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Abstract
OBJECTIVES: To test whether Mediterranean-type Diet (MeDi) at age 
70 years is associated with longitudinal trajectories of total brain MRI 
volume over a six-year period from age 73 to 79.
DESIGN: Cohort study which uses a correlational design.
SETTING: Participants residing in the Lothian region of Scotland and 
living independently in the community.
PARTICIPANTS: A relatively healthy Scottish sample drawn from the 
Lothian Birth Cohort 1936.
MEASUREMENTS: Total brain volume measurements were available 
at ages 73, 76 and 79 (N ranged 332 to 563). Adherence to the MeDi 
was based on food frequency questionnaire data collected three years 
before the baseline imaging scans, and was used in growth curve 
models to predict the trajectory of total brain volume change.
RESULTS: No association was found (p>.05) between adherence to 
the MeDi at age 70 and total brain volume change from 73 to 79 years 
in minimally-adjusted (sex) or fully adjusted models controlling for 
additional health confounders. 
CONCLUSIONS: Variation in adherence to the MeDi was not 
predictive of total brain atrophy over a six-year period. This suggests 
that previous findings of dietary associations with brain volume are 
not long lasting or become less important as ageing-related conditions 
account for greater variation in brain volume change. More frequent 
collection of dietary intake data is needed to clarify these findings.

Key words: Brain atrophy, brain volume, longitudinal study, trajectory 
model.

Introduction

Eating a Mediterranean-type diet (MeDi) has benefits 
on physical and mental health (1-5) that may be 
particularly relevant to healthy ageing (6). This diet 

is characterised by high consumption of the following foods: 
fruit, vegetables, legumes and cereals; and low consumption 
of red meat and poultry. A moderate intake of fish, and low to 
moderate intake of dairy products and wine (with meals), plus 
olive oil as the foremost fat source, is also typical of this diet. 
Identifying the potential biological mediators of the effect of 
MeDi diet on cognitive function and dementia can help us 
understand the mechanisms of action. One potential biological 

mediator is brain volume; that is, one might hypothesise that 
MeDi affects brain volume (protecting against atrophy), which 
in turn affects cognitive function (i.e., maintenance of function). 
In previous research (7), using the same cohort as that studied 
in the present report, we showed that increased adherence to 
the MeDi in a Scottish population, 401 members of the Lothian 
Birth Cohort 1936 (LBC1936), did not associate with level of 
total brain volume but did predict change in total brain volume 
over a three-year period, explaining .5% of variance. The 
present study assesses whether this association endured over a 
further three years.  

In our prior study (7), we investigated total brain volume, 
grey matter volume and cortical thickness, but only total brain 
volume change was associated with the MeDi. Additionally, we 
did not find that higher fish and lower meat intake drove the 
MeDi associations with brain structural change despite cross-
sectional evidence of this from the United States (8). Therefore, 
in the current study, we focus only on total brain volume and on 
overall MeDi. A third imaging wave data from the LBC1936 
(79 years of age) enabled specification of a growth curve 
model, and whereas we did not expect MeDi associations with 
the intercept (brain volume base level), we expected that the 
association of MeDi with the slope (brain volume change) 
would persist over this longer period.

Methods

Participants

Participants were part of the LBC1936; most resided in the 
Edinburgh region of Scotland (N = 1091; 49.8% female) (9). 
All were relatively healthy, living independently and did not 
have a dementia diagnosis at recruitment. At their baseline 
examination between 2004 and 2007, they were around 70 
years of age and completed cognitive tests and health surveys, 
which were repeated longitudinally at roughly 3-year intervals 
(10). Food frequency data (7) were collected in 967 participants 
at baseline by postal questionnaire: 124 participants did not 
return these or did not fill them in. Around three, six, and nine 
years later, those participants who were willing and able to 
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continue with the study had a structural MRI brain scan. For 
those with food frequency data, volumetric data was available 
from 563 participants at age 73 years (72.69 ±0.72), 416 
participants at 76 years (76.38 ±0.66), and 332 participants at 
79 years (79.43 ±0.64). 

Standard Protocol Approvals, Registrations, and 
Patient Consents

Ethics permission was granted from the Multi-
Centre Research Ethics Committee for Scotland (Wave 1: 
MREC/01/0/56), the Lothian Research Ethics Committee 
(Wave 1: LREC/2003/2/29), and the Scotland A Research 
Ethics Committee (Waves 2, 3, & 4: 07/MRE00/58).

Mediterranean Diet (MeDi)

The MeDi score was based on data gathered from the 
Scottish Collaborative Group 168-item Food Frequency 
Questionnaire, version 7 (11, 12) as previously described 
(7). Medians (adjusted for caloric intake and sex) split low 
from high consumption for each component, with beneficial 
components (fruit, vegetables, legumes, cereal, fish, 
monounsaturated fatty acids to saturated fatty acids ratio) 
scoring greater than or equal to the median scored as 1, and 
detrimental components (meat, dairy) greater than or equal 
to median assigned a 0. Moderate alcohol consumption (for 
men between 10 to 50 g alcohol per day; for women between 
5 and 25 g per day) was considered beneficial and scored as 
1. The sum of component scores (ranging 0 to 9) represented 
adherence to the MeDi, with higher scores representing greater 
adherence. 

Covariates

Fixed

Total years in full-time education represented educational 
attainment. Measures of premorbid IQ and general cognitive 
ability were collected from baseline and might influence a 
person’s dietary choices (13): pre-morbid IQ was estimated 
by the National Adult Reading Test (NART) (14) and general 
cognitive ability represented the first unrotated principal 
component from a range of cognitive tests (see (15)). The 
APOE e4 allele was coded as absent or present and used 
in sensitivity analysis. Genotyping was carried out by the 
Wellcome Trust Clinical Research Facility Genetics Core, 
Western General Hospital, Edinburgh using TaqMan® 
technology on genomic DNA isolated from whole blood.

Time varying

At each data wave, information on the following was 
collected: current cognitive impairment (Mini Mental Status 
Examination (MMSE) 16); body mass index (BMI) using 
clinical measurements of height and weight; and self-reported 
history of stroke, cardiovascular disease, high blood pressure 
and diabetes.

MRI

A detailed description of the brain MRI procedure and image 
processing can be found in Wardlaw et al., (17). A GE Signa 1.5 
T HDXT clinical scanner gathered structural T2-, T2*-, FLAIR- 
and T1-weight MRI data. Intracranial volume included tissue 
within the inner skull table (venous sinuses to the axial slice 
inferior to the inferior edge of the cerebellar tonsils and on/
superior to the superior tip of the odontoid process). 

Statistical Analysis

The effect of MeDi on longitudinal change in TBV was 
tested using a growth curve analysis in a structural equation 
modelling framework (lavaan package in R (18)), adjusting for 
covariates in a series of models and comparing models using 
standard goodness of fit statistics. Because of well-known 
issues with selective drop-out in ageing studies, we chose to 
use full information maximum likelihood estimation to reduce 
selection bias as has been done previously in this cohort (19). 
Slope weightings starting at 0 were set as the average interval 
in years between imaging test sessions, 3.7 and 6.76. The 
covariate selection was based on our previous work in this 
sample (7). Model 1 was minimally adjusted, including sex as 
a time invariant covariate. Model 2 additionally included years 
of education and pre-morbid IQ as time invariant covariates, 
and BMI, diabetes, high blood pressure, history of stroke, 
and cardiovascular disease history as time varying covariates. 
Model 3 included covariates that aligned with a large prior 
study of the MeDi and brain MRI (8): sex, education, baseline 
general cognitive ability (time invariant), age, BMI, diabetes, 
and MMSE as a possible cognitive impairment indicator (time 
varying). APOE e4 presence which can confound brain volume 
(20, 21), was controlled for in a sensitivity analysis. 

To more closely replicate the analysis used in our previous 
work, but over a longer six-year period, we also ran a regression 
analysis where TBV at age 79 was the outcome measure but 
including TBV at age 73 as a covariate in the series of three 
models with varying covariates. This removed stable MRI 
variance across time from the outcome measure so that the 
residual reflected change in TBV over the six-year period and 
any unique measurement error.

Results

TBV and covariate descriptive statistics are shown for 
the full sample and separately for groups at baseline with 
lower versus higher adherence to the MeDi (Table 1). These 
unadjusted variables did not differ between MeDi groups. 
Subsequent analyses use the continuous MeDi scale. Mean 
quantitative MeDi score between Wave 4 participants (n = 298) 
and those who dropped out of the study from baseline (n = 265) 
did not differ (0.15 difference; t =1.01, df = 560.73, p = 0.31). 
Demographic and health traits did not differ between MRI-
completers and non-completers, with the exception of cognitive 
ability and educational attainment where scores were higher in 
the completers (results shown in supplementary Table e-1).
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Fit statistics for the growth curve models of TBV are 
shown in Table 2 and supported good model fit for all three 
models (e.g., RMSEA all < .05). All models showed significant 
variability in TBV at baseline (p < .0001) and in change over 
time (p < .05). There was no significant correlation between 
TBV intercept and slope. The MeDi was not significantly 
associated with either the intercept or slope in the baseline 
model nor in models 2 and 3 where further covariate 
adjustments were made (see Table 3); sensitivity analysis results 
were also null.

Alternative multiple regression modelling, where TBV 
change from first to third MRI wave was considered, again 
showed no effect of the MeDi in minimally adjusted or more 
fully adjusted models (p > .05).

Discussion

The present study aimed to extend our previous finding of 
a MeDi apparently protective association with brain ageing 
over a three-year interval (7) to a six-year interval. Growth 

Table 1. Covariates and Total Brain Volume Grouped by Lower Versus Higher Adherence to the MeDi for Participants with 
Complete Data

Total* Lower MeDi (0-4)** Higher MeDi (5-9)*** p˜
N 298 157 141
Time invariant
Education (mean, SD) 10.95, 1.15 10.99, 1.17 10.90, 1.14 .518
Female (n, %) 136, 45.6 76, 48.4 60, 42.5 .370
NART 35.96, 7.55 35.94, 7.38 35.99, 7.76 .955
APOE e4 (n, %) 81, 28.3 (n=286) 39, 26.3 (n=148) 42, 30.4 (n=138) .526
Baseline Cognitive Ability .31, .93 (n=294) .30, .91 (n=153) .32, .95 .849
Time varying
Age 73

Stroke (n, %) 19, 6.4 10, 6.4 9, 6.4 1
Diabetes (n, %) 20, 6.7 9, 5.7 11, 7.8 .631
Hypertension (n, %) 137, 46 74, 47.1 63, 44.7 .758
Cardiovascular disease (n, %) 78, 26.2 39, 24.8 39, 27.7 .674
BMI 27.4, 4.03 27.21, 4.22 27.63, 3.82 .367
MMSE 29.01, 1.12 28.95, 1.15 29.07, 1.07 .346
Age 76

Stroke (n, %) 33, 11.1 17, 10.8 16, 11.3 1
Diabetes (n, %) 31, 10.4 14, 8.9 17, 12.1 .486
Hypertension (n, %) 158, 53 86, 54.8 72, 51.1 .560
Cardiovascular disease (n, %) 100, 33.6 52, 33.1 48, 34 .964
BMI 27.33, 4.05 27.18, 4.31 27.50, 3.74 .499
MMSE 28.76, 1.58 28.61, 1.90 28.91, 1.12 .090
Age 79

Stroke (n, %) 43, 14.5 (296) 23, 14.8 (155) 20, 14.2 1
Diabetes (n, %) 31, 10.4 17, 10.8 17, 12.1 .880
Hypertension (n, %) 175, 58.7 93, 59.2 82, 58.2 .943
Cardiovascular disease (n, %) 106, 35.6 58, 36.9 48, 34 .688
BMI 27.12, 4.20 26.91, 4.43 27.35, 3.93 .361
MMSE 28.57, 2.2 28.43, 2.62 28.72, 1.60 .234
Total Brain Volume Ratio
Age 73 .69, .02 .68, .02 .69, .02 .438
Age 76 .67, .02 .67, .02 .67, .02 .093
Age 79 .66, .02 .66, .03 .67, .02 .105
Note: Demographic and cognitive measures were those measured at baseline. BMI = body mass index, MMSE = mini mental state examination; ˜ p values estimated from χ² for binary 
traits and independent group t-test for continuous traits.
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curve modelling of TBV using three time-points (age 73, 76, 
and 79 years) and TBV change from age 73 to age 79 did not 
support an effect of the MeDi. To reconcile this finding with 
the protective effect reported over a three-year interval in 
this cohort, one might conclude that the protective effect of 
the MeDi is short-lived. The latter interpretation is consistent 
with the findings of contemporaneous associations between 
MeDi and brain imaging measures (22). In our study, dietary 
intake was measured two to three years before the first MRI 
measurement, and could predict brain atrophy almost six years 
later but not nine years later. Changes in diet over this nine-
year period (which is more likely than over a shorter period of 
follow-up) could also explain the absence of an association over 
this length of time, although we were unable to directly confirm 
this. Alternative explanations might be that our previous finding 
was type 1 error or that physiological age-related factors 
become more pronounced with advancing age and thus override 
any beneficial effects of diet.

Besides our previous study (7) that showed a MeDi 
association with TBV change over a 3-year period, only one 
other study (23) has measured the association of the MeDi 
on brain imaging structural change (specifically grey mater 
volume) over time. No association of MeDi on grey matter 
volume was found in their sample of 70 middle-aged (30 to 
60 years) adults measured across a minimum of two years. 
However, high vegetable intake, which is a component of the 
MeDi, has been related to less grey matter volume change 
over a four-year interval in Korean adults from the general 
population aged between 49 and 79 years (24). Clearly, this is 
an emerging research area and more studies are needed on these 
longitudinal relations to be able to draw any conclusions. 

Our cohort design is optimal in several aspects. The 
homogenous ethnic background and small age range reduces 
confounding due to genetic/cultural factors and epoch effects, 
although generalisability of the findings are limited to a Scottish 
population. The dietary information pre-dates the imaging 
collection allowing prospective effects to be studied. MRI 
collection over multiple equally spaced intervals and up to six 
years later enables application of more sophisticated statistical 
models and the potential to observe greater brain change than 

shorter periods. The main limitation of our design and one that 
might influence the null finding we report is that the MeDi 
score was only available at baseline, so we cannot be certain 
that participants had adhered to the same diet over the nine-year 
period. If differences in diet (away from a MeDi) had occurred 
then this would suggest that the MeDi needs to be sustained 
for lasting effects (i.e., beyond 3 years) on brain health. If 
substantiated this could have very important population health 
implications, with a lifestyle change to the MeDi potentially 
protective against brain atrophy and any downstream effects of 
this. Future studies require longer and more frequent assessment 
of diet across the lifespan to enable modelling of participants 
who have adhered longer to the MeDi. 

Statistical Analysis: Conducted by Dr Michelle Luciano, University of Edinburgh.
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