Medicare data

with LEIE fraud labels. Additionally, we consider a range of class distributions and study

the relationship between the minority class size and the optimal decision threshold.

Through deep learning with methods for addressing class imbalance, we achieve the

highest ROC AUC scores to date on the given CMS/LEIE data set.

Eliminating class imbalance from the training data through ROS or ROS–RUS outper-

forms all algorithm-level methods and baseline models, with average ROC AUC scores

of 0.8505 and 0.8509. With 4× faster training times compared to baseline models, we

conclude that deep learning with ROS–RUS is the preferred method for detecting fraud

within the CMS Medicare data sets. RUS performs significantly better than algorithm-

level and baseline methods using a class distribution of 99:1, but further decreasing

imbalance levels with RUS degrades performance. Algorithm-level methods perform

statistically the same as baseline methods, based on ROC AUC scores, but analysis of

decision threshold intervals and G-Mean scores suggest that algorithm-level methods

yield more stable decision boundaries than baseline models. A strong linear relationship

is observed between the minority class size and the optimal decision threshold, suggest-

ing that classification decision thresholds should always be optimized with a validation

set when training neural networks with imbalanced data.

Future work in the area of class-imbalanced big data should reinforce these findings

by comparing these methods across a variety of domains and data types. The ROS–

RUS method can be improved by identifying more efficient techniques for determining

Fig. 4 Average G-Mean scores (30 runs)

Page 32 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

effective sample sizes. Regarding Medicare fraud detection, data quality can be improved

by leveraging the NPPES registry to look up NPI numbers that are currently missing

from the LEIE database. Provider specialty types can be converted from sparse one-hot

vectors to dense embeddings that capture relationships between provider types, and

HCPCS codes can be incorporated into the feature space in a similar manner. These

latent semantic embeddings can be learned through various unsupervised deep learn-

ing methods [81]. Finally, several more advanced deep learning methods for addressing

class imbalance can also be explored, e.g. dynamic sampling [50], LMLE [51], deep over-

sampling [82], and the class rectification loss [57].

Abbreviations

ANN: artificial neural network; ANOVA: analysis of variance; AUC : area under the curve; CSDNN: cost-sensitive deep neural

network; DNN: deep neural network; FBI: Federal Bureau of Investigation; FCA: False Claims Act; FL: focal loss; FNE: false

negative error; FPE: false positive error; FPR: false positive rate; FWA: fraud, waste, and abuse; GBT: Gradient Boosted Tree;

LEIE: List of Excluded Individuals and Entities; LR: logistic regression; MFE: mean false error; OHEM: online hard example

mining; OIG: Office of Inspector General; PUF: Public Use File; ReLU: rectified linear unit; RF: random forest; ROC: receiver

operating characteristics; ROS: random over-sampling; RUS: random under-sampling; SGD: stochastic gradient descent;

SVM: support vector machine; TNR: true negative rate; TPR: true positive rate; U.S.: United States.

Acknowledgements

We would like to thank the reviewers in the Data Mining and Machine Learning Laboratory at Florida Atlantic University.

Additionally, we acknowledge partial support by the NSF (CNS-1427536). Opinions, findings, conclusions, or recommen-

dations in this paper are solely of the authors’ and do not reflect the views of the NSF.

Authors’ contributions

JMJ performed the research and drafted the manuscript. TMK worked with JMJ to develop the article’s framework and

focus. TMK introduced this topic to JMJ. Both authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 16 May 2019 Accepted: 7 July 2019

References

 1. U.S. Government, U.S. Centers for Medicare & Medicaid Services. The Official U.S. Government Site for Medicare.

https ://www.medic are.gov/. Accessed 01 Feb 2019.

 2. Centers For Medicare & Medicaid Services. Trustees report & trust funds. https ://www.cms.gov/Resea rch-Stati stics

-Data-and-Syste ms/Stati stics -Trend s-and-Repor ts/Repor tsTru stFun ds/index .html. Accessed 02 Feb 2019.

 3. Centers for Medicare & Medicaid Services. Medicare enrollment dashboard. https ://www.cms.gov/Resea rch-Stati

stics -Data-and-Syste ms/Stati stics -Trend s-and-Repor ts/Dashb oard/Medic are-Enrol lment /Enrol lment %20Das hboar

d.html. Accessed 15 Mar 2019.

 4. Morris L. Combating fraud in health care: an essential component of any cost containment strategy. Health Aff.

2009;28:1351–6. https ://doi.org/10.1377/hltha ff.28.5.1351.

 5. Coalition Against Insurance Fraud: by the numbers: Fraud Statistics. https ://www.insur ancef raud.org/stati stics .htm.

Accessed 02 Feb 2019.

 6. Medicare fraud & abuse: prevention, detection, and reporting. Centers for Medicare & Medicaid Services. 2017. https

://www.cms.gov/Outre ach-and-Educa tion/Medic are-Learn ing-Netwo rk-MLN/MLNPr oduct s/Downl oads/Fraud

_and_Abuse .pdf. Accessed 20 Jan 2019.

 7. Li J, Huang K-Y, Jin J, Shi J. A survey on statistical methods for health care fraud detection. Health Care Manag Sci.

2008;11:275–87. https ://doi.org/10.1007/s1072 9-007-9045-4.

 8. The Office of the National Coordinator for Health Information Technology: Office-based Physician Electronic Health

Record Adoption. https ://dashb oard.healt hit.gov/quick stats /quick stats .php. Accessed 03 Mar 2019.

https://www.medicare.gov/
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/ReportsTrustFunds/index.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/ReportsTrustFunds/index.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Dashboard/Medicare-Enrollment/Enrollment%20Dashboard.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Dashboard/Medicare-Enrollment/Enrollment%20Dashboard.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Dashboard/Medicare-Enrollment/Enrollment%20Dashboard.html
https://doi.org/10.1377/hlthaff.28.5.1351
https://www.insurancefraud.org/statistics.htm
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/Downloads/Fraud_and_Abuse.pdf
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/Downloads/Fraud_and_Abuse.pdf
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/Downloads/Fraud_and_Abuse.pdf
https://doi.org/10.1007/s10729-007-9045-4
https://dashboard.healthit.gov/quickstats/quickstats.php

Page 33 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

 9. The Office of the National Coordinator for Health Information Technology: Adoption of Electronic Health Record

Systems Among U.S. Non-Federal Acute Care Hospitals: 2008–2015. https ://dashb oard.healt hit.gov/evalu ation s/

data-brief s/non-feder al-acute -care-hospi tal-ehr-adopt ion-2008-2015.php. Accessed 03 Mar 2019.

 10. Dumbill E. What is Big Data? : an introduction to the Big Data landscape. http://radar .oreil ly.com/2012/01/what-is-

big-data.html. Accessed 15 Nov 2018.

 11. Ahmed SE. Perspectives on Big Data analysis: methodologies and applications. Providence: American Mathematical

Society; 2014.

 12. Centers For Medicare & Medicaid Services. Medicare fee-for-service provider utilization & payment data physician

and other supplier public use file: a methodological overview. https ://www.cms.gov/resea rch-stati stics -data-and-

syste ms/stati stics -trend s-and-repor ts/medic are-provi der-charg e-data/physi cian-and-other -suppl ier.html. Accessed

20 Jan 2019.

 13. Office of Inspector General. LEIE downloadable databases. https ://oig.hhs.gov/exclu sions /exclu sions _list.asp.

Accessed 20 Jan 2019.

 14. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big Data.

2018;5(1):42. https ://doi.org/10.1186/s4053 7-018-0151-6.

 15. Van Hulse J, Khoshgoftaar TM, Napolitano A. Experimental perspectives on learning from imbalanced data. In:

Proceedings of the 24th international conference on machine learning. ICML ’07. ACM, New York, NY, USA. 2007. pp.

935–42. https ://doi.org/10.1145/12734 96.12736 14

 16. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436.

 17. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,

Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore

S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas

F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow: large-scale machine learning on hetero-

geneous systems. 2015. http://tenso rflow .org/. Accessed 01 Nov 2018.

 18. Theano Development Team: Theano: a Python framework for fast computation of mathematical expressions. arXiv

e-prints. 2016. arxiv :abs/1605.02688

 19. Chollet F, et al. Keras. 2015. https ://keras .io. Accessed 01 Nov 2018.

 20. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A Automatic differentia-

tion in pytorch. In: NIPS-W. 2017.

 21. Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E. cudnn: efficient primitives for deep

learning. 2014.

 22. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Neural Inf

Process Syst. 2012. https ://doi.org/10.1145/30653 86

 23. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: The MIT Press; 2016.

 24. Witten IH, Frank E, Hall MA, Pal CJ. Data mining: practical machine learning tools and techniques. 4th ed. San Fran-

cisco: Morgan Kaufmann Publishers Inc.; 2016.

 25. Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. J Big Data. 2019;6(1):27. https ://doi.

org/10.1186/s4053 7-019-0192-5.

 26. Herland M, Khoshgoftaar TM, Bauder RA. Big data fraud detection using multiple medicare data sources. J Big Data.

2018;5(1):29. https ://doi.org/10.1186/s4053 7-018-0138-3.

 27. Centers For Medicare & Medicaid Services. Medicare provider utilization and payment data: physician and other

supplier. https ://www.cms.gov/resea rch-stati stics -data-and-syste ms/stati stics -trend s-and-repor ts/medic are-provi

der-charg e-data/physi cian-and-other -suppl ier.html. Accessed 20 Jan 2019.

 28. United States Government Publishing Office: United States Code, Title 42—The Public Health and Welfare. https ://

www.govin fo.gov/conte nt/pkg/USCOD E-2016-title 42/pdf/USCOD E-2016-title 42-chap7 -subch apXI-partA -sec13

20a-7.pdf. Accessed 02 Mar 2019.

 29. Wang S, Liu W, Wu J, Cao L, Meng Q, Kennedy PJ. Training deep neural networks on imbalanced data sets. In: 2016

international joint conference on neural networks (IJCNN). 2016. pp. 4368–74. https ://doi.org/10.1109/IJCNN

.2016.77277 70.

 30. Lin T-Y, Goyal P, Girshick RB, He K, Dollár P. Focal loss for dense object detection. In: 2017 IEEE international confer-

ence on computer vision (ICCV). 2017. pp. 2999–3007.

 31. Provost F, Fawcett T. Analysis and visualization of classifier performance: comparison under imprecise class and cost

distributions. In: Proceedings of the third international conference on knowledge discovery and data mining. 1999.

pp. 43–8.

 32. Gelman A. Analysis of variance: why it is more important than ever. Ann Stat. 2005;33(1):1–31.

 33. Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949;5(2):99–114.

 34. Bauder RA, Khoshgoftaar TM. A probabilistic programming approach for outlier detection in healthcare claims. In:

2016 15th IEEE international conference on machine learning and applications (ICMLA). 2016. pp. 347–54. https ://

doi.org/10.1109/ICMLA .2016.0063.

 35. Bauder RA, Khoshgoftaar TM. A novel method for fraudulent medicare claims detection from expected payment

deviations (application paper). In: 2016 IEEE 17th international conference on information reuse and integration

(IRI). 2016. pp. 11–19. https ://doi.org/10.1109/IRI.2016.11.

 36. Friedman JH. Multivariate adaptive regression splines. Ann Stat. 1991;19(1):1–67.

 37. Bauder RA, Khoshgoftaar TM, Richter A, Herland M. Predicting medical provider specialties to detect anomalous

insurance claims. In: 2016 IEEE 28th international conference on tools with artificial intelligence (ICTAI). 2016. pp.

784–90. https ://doi.org/10.1109/ICTAI .2016.0123.

 38. Herland M, Bauder RA, Khoshgoftaar TM. Medical provider specialty predictions for the detection of anomalous

medicare insurance claims. In: 2017 IEEE international conference on information reuse and integration (IRI). 2017.

pp. 579–88. https ://doi.org/10.1109/IRI.2017.29.

 39. Bauder RA, Khoshgoftaar TM. The detection of medicare fraud using machine learning methods with excluded

provider labels. In: FLAIRS conference. 2018.

https://dashboard.healthit.gov/evaluations/data-briefs/non-federal-acute-care-hospital-ehr-adoption-2008-2015.php
https://dashboard.healthit.gov/evaluations/data-briefs/non-federal-acute-care-hospital-ehr-adoption-2008-2015.php
http://radar.oreilly.com/2012/01/what-is-big-data.html
http://radar.oreilly.com/2012/01/what-is-big-data.html
https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/physician-and-other-supplier.html
https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/physician-and-other-supplier.html
https://oig.hhs.gov/exclusions/exclusions_list.asp
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1145/1273496.1273614
http://tensorflow.org/
http://arxiv.org/abs/1605.02688
https://keras.io
https://doi.org/10.1145/3065386
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-018-0138-3
https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/physician-and-other-supplier.html
https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/medicare-provider-charge-data/physician-and-other-supplier.html
https://www.govinfo.gov/content/pkg/USCODE-2016-title42/pdf/USCODE-2016-title42-chap7-subchapXI-partA-sec1320a-7.pdf
https://www.govinfo.gov/content/pkg/USCODE-2016-title42/pdf/USCODE-2016-title42-chap7-subchapXI-partA-sec1320a-7.pdf
https://www.govinfo.gov/content/pkg/USCODE-2016-title42/pdf/USCODE-2016-title42-chap7-subchapXI-partA-sec1320a-7.pdf
https://doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1109/IJCNN.2016.7727770
https://doi.org/10.1109/ICMLA.2016.0063
https://doi.org/10.1109/ICMLA.2016.0063
https://doi.org/10.1109/IRI.2016.11
https://doi.org/10.1109/ICTAI.2016.0123
https://doi.org/10.1109/IRI.2017.29

Page 34 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

 40. Centers For Medicare & Medicaid Services. Medicare provider utilization and payment data: part D prescriber. https

://www.cms.gov/Resea rch-Stati stics -Data-and-Syste ms/Stati stics -Trend s-and-Repor ts/Medic are-Provi der-Charg

e-Data/Part-D-Presc riber .html. Accessed 20 Jan 2019.

 41. Centers For Medicare & Medicaid Services. Medicare provider utilization and payment data: referring durable medi-

cal equipment, prosthetics, orthotics and supplies. https ://www.cms.gov/Resea rch-Stati stics -Data-and-Syste ms/

Stati stics -Trend s-and-Repor ts/Medic are-Provi der-Charg e-Data/DME.html. Accessed 20 Jan 2019.

 42. Feldman K, Chawla NV. Does medical school training relate to practice? evidence from big data. Big Data.

2015;3:103–13.

 43. Centers for Medicare & Medicaid Services. Physician compare datasets. https ://data.medic are.gov/data/physi cian-

compa re. Accessed 05 Feb 2019.

 44. Ko J, Chalfin H, Trock B, Feng Z, Humphreys E, Park S-W, Carter B, Frick KD. Variability in medicare utilization and pay-

ment among urologists. Urology. 2015;85:1045–51. https ://doi.org/10.1016/j.urolo gy.2014.11.054.

 45. Chandola V, Sukumar SR, Schryver JC. Knowledge discovery from massive healthcare claims data. In: KDD. 2013.

 46. Branting LK, Reeder F, Gold J, Champney T. Graph analytics for healthcare fraud risk estimation. In: 2016 IEEE/ACM

international conference on advances in social networks analysis and mining (ASONAM). 2016. pp. 845–51. https ://

doi.org/10.1109/ASONA M.2016.77523 36.

 47. National Plan & Provider Enumeration System. NPPES NPI Registry. https ://npire gistr y.cms.hhs.gov/regis try/.

Accessed 20 Jan 2019.

 48. Khan SH, Hayat M, Bennamoun M, Sohel FA, Togneri R. Cost-sensitive learning of deep feature representations from

imbalanced data. IEEE Trans Neural Netw Learn Syst. 2018;29:3573–87.

 49. Lee H, Park M, Kim J. Plankton classification on imbalanced large scale database via convolutional neural networks

with transfer learning. In: 2016 IEEE international conference on image processing (ICIP). 2016. pp. 3713–17. https ://

doi.org/10.1109/ICIP.2016.75330 53.

 50. Pouyanfar S, Tao Y, Mohan A, Tian H, Kaseb AS, Gauen K, Dailey R, Aghajanzadeh S, Lu Y, Chen S, Shyu M. Dynamic

sampling in convolutional neural networks for imbalanced data classification. In: 2018 ieee conference on multime-

dia information processing and retrieval (MIPR). 2018. vol. 00. pp. 112–7. https ://doi.org/10.1109/MIPR.2018.00027 .

 51. Huang C, Li Y, Loy CC, Tang X. Learning deep representation for imbalanced classification. In: 2016 IEEE conference

on computer vision and pattern recognition (CVPR). 2016. pp. 5375–84. https ://doi.org/10.1109/CVPR.2016.580.

 52. Buda M, Maki A, Mazurowski MA. A systematic study of the class imbalance problem in convolutional neural net-

works. Neural Netw. 2018;106:249–59. https ://doi.org/10.1016/j.neune t.2018.07.011.

 53. Anand R, Mehrotra KG, Mohan CK, Ranka S. An improved algorithm for neural network classification of imbalanced

training sets. IEEE Trans Neural Netw. 1993;4(6):962–9. https ://doi.org/10.1109/72.28689 1.

 54. Masko D, Hensman P. The impact of imbalanced training data for convolutional neural networks. Stockholm: KTH,

School of Computer Science and Communication (CSC); 2015.

 55. Krizhevsky A, Nair V, Hinton G. Cifar-10 (Canadian Institute for Advanced Research).

 56. Chawla NV, Japkowicz N, Kotcz A. Editorial: Special issue on learning from imbalanced data sets. SIGKDD Explor

Newsl. 2004;6(1):1–6. https ://doi.org/10.1145/10077 30.10077 33.

 57. Dong Q, Gong S, Zhu X. Imbalanced deep learning by minority class incremental rectification. IEEE Trans Pattern

Anal Mach Intell. 2018;41:1367–81. https ://doi.org/10.1109/TPAMI .2018.28326 29.

 58. Liu Z, Luo P, Wang X, Tang X. Deep learning face attributes in the wild. In: Proceedings of international conference

on computer vision (ICCV). 2015.

 59. Wang H, Cui Z, Chen Y, Avidan M, Abdallah AB, Kronzer A. Predicting hospital readmission via cost-sensitive deep

learning. IEEE/ACM Trans Comput Biol Bioinform. 2018;15:1968–78. https ://doi.org/10.1109/TCBB.2018.28270 29.

 60. Krizhevsky A, Nair V, Hinton G. Cifar-100 (Canadian Institute for Advanced Research).

 61. 20 Newsgroups Dataset. http://peopl e.csail .mit.edu/jrenn ie/20New sgrou ps/. Accessed 15 Oct 2018.

 62. Lin T-Y, Maire M, Belongie SJ, Bourdev LD, Girshick RB, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. Microsoft

coco: common objects in context. In: ECCV. 2014.

 63. Fu C, Liu W, Ranga A, Tyagi A, Berg AC. DSSD : deconvolutional single shot detector. CoRR. 2017. arxiv

:abs/1701.06659 .

 64. Shrivastava A, Sukthankar R, Malik J, Gupta A. Beyond skip connections: top-down modulation for object detection.

CoRR. 2016. arxiv :abs/1612.06851 .

 65. Shrivastava A, Gupta A, Girshick RB. Training region-based object detectors with online hard example mining. In:

2016 IEEE conference on computer vision and pattern recognition (CVPR). 2016. pp. 761–9.

 66. Nemoto K, Hamaguchi R, Imaizumi T, Hikosaka S. Classification of rare building change using cnn with multi-class

focal loss. In: IGARSS 2018—2018 IEEE international geoscience and remote sensing symposium. 2018. pp. 4663–6.

https ://doi.org/10.1109/IGARS S.2018.85175 63.

 67. Centers for Medicare & Medicaid Services. National provider identifier standard (NPI). https ://www.cms.gov/Regul

ation s-and-Guida nce/Admin istra tive-Simpl ifica tion/Natio nalPr ovIde ntSta nd/. Accessed 01 Mar 2019.

 68. Centers For Medicare & Medicaid Services. HCPCS general information. https ://www.cms.gov/Medic are/Codin g/

MedHC PCSGe nInfo /index .html. Accessed 20 Jan 2019.

 69. Office of Inspector General. Exclusion authorities. https ://oig.hhs.gov/exclu sions /autho ritie s.asp. Accessed 06 Feb

2019.

 70. Guo C, Berkhahn F. Entity embeddings of categorical variables. CoRR. 2016. arxiv :abs/1604.06737 .

 71. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their com-

positionality. In: Proceedings of the 26th international conference on neural information processing systems, vol. 2.

NIPS’13. Curran Associates Inc., USA. 2013. pp. 3111–9.

 72. Jayalakshmi T, Santhakumaran A. Statistical normalization and back propagation for classification. Int J Comput

Theor Eng. 2011;3:89–93.

 73. Linux S. About. https ://www.scien tific linux .org/about /. Accessed 02 Jan 2019.

 74. Wilson D, Martinez T. The general inefficiency of batch training for gradient descent learning. Neural Netw.

2004;16:1429–51. https ://doi.org/10.1016/S0893 -6080(03)00138 -2.

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Part-D-Prescriber.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Part-D-Prescriber.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Part-D-Prescriber.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/DME.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/DME.html
https://data.medicare.gov/data/physician-compare
https://data.medicare.gov/data/physician-compare
https://doi.org/10.1016/j.urology.2014.11.054
https://doi.org/10.1109/ASONAM.2016.7752336
https://doi.org/10.1109/ASONAM.2016.7752336
https://npiregistry.cms.hhs.gov/registry/
https://doi.org/10.1109/ICIP.2016.7533053
https://doi.org/10.1109/ICIP.2016.7533053
https://doi.org/10.1109/MIPR.2018.00027
https://doi.org/10.1109/CVPR.2016.580
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1109/72.286891
https://doi.org/10.1145/1007730.1007733
https://doi.org/10.1109/TPAMI.2018.2832629
https://doi.org/10.1109/TCBB.2018.2827029
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1612.06851
https://doi.org/10.1109/IGARSS.2018.8517563
https://www.cms.gov/Regulations-and-Guidance/Administrative-Simplification/NationalProvIdentStand/
https://www.cms.gov/Regulations-and-Guidance/Administrative-Simplification/NationalProvIdentStand/
https://www.cms.gov/Medicare/Coding/MedHCPCSGenInfo/index.html
https://www.cms.gov/Medicare/Coding/MedHCPCSGenInfo/index.html
https://oig.hhs.gov/exclusions/authorities.asp
http://arxiv.org/abs/1604.06737
https://www.scientificlinux.org/about/
https://doi.org/10.1016/S0893-6080(03)00138-2

Page 35 of 35Johnson and Khoshgoftaar J Big Data (2019) 6:63

 75. Kingma DP, Ba J. Adam: a method for stochastic optimization. CoRR. 2015. arxiv :abs/1412.6980.

 76. Lippmann RP. Neural networks, bayesian a posteriori probabilities, and pattern classification. In: Cherkassky V, Fried-

man JH, Wechsler H, editors. From statistics to neural networks. Berlin: Springer; 1994. p. 83–104.

 77. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks

from overfitting. J Mach Learn Res. 2014;15(1):1929–58.

 78. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift.

In: Proceedings of the 32nd international conference on international conference on machine learning, vol. 37.

ICML’15. 2015. pp. 448–56.

 79. Seliya N, Khoshgoftaar TM, Van Hulse J. A study on the relationships of classifier performance metrics. In: 2009 21st

IEEE international conference on tools with artificial intelligence. 2009. pp. 59–66. https ://doi.org/10.1109/ICTAI

.2009.25.

 80. Zdaniuk B. In: Michalos AC, editor. Ordinary least-squares (OLS) model. Dordrecht: Springer; 2014. pp. 4515–17.

 81. Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal

Mach Intell. 2013;35(8):1798–828. https ://doi.org/10.1109/TPAMI .2013.50.

 82. Ando S, Huang CY. Deep over-sampling framework for classifying imbalanced data. In: Ceci M, Hollmén J, Todorovski

L, Vens C, Džeroski S, editors. Machine learning and knowledge discovery in databases. Cham: Springer; 2017. p.

770–85.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/abs/1412.6980
https://doi.org/10.1109/ICTAI.2009.25
https://doi.org/10.1109/ICTAI.2009.25
https://doi.org/10.1109/TPAMI.2013.50

	Medicare fraud detection using neural networks
	Abstract
	Introduction
	Related works
	Medicare fraud detection
	Deep learning with class imbalance
	Data-level methods
	Algorithm-level methods

	Data sets
	Medicare Part B data
	LEIE data
	Fraud labeling
	Data processing

	Methodology
	Runtime environment
	Baseline models
	Class imbalance methods
	Data-level methods
	Algorithm-level methods

	Performance metrics
	Threshold moving
	Significance testing

	Results and discussion
	Baseline model performance
	RUS performance
	ROS performance
	ROS–RUS performance
	Cost-sensitive performance
	MFE and MSFE performance
	Focal loss performance
	Statistical analysis
	Training time analysis
	Analysis of decision thresholds

	Conclusion
	Acknowledgements
	References

