
BIOINFORMATICS Vol. 19 no. 13 2003, pages 1699–1706
DOI: 10.1093/bioinformatics/btg207

MedScan, a natural language processing engine
for MEDLINE abstracts

Svetlana Novichkova, Sergei Egorov and Nikolai Daraselia∗

Ariadne Genomics, Inc., 9100 Great Seneca HWY, Rockville, MD 20850, USA

Received on January 11, 2003; revised on February 11, 2003; accepted on March 17, 2003

ABSTRACT
Motivation: The importance of extracting biomedical informa-
tion from scientific publications is well recognized. A number of
information extraction systems for the biomedical domain have
been reported, but none of them have become widely used
in practical applications. Most proposals to date make rather
simplistic assumptions about the syntactic aspect of natural
language. There is an urgent need for a system that has broad
coverage and performs well in real-text applications.
Results: We present a general biomedical domain-oriented
NLP engine called MedScan that efficiently processes sen-
tences from MEDLINE abstracts and produces a set of
regularized logical structures representing the meaning of
each sentence. The engine utilizes a specially developed
context-free grammar and lexicon. Preliminary evaluation of
the system’s performance, accuracy, and coverage exhibited
encouraging results. Further approaches for increasing the
coverage and reducing parsing ambiguity of the engine, as
well as its application for information extraction are discussed.
Availability: MedScan is available for commercial licensing
from Ariadne Genomics, Inc.
Contact: nikolai@ariadnegenomics.com

INTRODUCTION
The need for automated data retrieval from biomedical public-
ations is well recognized, given their exponentially increasing
volume. Due to easy access and availability, the most widely
used sources of scientific information are abstracts of sci-
entific publications, accessed primarily through MEDLINE.
Abstracts contain a concise description of the information
within the paper and provide the best combination of avail-
ability, information density and brevity. Many approaches
have been proposed for information extraction (IE) from sci-
entific publications, ranging from simple statistical methods
to advanced natural language processing (NLP) systems.

Basic information extraction approaches rely on the match-
ing of prespecified templates (patterns) or rules (such as
precedence/following rules of specific words). The under-
lying assumption is that sentences conforming exactly to a
pattern or a rule express the predefined relationship(s) between

∗To whom correspondence should be addressed.

the sentence entities. In some cases, these rules and patterns
are augmented with additional restrictions based on syntactic
categories and forms of words in order to achieve better match-
ing precision. A number of groups reported application of
pattern-matching-based systems for protein function inform-
ation extraction (Sekimizu et al., 1998; See-Kiong and Wong,
1999; Blaschke et al., 1999; Ono et al., 2001). The short-
coming of such systems is their inability to correctly process
anything other than short, straightforward statements, which
are quite rare in information-saturated MEDLINE abstracts.
They also ignore many important aspects of sentence con-
struction such as mood, modality, and negation, which can
significantly alter or even reverse the meaning of the sentence.

Several attempts have been made to utilize shallow-parsing
techniques for the task of biological information extraction
(Humphreys et al., 2000; Thomas et al., 2000; Park et al.,
2001). Shallow parsers perform partial decomposition of a
sentence structure. They identify certain phrasal components
and extract local dependencies between them without recon-
structing the structure of the entire sentence. In some cases,
shallow-parsers are used in combination with various heur-
istic and statistical methods (Applet et al., 1995; Humphreys
et al., 1998). The precision and recall rates reported for shal-
low parsing approaches are 50–80 and 30–70%, respectively.
Shallow parsers perform well for capturing relatively simple
binary relationships between entities in a sentence, but fail
to recognize more complex relationships expressed in various
coordinating and relational clauses. For sentences containing
complex relationships between three or more entities, such
approaches usually yield erroneous results.

Information extraction systems based on the full-sentence
parsing approach (Yakushiji et al., 2001) tend to be more
precise as they deal with the structure of an entire sentence,
and variations of the full parsing-based approach have been
applied for biomedical information retrieval. However, full
parsers are significantly slower and require more memory
than shallow analyses because they have to deal with gen-
eral syntactic ambiguity and handle the full set of possible
structures of whole sentences. A problem of parsing ambi-
guity can be eliminated or significantly reduced by employ-
ment of domain-specific context-sensitive grammars. This
approach has been implemented in a system called MedLee

Bioinformatics 19(13) © Oxford University Press 2003; all rights reserved. 1699

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1699/224832 by U
.S. D

epartm
ent of Justice user on 16 August 2022



S.Novichkova et al.

(Friedman et al., 1994), which was initially developed for
radiology report processing and subsequently adopted for
protein function information extraction in another system
called GENIES (Friedman et al., 2001). MedLee utilizes a
parser and a semantic grammar consisting of a large set of
nested semantic patterns (incorporating very little syntactic
knowledge), which covers the most frequently used sentence
structures. The downside of semantic grammar-based systems
is the need for the complete re-development of grammar and
lexicon for each particular knowledge domain.

Context-free parsing systems, on the other hand, are general
enough to be applicable to any domain, but completely gen-
eric systems seem to be impractical and inefficient. We believe
that a flexible and efficient information extraction system
must contain two components—an NLP engine deducing the
semantic structure of a sentence, and a configurable inform-
ation extraction component to validate and interpret results
produced by the NLP engine. We have chosen to build our
NLP component on a special purpose context-free linguistic
model for a particular domain of discourse. Such linguistic
models can be developed using sublanguage analysis tech-
niques, which result in some helpful restrictions on the range
of linguistic data that need to be accounted for during parsing.

In this paper we present the first component of the pro-
posed information extraction system—MedScan, a general
biomedical domain-oriented NLP engine that efficiently pro-
cesses sentences from MEDLINE abstracts and produces a
set of semantic structures representing the meaning of each
sentence. It is based on a context-free grammar and a lexicon
developed specifically for MEDLINE as a result of its corpus
analysis. The engine is implemented in C++ and compiled
into a Windows application and is significantly faster than
existing full sentence parsers. The described NLP engine will
be used as a part of a pipeline aimed at the extraction of
information about pathways and molecular networks.

METHODS
The MedScan architecture
The processing of a text is conducted in several stages:
sentence tokenizing, word recognition and morphological
analysis, recognition of compound lexemes, syntactic parsing,
and semantic interpretation. Accordingly, the system is com-
prised of the following components, each having a specific
function (Fig. 1):

Preprocessor—selects sentences potentially discussing
protein functions and brackets protein and chemical names
using provided name dictionaries.

Tokenizer—breaks the given input string into a number
of primitive tokens (words, punctuation, numbers, etc.)
according to the set of tokenizing rules.

Recognizer—identifies tokens as lexicon entries and per-
forms morphological analysis to deduce their grammat-
ical form.

Fig. 1. The components and processing steps of the MedScan
system.

Syntactic Parser—processes a sequence of input tokens
augmented with syntactic categories and morphological
information, to build a number of alternative syntactic struc-
tures of a sentence using a set of rules defined in grammar.

Semantic Interpreter—transforms a syntactic tree into a
normalized semantic tree, which represents logical relation-
ships between the words in a sentence.

In the following sections the structure of the MedScan
lexical database and implementation of each component is
described.

Lexicon and grammar
The MedScan NLP engine is based on the original grammar
developed specifically to represent MEDLINE language. The
grammar belongs to a class of Unification Grammars, and is
built on the ideas closely related to Lexical Functional Gram-
mar (LFG) (Kaplan and Bresnan, 1982). The context-free core
of the grammar is represented by means of transition net-
works augmented with programs. Each network represents
the structure of a particular phrasal category. The lexicon
stores lexemes and associated lexical and morphological
information.

Lexicon The key concept of the lexicon is the lexeme. Most
of the lexemes are stored in their canonical form with an indic-
ation of their morphological properties by means of inflection
patterns. For those lexemes that do not obey general morpho-
logical principles, the lexicon stores a full set of irregular
forms along with their syntactic features. Each lexeme is
assigned a single lexical category and has a corresponding

1700

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1699/224832 by U
.S. D

epartm
ent of Justice user on 16 August 2022



NLP engine for MEDLINE abstracts

feature set defining specific syntactic properties of the lexeme
(case and gender for nouns and pronouns, number–person,
inflection pattern and subcategory for nouns, verbs, pronouns
and adjectives). In addition to regular single-word lexemes,
the lexicon also stores compound lexemes. A compound lex-
eme consists of two or more words, which can be substituted
by a single lexeme. Proper identification and handling of such
phrases in a sentence allows for the reduction of computational
complexity and ambiguity of the parsing process. Compound
lexemes are stored as lexical records of a special type with an
indication of the head-lexeme (usually the last lexeme of the
multi-word phrase), which defines the lexical category and
inflection pattern of an entire compound lexeme.

The syntactic and semantic argument structure of a lexeme
is described by its subcategory and semantic frame. Sub-
categorization is an important part of a grammar imposing
selective lexical-dependent constraints on phrase structure by
restricting order, number, and type of lexeme complements.
This allows, for instance, to distinguish between syntactic
arguments and adjuncts among the constituents attached to a
verb in a sentence. Semantic frame is important for recovery
of the correct predicate–argument relationships of a lexeme
in a sentence.

Subcategories are defined as families of similar syntactic
frames, each encoding one of the possible syntactic argument
structures for a lexeme. Each syntactic frame is defined as
a set of special features specifying a phrase category of each
complement and in some cases its additional properties—such
as a preposition name for prepositional phrases or control type
for verbal phrases.

Semantic frames encode the semantic structure (or semantic
pattern) of a lexeme. The semantic frame consists of a set
of enumerated slots each assigned a specific thematic role
(theta-role). We utilize a generally accepted set of roles such
as ‘agent’, ‘patient’, ‘instrument’, ‘statement’. The relation-
ships between a lexeme, its subcategories, and its semantic
frames are stored in a special structure called Binding. Bind-
ing is defined as the combination of a lexeme with a single
subcategory and a single semantic frame and is critical for the
proper mapping of the syntactical complements of the lexeme
to the slots of the corresponding semantic frame. Each lex-
eme may have one or more assigned bindings, each describing
a possible argument pattern applicable to the lexeme.

The MedScan lexicon currently contains about 10 000 lex-
emes describing various domain-specific concepts and rela-
tions. It was manually constructed on the basis of various
sources including Gene Ontology and Unified Medical Lan-
guage System with consideration of the word frequencies
measured in entire MEDLINE release 2001.

Grammar. We have chosen the Augmented Transition Net-
works (ATN) formalism to describe the context-free core of
the English language grammar. The phrase structure of each
non-terminal category is represented by a corresponding ATN.

Networks used in the grammar are recursive transition net-
works with jump arcs. Each network has one initial state,
one exit state, and a number of intermediate states (nodes)
connected by arcs labeled with terminal or non-terminal cat-
egorical symbols. Each arc may be augmented with test and
action programs (described below), which are executed dur-
ing traversing of the arc. Most network arcs are also assigned
a ‘syntactic function’ declaring the functional role each con-
stituent plays in a phrase. These syntactic functions are used
during semantic interpretation in mapping a syntactic struc-
ture of the constituent onto its possible semantic argument
structure. MedScan grammar defines a commonly accep-
ted set of 34 terminal (noun, verb, adjective, etc.) and 19
non-terminal (sentence, noun phrase, prepositional phrase)
categories containing a total of 130 states and 281 arcs. The
structures of these networks are the result of analysis of
the language of MEDLINE abstracts and are unique to our
text-processing engine.

Various grammatical properties of lexemes and their sub-
categories are defined in the grammar by means of Feature
Sets. A feature set is a list of attribute-value pairs serving as
a pre-initialized feature structure associated with each lex-
eme and stored in the lexicon. The feature system used in the
grammar is capable of handling a wide range of morpholo-
gical and syntactic phenomena, such as analytical word forms,
word agreement, subcategorization, correct modifier attach-
ment. We use a predefined set of features that can be roughly
divided into the following categories:

• features handling grammatical agreement and mor-
phology (including analytical forms)—number, person,
gender, case, tense, form;

• ‘lexical’ features [determiner, complementizer, preposi-
tion, wh-word (such as which, who, where), etc.]—in
most cases they are names of prepositions, determiners
and other special lexemes. These features are used to
prevent inappropriate lexemes from passing an arc of the
network;

• subcategorization features (comp1, comp2, control, pre-
position)—this group of features is used to define syn-
tactical frames and subcategories for nouns, verbs and
adjectives.

• validation features (path, endpoint)—features describ-
ing child structure of an assembled constituent. These
features are used in dealing with such phenomena as gap
propagation, wh-movement and others.

The feature unification is performed by special programs
augmenting arcs of networks. All programs can be divided into
the following three categories. Confirmation (test) programs
describe the restrictions on feature values of a constituent
(grammatical form, number, person, subcategory, etc.) that
can traverse an arc. In most cases, confirmation programs just

1701

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1699/224832 by U
.S. D

epartm
ent of Justice user on 16 August 2022



S.Novichkova et al.

verify if specific features can be unified. Action programs per-
form actual unification of feature values. Validation programs
perform the final check of the feature values of a constituent
that has been completed.

Preprocessor
The preprocessor reads the XML-based format of a
MEDLINE record and splits the MEDLINE abstract text into
individual sentences. Next, it utilizes a provided protein name
dictionary to identify and tag the name of proteins and select
the sentences containing at least one protein name.

Our approach to protein name identification is based on
application of specialized tokenizer designed to ignore many
variations of protein name spelling (‘TNFalpha1R’, ‘TNF
alpha-1 R’, ‘TNFalpha-1(R)’, ‘TNF alpha1R’, etc.), fol-
lowed by a simple and efficient subsequence search algorithm
applied to token sequences. Preprocessor does not attempt to
decipher abbreviations and relies on alternative protein names
being provided explicitly. The example below shows the sen-
tence output by preprocessor where identified protein names
are surrounded by curly brackets, and are preceded by an
identifier of the corresponding gene in the HUGO consortium
index of human genes. This sentence will serve as a model
sentence in the description of all subsequent stages of the
processing.

{11768 = TGF-beta 2} inhibits {11892 = tumor necrosis factor}
activity in resting lymphocytes after treatment with nitric oxide.

Tokenizer
The tokenizer converts an input text stream into a sequence
of tokens. Our implementation uses a set of hard-coded finite-
state machines to recognize the most frequently occurring
tokens (words, numbers, punctuation), and a configurable set
of regular expressions to deal with special cases (mutations,
cell line genotypes, etc.). The first set allows optimal perform-
ance for the most frequent types of tokens while the second
set provides flexibility in tuning the tokenization process to
various domain-specific texts.

All finite-state automata are applied to an input text in the
order defined by their priorities. If all of them fail to recognize
a token, the stream is skipped to the next clear marker (space
or punctuation) and the skipped portion of text is converted
into a special ‘unknown’ token treated subsequently as an
unrecognized word.

Recognizer
The goal of the recognizer is to convert a sequence of tokens
into a sequence of word descriptors. We define a word
descriptor as a unit representing several alternative variants of
assignment of a particular lexeme (each with proper grammat-
ical features such as syntactic category, subcategory, semantic
frame) to a token. Morphological analysis is performed to
identify each token as a lexeme in a certain grammatical form,

based on a set of inflection rules for each syntactic category.
All unknown words are considered to be nouns.

After word recognition is completed, a compound lexeme
matching procedure is performed. This procedure quickly
identifies the multi-word compound lexemes occurring in a
sentence by efficient searching for patterns stored in a lexicon
and replacing the corresponding subsequence of tokens with a
single compound word descriptor. The grammatical form of a
compound word descriptor is deduced from the grammatical
form of its head lexeme.

Syntactic parser
The MedScan parser is based on the active chart parser
algorithm (Allen, 1994) in combination with bottom-up pars-
ing approach. Active chart parsing has a number of benefits
compared to other algorithms. It keeps record of all created
constituents and thus eliminates the necessity of backtracking
and allows the reuse of constructed constituents. It also allows
for compact representation of local ambiguity and imple-
mentation of various ‘packing’ techniques, which accelerate
processing significantly. Since our goal was to implement an
extremely efficient parser, MedScan utilizes a number of addi-
tional algorithmic improvements and advanced programming
techniques.

Unlike the classical chart parser, which operates with
rewrite rules, MedScan uses the grammar in a form of aug-
mented transition networks. ATNs are formally equivalent but
are a significantly more compact and efficient representation
of rewrite rules, where common parts of rules are packed
into a single network path and are traversed only once during
the parsing. The most computationally expensive step is an
arc extension, which includes search for candidate arcs and
performing feature unification. We have implemented a two-
dimensional indexing structure that uses phrasal category and
constituent position as keys to quickly look up the candidate
arc extension. In addition, a special filtering procedure rapidly
identifies and filters out arcs that cannot be further extended,
resulting in more efficient memory management.

Operations with features also consume significant pro-
cessing time, since they are performed at every attempt of an
arc traverse. The MedScan feature system and augmentation
programs were designed to allow effective implementation
of feature comparison and unification. MedScan contains a
special-purpose virtual machine executing feature operations.
Programs stored in MedScan grammar in a simple text form
are compiled into a run-time representation and interpreted by
this virtual machine.

MedScan grammar uses a pre-defined set of features and
feature values. We found that this approach is capable of hand-
ling most of the grammatical phenomena we have encountered
in MEDLINE and has a significant technical advantage:
compact feature implementation in a form similar to bit vec-
tors. Bit-vector representation of features allows extremely
efficient comparison, unification, and other set-theoretical

1702

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1699/224832 by U
.S. D

epartm
ent of Justice user on 16 August 2022



NLP engine for MEDLINE abstracts

operations. We also found that feature value comparison is
significantly less expensive computationally than new fea-
ture structure initialization. However, by the very nature of a
natural language-to-grammar mapping, most of the evaluated
run-time constituent combinations fail the unification process.
We therefore split the unification process into two steps—
feature evaluation, performed by test programs, and actual
unification (initialization of new feature structure and value
assignment), performed by action programs. The second step
is performed only if the first has succeeded. In addition, each
test program is designed to evaluate the features with the
highest probability of unification failure first.

Packing was found to be a very effective method to encode
ambiguity; it tremendously decreases the computational com-
plexity of parsing by concurrently maintaining thousands of
alternative syntactic trees in a compressed form. The gen-
eral idea of packing is to introduce a special ‘packed’ type of
constituent, which serves as a single representative of a set of
similar constituents. ‘Similarity’ means that all the properties
of constituents taken into account during an arc extension are
identical. In our implementation, similar constituents have the
same category, start, and current positions, and an identical set
of features. When a particular active arrow is completed and a
new constituent is created, a special routine evaluates whether
it can be packed with any existing constituents. If it occurs,
this single ‘packed’ constituent is used in place of original
ones in all subsequent processing steps. Effective implement-
ation of constituent packing in MedScan accelerates parsing
up to three orders of magnitude, depending on the structure
of a sentence.

An example below shows partial syntactic structure and
main constituents (surrounded by square brackets) of the
model sentence. The phrasal category is shown immediately
following each constituent—separated by a slash and printed
in a bold typeface (NP designates noun phrase, V, verb,
PREP, preposition, PP, prepositional phrase, VP, verbal
phrase, S, sentence).

[[{11768=TGF-beta 2}]/NP [[inhibits]/V [{11892=tumor necrosis
factor} activity]/NP]/VP [in/PREP [resting lymphocytes]/NP]/PP
[after/PREP [treatment with nitric oxide]/NP]/PP]/S

After the parsing, this sentence will generate at least four
alternative syntactic structures—due to the variations in pre-
positional phrase attachment: both ‘in lymphocytes’ and
‘after treatment with nitric oxide’ can independently and
alternatively attach to a verb phrase forming verb phrase
modifiers (‘phosphorylates . . . in lymphocytes’ and ‘phos-
phorylates . . . after treatment with nitric oxide’), and to the
subject noun phrase ‘tumor necrosis factor activity’, forming
larger noun phrases ‘tumor necrosis factor activity in lympho-
cytes’ and ‘tumor necrosis factor activity after treatment with
nitric oxide’.

Semantic interpreter
The semantic interpreter transforms the representation of the
surface structure of a sentence produced by the syntactic parser
into its semantic representation. Semantic representation gen-
erated by the interpreter can be considered ‘shallow’; it is
much closer to the linguistic concept of deep structure than to
the complex representations of meaning used in artificial intel-
ligence and knowledge representation systems. Semantics in
MedScan represent the meaning of a sentence as a tree of cat-
egorized predicate–argument relationships between lexemes.
The interpreter does not validate the rendered representation
and makes no attempts to restrict the generated structures by
taking into account any domain-specific information. This
task is delegated to the ontological interpreter, the module,
which is currently under development. The general principles
of ontological interpretation are briefly described in the results
section, and its full description will be published elsewhere.

A semantic tree is built from elementary semantic nodes,
each representing a particular sentence lexeme. Semantic
nodes reference other argument semantic nodes through their
slots and contain two types of slots. A fixed number of cat-
egorized role slots are encoded by a semantic frame, possibly
associated with a node’s lexeme in a lexicon. Role slots repres-
ent the most important lexeme relationships, such as subject or
object of action; the name of a role slot (e.g. ‘agent’, ‘patient’)
reflects the nature of slot–argument relationship. In addition,
each semantic node can contain an arbitrary number of labeled
attribute slots representing auxiliary lexeme relations such as
time, place or mode of action. The arguments of attribute
slots are constructed from various sentence modifiers such
as prepositional phrases, nouns in noun phrases, adjective
and adverbial phrases, relative clauses, appositions, and the
attribute slot label reflects the source and method of argu-
ment construction (e.g. name of preposition for prepositional
phrases). An example of a slightly simplified semantic struc-
ture generated from one of the syntactic trees of the model
sentence is presented below.

inhibition

{

agent: {11768=TGF-beta 2}

patient: activity

{ patient: {11892=tumor necrosis factor} }

attribute: [type: ‘‘in’’; value: resting lymphocytes]

attribute: [type: ‘‘after’’; value: Treatment

{agent:

subject:

substance: nitric oxide

}]

MedScan’s approach to semantic interpretation is similar to
the one introduced in LFG (Sells, 1985), and relies on spe-
cial ‘syntactic functions’ to differentiate the syntactic roles of
child constituents, and to populate the respective slots of par-
ent semantic node with references to child nodes. Semantic
interpretation of each constituent is performed by a set of spe-
cial hard-coded scripts—one for each non-terminal phrasal

1703

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1699/224832 by U
.S. D

epartm
ent of Justice user on 16 August 2022



S.Novichkova et al.

Fig. 2. An outline of the semantic interpretation procedure. Con-
stituents are shown as shadowed rectangles with indication of their
category. Each parent–child constituent relation (vertical lines) is
labeled by syntactic function. Dotted arrows illustrate analysis per-
formed by a script, which uses syntactic functions to distinguish
between the slots of semantic frame ‘inhibit’ and populates them
(solid arrows) with proper references to child semantic nodes.

category. These scripts also analyze the feature set of a par-
ent constituent to account properly for active or passive voice,
presence of gaps, modality, negation, and to resolve more
sophisticated syntactic cases such as rising to subject and
object. The process of semantic interpretation is outlined in
Figure 2.

All cases of syntactic conjunctions are represented by a
special type of semantic node, called packed node. Packed
semantic nodes always contain exactly two packing slots ref-
erencing packed conjuncts and are labeled with a logical type
of conjunction. Packed semantic nodes can be nested and sim-
ilarly to regular nodes can contain an arbitrary number of
attribute slots.

Relative clauses represent another special case when a par-
ticular semantic node serves as an argument of more than
one parent node. In a sentence, relative clauses are expressed
by various syntactic constructs, such as wh-phrases, active or
passive verbal phrases, and appositions and are represented by
attribute slots labeled ‘Rel Agent’ or ‘Rel Patient’ depending
on their syntactic activity or passivity in a relational clause.

RESULTS AND DISCUSSION
We ran our evaluation on the complete MEDLINE 2001
release, which is about 40 GB and contains about 5.9 mil-
lion abstracts (roughly 61 million sentences). The scope of
our experiments was limited to sentences describing human
protein function. The dictionary of human protein names
was compiled on a basis of HUGO consortium data and
additionally enriched by incorporating protein names, ali-
ases, descriptions and gene names from the linked SwissProt,
TREMBL and Locus Link database entries. This dictionary
was then curated in order to remove entries constituting single
frequently used normal English words. The resulting non-
redundant list contained approximately 68 000 protein aliases
and descriptions for 15 000 human proteins.

MedScan preprocessing step was completed in less than 5 h
and yielded about 4.6 million sentences containing at least
one notation of human protein. To estimate the precision
and coverage of the preprocessing step, we visually inspec-
ted the results of protein name tagging in sentences from
500 randomly selected MEDLINE abstracts discussing func-
tions of well-studied human proteins related to apoptosis, and
determined these parameters to be 97 and 92%, respectively.

The following three parameters of MedScan parsing step
have been further estimated: performance (average processing
time per sentence), coverage (proportion of MEDLINE sen-
tences which have been successfully parsed and generated cor-
rect sentence structure), and ambiguity (number of generated
alternative sentence structures per sentence). Performance of
MedScan was estimated by parsing 4.6 million sentences con-
taining at least one notation of human protein selected by the
preprocessor. The parsing took 23 h (18 ms per sentence) on a
600 MHz Pentium III processor with 128 MB of RAM. This
means that MedScan is approximately 20 times faster than
similar systems (Friedman et al., 2001), and preliminary eval-
uation indicates that performance can be further increased by
a factor of 3–5 using better implementations of programming
components such as more efficient memory management.

Out of 4.6 million sentences only 1.56 million (34%) have
been successfully parsed and generated at least one semantic
structure. To estimate the correctness of parsing we have
analyzed complete sets of alternative semantic structures gen-
erated from 168 randomly selected parsed sentences, and
determined that in each set the single correct structure was
present. We therefore conclude that current MedScan’s cov-
erage is 34%. To determine the reasons of parsing failure of the
remaining 66% of sentences, we have analyzed 332 randomly
selected unparsed sentences. A total of 713 reasons of parsing
failures have been identified; categorization and frequencies
of each error category are presented in Table 1.

Failure to recognize and correctly assign categories to all
words in a sentence accounts for 28.7% of all errors. These
errors are caused by the presence of domain-specific concept
notations including residue substitutions, chromosome pos-
itions, concentrations, cell line names, measurements of
various parameters, etc. We have observed, however, that a
significant portion of these terms can be described using reg-
ular expression formalism and usually constitutes a part of a
noun phrase. To solve the problem of domain-specific concept
identification, we plan to introduce an additional step of the
noun phrase detection and classification in the preprocessing
module. It will be based on application of an HMM-based syn-
tactic tagger and specialized finite-state automaton for noun
phrase boundary identification in combination with a set of
developed regular expressions for recognition of some specific
terms.

Lexicon errors constitute the major portion (39.1%) of pars-
ing failures. These include mostly cases of missing lexeme,
and, occasionally, incorrect or incomplete assignment of a

1704

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1699/224832 by U
.S. D

epartm
ent of Justice user on 16 August 2022



NLP engine for MEDLINE abstracts

Table 1. Classification and frequency of parsing failures (for some types of errors an example is given in parentheses)

Failure category Failure subcategory Failure proportion

Sentence structure errors Incorrect sentence boundary detection 20 (2.8%)
Total: 25 errors (3.5%) Ill-formed sentence 5 (0.7%)

Word recognition errors Unrecognized molecule notation (‘Pol III’) 35 (4.9%)
Total: 205 errors (28.7%) Incorrectly tagged protein name 45 (6.3%)

Other domain-specific notations (‘Ala → Glu’) 125 (17.5%)

Lexicon errors Undefined compound lexeme (‘in order to’) 15 (2.1%)
Total: 279 errors (39.1%) Incorrect or absent lexeme subcategory 136 (19.1%)

Incorrect or incomplete lexical category assignment 92 (12.9%)
Other incorrect lexeme feature assignment 15 (2.1%)
Absence of lexeme in a lexicon 21 (2.9%)

Errors in grammar Relative phrase construction problems 46 (6.5%)
Total: 204 errors (28.7%) Unknown domain-specific noun phrase constructs 66 (9.3%)

Rare and specific type of conjunctions (‘age- and sex-dependent’) 20 (2.8%)
Unresolved anaphoric expressions 22 (3.1%)
Over-generation 5 (0.7%)
Other insignificant grammar inconsistencies 45 (6.3%)

lexeme category, and incorrect or incomplete subcategory
assignment. To overcome this problem we plan to increase
the size of our lexicon (up to an estimated 50 000 lexemes
sufficient for MEDLINE parsing) and also to improve its
quality. This lexicon revision will be done based on NLM
SPECIALIST (McCray, 1991) lexicon by importing, convert-
ing, and manually curating of lexical information (features
and lexeme subcategories) for the lexemes most frequently
occurring in MEDLINE.

Lastly, 28.7% of parsing failures occurred due to the incom-
plete grammar. We performed an exhaustive analysis of all
cases where the structure of a sentence did not conform to
the MedScan grammar. Although the absolute number of
such cases is high, the majority of them belong to four well-
defined groups (listed in the Table 1), which indeed constitute
the ‘gaps’ in the developed grammar; grammar improvement
aimed at covering identified gaps is currently underway.

Ambiguity of the syntactic processing is a critical issue
in practical applications of NLP systems. Due to the gen-
eral ambiguity of syntactic knowledge, each sentence usually
yields a number (sometimes very large) of potential sentence
structures, but only one of them is generally considered cor-
rect. Table 2 shows the distribution of the number of generated
alternative parses over the number of sentences. The source
of ambiguity was investigated on a set of 168 parsed sen-
tences by observing the structure of each alternative parse
tree and correlating it with the compositional structure of the
corresponding sentence. This analysis revealed that the major
sources of ambiguity are variations in prepositional phrase
attachment, and structures of coordinate conjunctions. We
have designed and preliminarily tested a domain-specific fil-
tering module, for selection of the single correct structure
from a set of alternative trees. Briefly, the filters are designed

Table 2. Distribution of number of alternative sentence structures generated
by MedScan

Number of
alternative structures

Number of sentences Percentage (%)
of sentences

0–10 58 34.5
11–100 45 26.8
101–1000 38 22.6
1001–10 000 20 11.9
10 001–100 000 3 1.8
>100 000 4 2.4

Total 168 100

in a form of ontology, which can be viewed as a set of con-
ceptual frames (each with a set of concept-specific slots) and
a set of ontological links [in a form of (Frame, Slot -> Frame)
triplets] specifying other frames as admissible arguments of
each frame’s slot. Each lexeme can be assigned an ontolo-
gical frame representing its domain-specific meaning, and
thus every node of a semantic tree can be mapped onto an
ontological frame through a corresponding lexeme. A spe-
cial mechanism also maps the slots of the semantic node onto
the slots of the ontological frame for each particular lexeme.
Therefore, each branch of a semantic tree can be viewed as
a potential ontological link, and can be evaluated for being
defined in ontology. The semantic tree is considered valid if
all of its branches have equivalent ontological links defined.
In our preliminary experiments, the single correct structure
was selected from sentences with even more than 100 000 of
alternative ones. However, the development of the extraction
module is still an ongoing research project and formal results
will be published in detail elsewhere.

1705

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1699/224832 by U
.S. D

epartm
ent of Justice user on 16 August 2022



S.Novichkova et al.

In summary, we have developed and evaluated MedScan, a
general purpose NLP component for analysis of biomedical
literature. From the results of the MedScan evaluation we can
conclude that its performance is satisfactory for the real-time
MEDLINE processing. The current MedScan’s coverage rate
is 34%, but we estimate that by increasing the lexicon size,
improving its quality, and by slightly improving its gram-
mar, MedScan’s coverage can be increased up to 90%. In
addition, even with a 34% coverage MedScan is still imme-
diately applicable for an information extraction task, since
the most reliable information in MEDLINE is frequently
reiterated and is unlikely to be missed. We are currently test-
ing an algorithmic approach, which utilizes the full-sentence
semantic structures generated by MedScan to extract a pro-
tein function information with high (above 90%) precision.
The details of its design and implementation will be described
elsewhere. It is important to note, that the context-free nature
of MedScan makes it applicable to a large number of areas ran-
ging from pathway analysis to clinical informatics and protein
structure–function relationships.

REFERENCES
Allen,J. (1994) Natural Language Understanding. Benjamin-

Cummings Publishing Company, New York.
Applet,D., Hobbs,J., Bear,J., Israel,D., Kameyaqma,M., Kehler,A.,

Martin,D., Myers,K. and Tyson,M. (1995) SRI International
FASTUS system: Muc-6 Test Results and Analysis. Proceedings
of the Sixth Message Understanding Conference, pp. 237–248.

Blaschke,C., Andrade,M.A., Ouzounis,C. and Valencia,A. (1999)
Automatic extraction of biological information from scientific
text: protein–protein interactions. Ismb, 60–67.

Friedman,C., Alderson,P.O., Austin,J.H., Cimino,J.J. and
Johnson,S.B. (1994) A general natural–language text processor
for clinical radiology. J. Am. Med. Inform. Assoc., 1, 161–174.

Friedman,C., Kra,P., Yu,H., Krauthammer,M. and Rzhetsky,A.
(2001) GENIES: a natural language processing system for the

extraction of molecular pathways from journal articles. Bioinform-
atics, 17 (Suppl. 1), S74–S82.

Humprhreys,K., Gaizauskas,R., Azzam,S., Huyck,C., Mitchell,B.,
Cuningham,H. and Wilks,Y. (1998) Description of the LaSIE-II
System as used for MUC-7. Proceedings of the Seventh Message
Understanding Conference.

Humphreys,K., Demetriou,G. and Gaizauskas,R. (2000) Two applic-
ations of information extraction to biological science journal
articles: enzyme interactions and protein structures. Pac. Symp.
Biocomput., 505–516.

Kaplan,R. and Bresnan,J. (1982) Lexical-functional grammar: a
formal system for grammatical representation. In Bresnan, J. (ed.)
The Mental Representation of Grammatical Relations. MIT Press,
Cambridge, MA, pp. 173–281.

McCray,A.T. (1991) Extending a natural language parser
with UMLS knowledge. Proceedings of the 15th Annual
Symposium on Computer Applications in Medical Care,
pp. 194–198.

Ono,T., Hishikagi,H., Tanigami,A. and Takagi,T. (2001) Automated
extraction of information on protein–protein interactions from the
biological literature. Bioinformatics, 17, 155–161.

Park,J.C., Kim,H.S. and Kim,J.J. (2001) Bidirectional incremental
parsing for automatic pathway identification with combinatory
categorical grammar. Pac. Symp. Biocomput., 6, 396–407.

See-Kiong,N. and Wong,M. (1999) Toward routine automatic path-
way discovery from on-line scientific text abstracts. Genome
Informatics, 10, 104–112.

Sekimizu,T., Park,H.S. and Tsujii,J. (1998) Identifying the interac-
tion between genes and gene products based on frequently seen
verbs in MEDLINE abstracts. Genome Informatics, 9, 62–71.

Sells,P. (1985) Lectures on Contemporary Syntactic Theories.
C S L I Publications.

Thomas,J., Milward,D., Ouzounis,C.A., Pulman,S. and Caroll,M.
(2000) Automatic extraction of protein interactions from scientific
abstracts. Pac. Symp. Biocomput., 541–552.

Yakushiji,A., Tateisi,Y., Miyao,Y. and Tsujii,J. (2001) Event extrac-
tion from biomedical papers using a full parser. Pac. Symp.
Biocomput., 6, 408–419.

1706

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/13/1699/224832 by U
.S. D

epartm
ent of Justice user on 16 August 2022


