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Abstract

Medullary thyroid carcinoma (MTC) is a rare type of tumor that originates from thyroid 
C cells and accounts for 2–4% of all malignant thyroid neoplasms. MTC may occur 
sporadically or be inherited, as part of the MEN 2 syndrome. Germline mutations of 
the RET (REarranged during Transfection) proto-oncogene cause hereditary cancer, 
whereas somatic RET mutations and, less frequently, RAS mutations have been described 
in sporadic MTC samples. Since early surgery with complete resection of tumor mostly 
determines the likelihood of attaining cure for MTC, the broader use of RET genetic 

screening has dramatically changed the prognostic of gene carriers in hereditary MTC. 
Nevertheless, despite recent advances, the management of advanced, progressive MTC 
remains challenging. The multikinase inhibitors (MKI), vandetanib and cabozantinib, 
were approved for the treatment of progressive or symptomatic MTC, and several other 
compounds have exhibited variable efficacy. Although these drugs have been shown 
to improve progression-free survival, no MKI has been shown to increase the overall 
survival. As these drugs are nonselective, significant off-target toxicities may occur, 
limiting achievement of the required TK-specific inhibition. Recently, next-generation 
small-molecule TKI has been developed. These TKI are specifically designed for highly 
potent and selective targeting of oncogenic RET alterations, making them promising drugs 
for the treatment of advanced MTC. Here, we summarize the current understanding 
of the intracellular signaling pathways involved in MTC pathogenesis as well as the 
therapeutic approaches and challenges for the management of advanced MTC, focusing 
on targeted molecular therapies.

Introduction

Medullary thyroid carcinoma (MTC) is a malignant tumor 

originating in parafollicular or C cells of the thyroid. The 

main secretory product of MTC is calcitonin, a specific 

and highly sensitive biomarker that is produced by normal 

and neoplastic C cells. Neoplastic C cells also produce the 

carcinoembryonic antigen (CEA). These molecules are 

widely used markers for the diagnosis, prognosis, and 

follow-up of MTC patients.

The overall frequency of MTC is not well established, 

but it has recently shown an increase from 0.14 to 0.21 per 

100,000 population between 1983 and 2012 in the USA 

(Randle et al. 2017). The prevalence is ~2% of all thyroid 

malignancies, 0.4–1.4% of all thyroid nodules, and it 

is detected in ~0.14% thyroids of subjects submitted to 

autopsy (Valle & Kloos 2011, Tuttle et al. 2014, Lim et al. 

2017). The clinical presentation is mainly in the fourth 
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and fifth decades of life with a small, but statistically 

significant, increase in diagnosis at a mean age from 50 to 

54 years (Randle et al. 2017). MTC accounts for 13.4% of 

the total deaths attributable to thyroid cancer (Modigliani 

et al. 1998).

Approximately 35% of patients with MTC who 

present with a palpable thyroid nodule have cervical 

metastases, and ~13% have distant metastases (Kebebew 

et  al. 2005, Roman et  al. 2006). The reported 10-year 

disease-specific mortality rate for MTC varies from 13.5 to 

38% (Girelli et al. 1998, Kuo et al. 2018). The tumor stage 

at the time of diagnosis and the possibility of a complete 

surgical resection mostly determine the likelihood of 

attaining a cure for MTC. The classical main prognostic 

factors are age, tumor size, local and distant metastases,  

somatic M918T mutations, calcitonin, and CEA doubling 

times (Meijer et al. 2010).

MTC presents as sporadic (75–80%) or inherited 

tumors (20–25%). Hereditary MTC appears as part of the 

MEN 2 syndrome. MTC is extremely rare in children, 

making the probability of a hereditary form very high. 

Germline mutations of the RET (REarranged during 

Transfection) proto-oncogene cause hereditary cancer, 

whereas somatic RET mutations are frequently present 

in sporadic disease (Eng et al. 1995, Mulligan 2018). RET 

encodes a transmembrane receptor, and point-activating 

RET mutations promote continuous phosphorylation of 

a distinct set of tyrosine residues, triggering intracellular 

signaling pathways responsible for cell survival, 

differentiation, and proliferation (Fig. 1).

Figure 1
Illustration of the activated pathways and genetic aberrations involved in medullary thyroid cancer, as well as the molecular targeted-related compounds. 
AKT, v-akt murine thymoma viral oncogene homolog; BRAF, serine/threonine-protein kinase B-Raf; c-Kit, tyrosine-protein kinase Kit; c-MET, hepatocyte 
growth factor; EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; FGFR, fibroblast growth factor receptor; MEK, 
mitogen-activated protein kinase kinase; mTOR, mammalian target of rapamycin; P38, mitogen-activated protein kinase; PDK-1, pyruvate dehydrogenase 
kinase isozyme 1; PI3K, phosphatidylinositol-3 kinase; PIP2, phosphatidylinositol (4,5) biphosphate; PIP3, phosphatidylinositol 3,4,5-triphosphate; PTEN, 
phosphatase and tensin homolog; RAS, rat sarcoma viral oncogene homolog; RET, rearranged during transfection; VEGFR, vascular endothelial growth 
factor receptor.
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Clinical presentation and  
genotype-related phenotypes

Hereditary MTC is usually associated with C-cell 

hyperplasia, multicentric, and bilateral (Schmid 2015), 

while the diagnosis of sporadic forms tends to be late, 

generally in the fifth or sixth decade of life (Heshmati 

et al. 1997). Lymph node metastases occur in at least 35% 

of MTC patients at diagnosis, while distant metastases 

occur in approximately 20% of cases. A minority of 

patients with MTC present systemic manifestations that 

include diarrhea, flushing, or painful bone metastases 

(Kebebew et al. 2000, Elisei et al. 2008, Hannah-Shmouni 

et al. 2016).

Hereditary MTC is inherited as an autosomal dominant 

syndrome that involves other endocrine neoplasias, 

with a variable degree of expressivity and an age-related 

penetrance, named multiple endocrine neoplasia type 

2 (MEN 2). Interestingly, MEN 2 syndrome is classically 

defined by the occurrence of multicentric tumor formation 

in organs in which the RET proto-oncogene is expressed. 

This idea emerged because thyroid C cells have long been 

considered to be derived from neural crest cells. However, 

recent lineage-tracing experiments in mouse embryos 

have demonstrated that thyroid C-cell precursors are 

derived from anterior endoderm, specifically from the 

pharyngeal pouches from which the ultimobranchial 

bodies develop (Johansson et  al. 2015). These surprising 

results may disprove the current concept of a neural crest 

origin of thyroid C cells and would have implications 

for understanding coincidental tumorigenesis of MTC, 

pheochromocytoma (PHEO) and hyperparathyroidism 

(HPT), revealing new paths for investigation of the involved 

molecular mechanisms (Nilsson & Williams 2016).

The MEN 2 syndrome is classified according to the 

involved organs as multiple endocrine neoplasia type 

2A (MEN 2A) and multiple endocrine neoplasia type 2B 

(MEN 2B) (Pelizzo et al. 2007, Wells et al. 2015). MEN 2A 

constitutes approximately 70–80% of all MEN 2 cases and 

classically includes four subtypes: classical MEN 2A, MEN 

2A associated with cutaneous lichen amyloidosis (CLA), 

MEN 2A and Hirschsprung’s disease (HD), and familial 

medullary thyroid carcinoma (FMTC). Classical MEN 2A 

is characterized by the presence of MTC (95%), PHEO  

(30–50%) and HPT (10–20%). MEN 2A with CLA, a 

pruriginous lesion in the scapular region characterized 

by amyloid deposition, and MEN 2A with HD, caused 

by the absence of autonomic ganglia in the terminal 

hindgut that results in colonic dilatation, obstipation, 

and constipation are rare variants of the disease  

(Gagel et  al. 1989, Decker et  al. 1998). Previously, 

considered a freestanding syndrome, FMTC, characterized 

by the presence of an inheritable MTC with no association 

with other endocrine neoplasia, is now regarded as a 

variant of the MEN 2A spectrum, in which the clinical 

presentation of MTC occurs later, and the prognosis 

is more favorable in comparison to the other forms of 

MTC. The reclassification into MEN 2A resulted from the 

concern that premature categorization of a family with 

FMTC could lead to a failure to identify a PHEO.

The clinical course of MTC in patients with MEN 2A 

is variable, and the disease progression is associated with 

codon-specific mutations in the RET proto-oncogene (Eng 

et al. 1996a, Machens et al. 2003). Approximately 98% of 

MEN 2A is associated with RET mutations in the cysteine-

rich extracellular domain, particularly in exons 10 and 11, 

codons 609, 611, 618, 620, and 634, which is responsible 

for at least 85% of MEN 2A cases and correlated with the 

presence of PHEO, HPT, and CLA (Eng et al. 1996b, Raue 

& Frank-Raue 2009, Scapineli et  al. 2016, Maciel et  al. 

2019). Amino acid change in the intracellular domain 

of RET in exon 13 (codons 768,790 and 791), exon 14 

(codons 804 and 844) and exon 15 (codon 891) are less 

frequent. Mutations in exon 8 (codon 533) is rare, but 

they have been described in a large Brazilian family (Da 

Silva et al. 2003) and are most prevalent in familial cases 

in the Greek population (Sarika et al. 2015, Maciel et al. 

2019). In 2–5% of cases of apparently hereditary MTC, 

no RET mutations are found (Leboulleux et al. 2004). Of 

note, whole exome sequencing has recently identified a 

germline MET mutation in two siblings with hereditary 

WT RET MTC (Sponziello et al. 2018).

A distinct MTC biological behavior, characterized by 

reduced aggressiveness and an older mean age at diagnosis, 

has been described for MEN 2A associated with mutations 

in noncysteine codons comparatively to mutations in 

cysteine codons (Raue & Frank-Raue 2009), and mutations 

in codon 611 tend to give rise to slow tumor progression 

than mutations in codons 618 and 620 (Machens et  al. 

2018). On the other hand, more advanced stage and 

increasing risk of metastases correlated with mutations 

in codon position (609→620) near the juxtamembrane 

domain (Frank-Raue et  al. 2011). Interestingly, specific 

nucleotide and amino acid exchanges seem to have an 

impact on tumor behavior and aggressiveness in patients 

harboring codon 634 mutations (Punales et  al. 2003). 

Of interest, a case of aggressive sporadic MTC with a 

somatic RET C634R mutation and germline synonymous 

C630C mutation was reported. Expression analysis has 

shown increased levels of RET transcript in C630C/C634R 
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compared with that observed in 7 MTCs harboring only 

C634 mutations, suggesting that synonymous mutations 

can contribute to cancer progression (Pecce et al. 2018).

The MEN 2B accounts for approximately 5% of the 

cases of MEN 2 and is characterized by a single phenotype, 

which includes diffuse ganglioneuromatosis of the 

tongue, lips, eyes, and gastrointestinal tract, Marfanoid 

habitus, and alacrimia. MEN 2B patients present with 

MTC (90%), PHEO (45%), ganglioneuromatosis (100%), 

and Marfanoid habitus (65%). MTC in the setting of 

MEN 2B develops earlier and has a more aggressive 

course compared with MTC in other MEN 2 subtypes 

(Brandi et al. 2001, Makri et al. 2018). A specific mutation 

in RET exon 16, M918T, is almost invariably associated 

with MEN 2B and usually presents MTC development a 

few years after birth. Other mutations rarely associated 

with MEN 2B have been reported at codon 883 of exon 

15; however, MTC in A883F carriers seems to present a 

more indolent course in comparison to M918T carriers 

(Mathiesen et al. 2017). Double RET mutations involving 

codons 804/806, 804/778 or 804/904 have also been 

described (Kasprzak et al. 2001, Menko et al. 2002, Kihara 

et al. 2014). A recent large, multicenter study has shown 

that over 80% of the cases of MEN 2B are de novo RET 

mutations, implying that the majority of children will be 

diagnosed after the recommended age of thyroidectomy. 

These observations highlight the importance to educate 

pediatricians and other health care providers to recognize 

the early nonendocrine manifestations of the disease 

(Castinetti et al. 2019).

Sporadic MTC

The molecular mechanisms involved in sporadic MTC 

have not yet been clarified. Approximately 23–66% of 

sporadic MTC presents the somatic RET M918T mutation. 

Also, mutations in codons 618, 603, 634, 768, 804, and 

883 and partial deletion of the RET gene have been 

described in a few tumors (Dvorakova et al. 2008, Elisei 

et  al. 2008, Romei et  al. 2016). However, the mutations 

are not uniform throughout the tumor, suggesting that 

sporadic MTC might have a polyclonal origin or that these 

mutations are secondary events of MTC tumorigenesis 

(Eng et al. 1996b, Romei et al. 2018).

In addition to gain-of-function RET mutations, 

several RET variants have been associated with an 

increased risk of development or progression of MTC 

(Ceolin et  al. 2012a,b). Nevertheless, the mechanism 

by which these variants modulate MTC pathogenesis 

remains unclear. The exchange of bases in the DNA 

molecule may create an alternative splicing site, leading 

to the synthesis of a truncated protein, erroneous ligand 

binding, micro-RNA binding, or a change in mRNA 

structure and stability as well as in the number of copies 

(Borrego et al. 1999). It is also possible that this neutral 

variant is in linkage disequilibrium (LD) with an as yet 

unknown functional variant. Indeed, it has been shown 

that the S836S polymorphism is in LD with the intronic 

IVS1-126G>T variant found to be overrepresented in a 

cohort of sporadic MTC patients (Fernandez et al. 2006). 

LD between RET S836S and 3′untranslated region (UTR) 

variants has also been demonstrated. Of note, the RET 

mRNA sequence carrying the S836S/3′UTR haplotype 

presents higher structural and thermodynamic stability, 

suggesting a functional involvement of the 3′UTR variant 

allele in the posttranscriptional control of RET (Ceolin 

et al. 2016). Sporadic MTC patients present higher DNA 

methylation levels compared to those with the inherited 

form or control individuals, which might suggest an 

epigenetic contribution to MTC tumorigenesis (Ceolin 

et  al. 2018). Moreover, epigenetic-related gene profiling 

shows significant increases of histone methyltransferases 

genes, which are involved in transcriptional regulation 

of gene expression, in patients with aggressive MTC 

(Sponziello et al. 2014).

Diagnosis and prognostic markers

The clinical presentation of MTC traditionally consists 

of a palpable thyroid nodule, which may be solitary 

or appears in the context of a multinodular goiter. 

Subsequently, the diagnosis is performed through the 

typical diagnostic work-up of thyroid nodules (Haugen 

et al. 2016). The routine use of serum calcitonin in the 

evaluation of thyroid nodules is not a consensus. The 

European Thyroid Society recommends it, but not the 

Brazilian Society of Endocrinology (Schlumberger et al. 

2012, Maia et  al. 2014), while the current guidelines 

of the American Thyroid Association state that there 

is no evidence to recommend for or against calcitonin 

measurements in nodule evaluations (Haugen et al. 2016). 

There was an agreement that, in certain situations, such 

as patients considered for less than total thyroidectomy 

or with suspicious cytology not consistent with papillary 

thyroid cancer, serum calcitonin measurement should 

be considered. In these situations, serum calcitonin 

presents a positive predictive value of 100% if  

>100 pg/mL and 5% if between 10 and 100 pg/mL 

(Wells et al. 2015, Tormey et al. 2017, Turk et al. 2017).  
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Besides, calcitonin measurement in the fine-needle 

aspiration (FNA) washout might be an additional 

tool when FNA biopsy findings are inconclusive or 

undetermined (Trimboli et  al. 2014). Nevertheless, one 

should keep in mind that false-positive results have been 

reported in selected cases (Massaro et al. 2009, Trimboli 

et al. 2012).

Calcitonin is the most important MTC marker, as 

it is useful for diagnosis, surgical planning, follow-up, 

and prognosis. When compared to FNA biopsy for MTC 

diagnosis, calcitonin presents higher sensibility (nearly 

100%) and specificity (95%) (Bugalho et al. 2005). High  

levels of calcitonin may also occur in other 

medical conditions such as chronic kidney failure, 

hyperparathyroidism, neuroendocrine neoplasms, 

lung and prostate tumors and autoimmune thyroiditis 

(Karanikas et  al. 2004, Rosario & Calsolari 2016). 

Preoperative basal serum calcitonin correlates with 

the tumor size and extent of lymph node metastasis. 

Levels higher than 20, 50, 200, and 500 pg/mL were 

associated, respectively, with metastases to lymph nodes 

in the ipsilateral central and ipsilateral lateral neck, the 

contralateral central neck, the contralateral lateral neck, 

and the upper mediastinum. A biochemical cure is very 

unlikely in patients with preoperative serum calcitonin 

levels higher than 1000 pg/mL (Machens & Dralle 2010, 

Wells et al. 2015).

The diagnosis of hereditary MTC usually occurs in 

advanced stages on index cases, taking into account the 

development at early ages and the asymptomatic nature 

of the disease in the initial stages. However, the diagnosis 

is made in early stages or even in a premalignant phase 

in family members, due to the broad recommendation 

of genetic screening in all MEN 2 patients. Indeed, the 

molecular test of proband’s relatives is of paramount 

importance since the earlier diagnosis and treatment 

increase the likelihood of cure of MTC (Skinner et al. 2005, 

Punales et  al. 2008). Depending on the RET mutation, 

the MTC risk is classified as highest (M918T), high  

(C634F/G/R/S/W/Y and A883F) or moderate (all 

others), changing the time for initiating calcitonin 

level measurements and prophylactic thyroidectomy. 

Biochemical calcitonin monitoring might demarcate a 

‘window of opportunity’ for pre-emptive thyroidectomy 

without central node dissection. For individuals 

harboring highest risk mutations, thyroidectomy should 

be performed early in life. For carriers of high-risk 

mutations, the thyroid surgery should be recommended 

before 5  years of age, whereas those carrying moderate 

risk mutations might be followed every 6–12  months 

until serum calcitonin levels became elevated  

(Wells et al. 2015). Of interest, recent studies indicate that 

some mutations, classified as moderate risk by the ATA 

(codons 768, 790, 804), have a more indolent clinical course 

with a 5-year-long expectant observation period under 

the premise that calcitonin levels remain within reference 

limits (Wells et al. 2015, Machens et al. 2018). Moreover, in 

a series of MEN 2A gene-carrier patients followed in a referral 

center in Italy, basal calcitonin levels below 60 pg/mL  

were always associated to an intrathyroidal MTC (Elisei 

et  al. 2012). These observations might suggest that the 

ideal timing for prophylactic thyroid surgery could be 

individualized, taking into account patient age, type of 

mutation, biomarkers and imaging exams. Stimulation 

calcitonin tests might be useful in the decision-making 

process regarding prophylactic surgery (Elisei et al. 2012, 

Jarzab et  al. 2013). Nevertheless, although extensively 

used in the past, recent studies found a similar accuracy 

between basal and stimulated calcitonin levels, indicating 

that the new serum calcitonin assays with improved 

functional sensitivity decrease the significance of 

stimulation tests (Elisei et al. 2012, Mian et al. 2014).

Therapeutic strategies

Surgery is the only curative treatment for MTC. Total 

thyroidectomy with central lymph node dissection is 

the procedure of choice and, depending on the serum 

calcitonin levels, and preoperative cervical US imaging, 

a more extensive surgery with lateral neck dissection 

should be considered (Maia et al. 2014, Wells et al. 2015, 

Wells 2018). Patients with intrathyroidal tumor have 

a 10-year survival rate of 95.6%, whereas patients with 

regional stage disease or distant metastasis at diagnosis 

present overall survival rates of 75.5 and 40%, respectively 

(Roman et al. 2006). Interestingly, the absolute number of 

lymph node metstases seems to impact on the chances 

of biochemical cure after additional surgical intervention. 

Scollo et al. found higher rates of calcitonin normalization 

in patients with less than 10 metastatic lymph nodes, as 

compared with those present a large number (57 vs 4%) 

(Scollo et al. 2003). Recently, Sosa et al. (2017) proposed 

a more accurate TNM risk stratification and potential 

treatment selection, lowering the risk of overtreatment 

for patients with stage I MTC. Based on the proposed new 

TNM grouping, the 5-year overall survival was 94% for 

stage I, 86% for stage II, 69% for stage III and 35% for stage 

IV (Sosa et al. 2017). Patients with persistent or recurrent 

MTC localized to the neck are candidates for repeat neck 

operations. However, in the presence of widespread 
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regional or metastatic disease, extensive surgery is not 

associated with a higher cure rate, and less aggressive 

procedures should be considered (Randle et al. 2017, Wells 

2018). Patients with incidental, sporadic MTC and no 

evidence of residual disease might be safely observed after 

less extensive resections (Randle et al. 2017).

The presence and volume of residual disease 

should be assessed through calcitonin measurements 

to define the appropriate treatment and follow-up 

strategy after thyroid surgery. Distant metastases should 

be investigated if serum calcitonin levels are above  

500 pg/mL preoperative or 150 pg/mL post-total 

thyroidectomy. Neck and/or chest CT, liver MRI, bone 

scintigraphy, and, eventually, [18F]-fluorodeoxyglucose 

positron emission computed tomography (18F-FDG PET/CT)  

or 18F-dihydroxyphenylalanine (18F-DOPA PET/CT) 

might be used (Maia et al. 2014, Wells et al. 2015). The 
18F-DOPA PET/CT appears to be particularly useful in 

detecting lesions in patients with recurrent MTC and 

negative imaging studies (Romero-Lluch et  al. 2017). 

The sensitivities of these tests for detecting metastatic 

disease vary from 50 to 80%, with a lower likelihood of 

identifying metastatic disease in those individuals with 

discrete calcitonin elevation (Giraudet et al. 2007, Wells 

et al. 2015). Of interest, a recent study, which evaluated 

the performance of 68Ga-PET/CT in detecting MTC 

lesions, indicates that it is highly sensitive in identifying 

bone lesions and could be a substitute for a bone scan and 

MRI (Castroneves et al. 2018).

In the postoperative period, calcitonin and CEA 

may require weeks to reach their lowest levels, so the 

measurement should be performed at least 2–3  months 

after surgery. Since serum calcitonin and CEA levels may 

either persist steadily high for years or rapidly increases, 

the calculations of their doubling times (DT; available at 

the ATA website https://www.thyroid.org/professionals/

calculators/thyroid-cancer-carcinoma/) are more 

accurate to evaluate the disease progression. The 5-year 

and 10-year survival rates are 25 and 8%, respectively, 

when the doubling time is less than 6  months, and 92 

and 37%, respectively, when the doubling time ranges 

from 6 months to 2 years. The calcitonin doubling time 

correlates with the survival and tumor recurrence rates, 

providing a better predictor of survival, whereas the CEA 

doubling time seems to be more useful for predicting 

prognosis (Meijer et al. 2010).

Recently, it has been shown that dynamic risk 

stratification is an excellent and useful tool to acquire 

prognostic information and can be used to modify 

the initial risk estimates by the classical TNM staging.  

The 5-year and 10-year recurrence rates vary from less than 

1–8.5% in patients who achieve an excellent response, 

defined as an undetectable calcitonin level after surgery. 

Furthermore, the nomenclature excellent, biochemical 

incomplete and structural incomplete response, which 

has been successfully used to characterize the response to 

therapy and predict the clinical outcome in differentiated 

thyroid cancer, has also been shown to be useful in MTC 

(Lindsey et al. 2015, Kwon et al. 2016, Choi et al. 2018).

Other potential prognostic markers have been 

studied in recent years. Classically used as a marker for 

pancreatic neoplasms, higher levels of carbohydrate 

antigen (CA19.9) have been reported in patients with 

very aggressive MTC disease, low calcitonin levels, and 

increased CEA levels (Milman et  al. 2011, Elisei et  al. 

2013a). Based on an evaluation of serum CA19.9 levels 

in patients with advanced structural recurrent/persistent 

MTC, an elevated serum CA 19.9 value appears to be a 

predictive factor for poor prognosis and identifies those 

cases with a higher risk of short-term mortality (Elisei 

et al. 2015). CA19.9 has also been shown to be associated 

with an advanced disease stage in a small pilot study 

(Milman et al. 2015). However, in a study conducted by 

our group, immunohistochemical analysis of CA19.9 was 

not associated with age, sex, calcitonin, CEA, or local or 

distant metastases (CVF Vargas, L Ceolin, AF Benine, MS 

Graudenz & AL Maia unpublished observations).

General therapeutic approach in 
metastatic MTC

When evaluating a patient with advanced MTC, the 

following questions should be considered during decision-

making: Is the patient symptomatic or asymptomatic? Is the 

locoregional disease controlled? Where are the metastases 

located? Are there lesions that require intervention due 

to imminent risk or associated symptoms? What is the 

speed of metastatic disease progression? Unfortunately, it 

is not always possible to get a definitive answer for some 

of these questions.

For patients with locally advanced disease that is 

not amenable to surgery or those who present distant 

metastasis, there is no effective therapeutic, curative 

option. Chemotherapy and external beam radiation 

therapy for the metastatic cervical recurrent disease have 

limited response rates (Brierley & Tsang 1996, Nocera 

et al. 2000). The response rate to cytotoxic chemotherapy 

seems to be approximately 20%, with most studies 

performed on limited numbers of patients and without 
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robust evaluation criteria such as RECIST (Hadoux & 

Schlumberger 2017). External beam radiation therapy 

(EBRT) may be recommended to improve locoregional 

control in patients at high risk of cervical relapse. Few 

studies have shown an improvement in locoregional 

control but no survival benefit, confirming that although 

neck disease can be controlled in high-risk patients, the 

progression of distant disease and subsequent death are 

still a significant problem (Schwartz et al. 2008, Martinez 

et al. 2010, Brierley & Sherman 2012, Call et al. 2013).

Upon planning the therapeutic strategy, it is essential 

to keep in mind that some patients with metastatic MTC 

present indolent disease and good long-term prognosis, 

whereas others develop a progressive disease that 

requires close evaluation for immediate treatment. The 

schematic flowchart (Fig.  2) summarizes a therapeutic 

strategy to metastatic MTC. Expectant management 

can be appropriated for asymptomatic individuals with 

indolent, low-burden disease, whereas urgent therapy 

might be indicated in the presence of lesions which are 

Figure 2
Schematic flowchart for the management of 
patients with metastatic medullary thyroid 
carcinoma (MTC). 1Progressive disease: ≥20% 
increase in the sum of the longest diameter of 
target lesions compared with the smallest-sum 
longest diameter recorded or the appearance of 
one or more new lesions; 2Partial response: ≥30% 
decrease in the sum of the longest diameters of 
target lesions compared with baseline; 3Stable 
disease: neither partial response nor progressive 
disease (RECIST 1.1).
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associated with a high risk of serious complications, such 

as large brain metastases, a spinal cord compression or a 

lesion growing into an airway or bone metastases with an 

imminent risk of fracture. Embolization or cryoablation 

may be beneficial in selected cases to decrease the tumor 

burden, pain, or refractory diarrhea associated with liver 

metastases (Fromigue et al. 2006). Localized EBRT and/or 

bisphosphonates administration should be considered for 

painful bone metastases or prevention of skeletal-related 

events (Beuselinck et al. 2012, Farooki et al. 2012).

Patients with advanced MTC may experience 

paraneoplastic debilitating diarrhea due to 

hypersecretion of calcitonin, VIP (Cox et  al. 1979), or 

increases on intestinal motility (Rambaud et  al. 1988). 

Antimotility agents (loperamide or codeine) may be 

initially used as first-line therapy. Further options 

for unsuccessful cases include somatostatin analogs 

(Mahler et al. 1990, Zatelli et al. 2006). For those patients 

with extensive liver metastases, surgical resection, 

percutaneous radiofrequency ablation, or arterial 

chemoembolization might be considered in an attempt 

to reduce the calcitonin levels (Fromigue et al. 2006). The 

most common ectopic hormones, CRH or ACTH, can 

rarely cause paraneoplastic Cushing’s syndrome (0.7% 

cases), accounting for up to 2–6% of ectopic Cushing’s 

syndrome cases (Barbosa et al. 2005). Until recently, the 

management of this challenging situation, associated to 

extreme morbidity and mortality, was limited to surgical 

removal of metastatic disease, medical therapy with 

anti-adrenal compounds or bilateral adrenalectomy. 

Nevertheless, recent reports indicate successful 

treatment of MTC-related Cushing syndrome with TKIs  

(Barroso-Sousa et al. 2014, Nella et al. 2014).

Systemic therapy for advanced MTC

General overview

Cumulative knowledge regarding the distinct signaling 

pathways and multiple genetic abnormalities involved 

in the pathogenesis of cancer has allowed the 

development of targeted molecular therapies. Protein 

kinases are characterized by their ability to catalyze 

the phosphorylation of tyrosine amino acid residues in 

proteins, activating the various intracellular signaling 

pathways, cell proliferation, differentiation, migration, 

and anti-apoptosis. Therefore, tyrosine kinase inhibitors 

(TKIs) may provide a therapeutic benefit in cancer by 

blocking tyrosine kinase-dependent oncogenic pathways. 

TKIs can be specific to inhibit one or several tyrosine 

kinase receptors (multikinase inhibitors, MKIs) (Lemmon 

& Schlessinger 2010, Broekman et al. 2011).

Signaling pathways implicated in medullary 
thyroid cancer

Uncontrolled tyrosine kinase receptor activation is one 

of the primary mechanisms of cancer development 

and progression. In normal thyroid C cells, signaling 

pathways such as RET, RAS/MAPK, PI3K, c-MET, and 

mTOR modulate a wide range of intracellular processes, 

including cell proliferation, differentiation, migration, and 

apoptosis. Diverse molecular-driven alterations in these 

signaling pathways are involved in thyroid carcinogenesis 

(Santarpia et  al. 2010, Mulligan 2014). The role of RET 

tyrosine kinase receptor in MTC pathogenesis has been 

well documented. Vascular endothelial growth factor 

(VEGF) and hepatocyte growth factor (c-MET), as well as 

their tyrosine kinase receptors, are overexpressed in MTC 

and play critical roles in pathogenesis, progression, and 

disease recurrence (Papotti et al. 2000, Capp et al. 2010).

RET pathway

Hereditary MTC is caused by gain-of-function mutations 

of the RET receptor that lead to constitutive RET kinase 

activity. In this oncogenic mechanism, MEN 2A-related 

mutations activate RET by inducing disulfide-linked 

homodimerization, in which a cysteine residue is mutated 

to a noncysteine residue, and a partner cysteine that is 

involved in the formation of a disulfide bond become 

free and form an aberrant intermolecular disulfide bond 

between two mutants RET. In MEN 2B mutations, which 

occur in the tyrosine kinase 2 domain, RET is activated 

in monomeric form, probably due to a conformational 

change in the catalytic core of the kinase domain. These 

mutations increased ATP-binding and kinase activity, 

allowing robust activation of downstream signals 

(Mulligan 2018).

The RET gene was identified in 1985 by Takahashi 

and cols, mapping on 10q11.2 and containing 21 exons 

spanning a region of 55,000 bp (Takahashi et  al. 1985). 

RET is a member of the cadherin superfamily and encodes 

a tyrosine kinase receptor, which is a cell-surface molecule 

that transduces signals for cell growth, proliferation, 

differentiation, migration, survival, and apoptosis. RET 

proteins are derived from a single polypeptide core 

of 120 kDa and modified to 150 kDa and 170 kDa by 

post-translational glycosylation. Only the fully mature 
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glycosylated 170-kDa RET protein isoform is present on 

the cell surface, whereas the immature 150-kDa isoform 

is confined to the Golgi (Takahashi et  al. 1991, 1993). 

Alternative splicing of the RET gene results in the RET51, 

RET43 and RET9 isoforms, which differ at their carboxyl 

termini (Tahira et al. 1990, Myers et al. 1995, Carter et al. 

2001).

The RET receptor comprises three domains: an 

extracellular, a transmembrane, and an intracellular 

domain. The extracellular domain includes regions that 

are homologous to the cadherin family of cell adhesion 

(cadherin-like) molecules that induce and stabilize 

conformational changes needed for interactions with 

the ligands and coreceptors and a large region enriched 

in cysteine residues (cysteine-rich region), which is 

responsible for the tertiary structure and formation of 

dimers. The intracellular domain contains two tyrosine 

kinase domains (TK1 and TK2) that are separated by 28 

amino acids. These subdomains contain the tyrosine 

residues are phosphorylated during receptor activation 

and are involved in the activation of the signaling 

pathways (Takahashi et  al. 1988). The tyrosine residues 

905, 1015, 1062 are conserved in all three RET isoforms, 

but the tyrosine residue 1096 is present only in the long 

(RET 51) isoform.

RET is a receptor tyrosine kinase essential for the 

normal development and maturation of different tissues. 

Under normal conditions, RET is activated by a group of 

proteins of the glial cell line-derived neurotrophic factor 

(GDNF) family ligands (GFLs), including GDNF, neurturin 

(NRTN), artemin (ARTN), and persephin (PSPN). RET 

does not directly bind to GFLs, requiring an additional 

coreceptor, a GDNF family receptor-α (GFRα). The  

GFL–GFRα complex binds to RET, inducing RET 

dimerization and a subsequent autophosphorylation on 

multiple tyrosine residues within the intracellular tyrosine 

kinase domain (Airaksinen & Saarma 2002).

Studies using transgenic mouse models have 

demonstrated that Ret oncogenes can drive MTC 

development. Mice expressing Ret-C634R or Ret-M918T 

under the control of the calcitonin gene promoter 

developed MTC (Michiels et al. 1997, Acton et al. 2000). 

Additionally, transgenic mice carrying Ret-C634R under 

the control of a ubiquitous viral promoter developed 

MTC, suggesting that murine C cells are highly susceptible 

to RET-mediated transformation (Kawai et  al. 2000). 

However, knock-in of the M918T mutation into the 

mouse endogenous Ret gene caused CCH but not MTC, 

suggesting that, in the background of a normally expressed 

Ret-mutant allele, the accumulation of secondary genetic 

alterations is required for the development of MTC 

(Smith-Hicks et al. 2000).

Interestingly, RET protein has been shown to induce 

cell death in the absence of their ligands (GFL-GFRα), while 

in the presence of their ligands a completely different 

signal is transduced. In the absence of ligand, RET exerts 

pro-apoptotic activity, and the addition of GDNF is then 

sufficient to block RET apoptotic activity. This finding 

implies that a single mutation may simultaneously induce 

increased mitogenic signaling and reduce pro-apoptotic 

activity (Bordeaux et al. 2000).

RAS pathway

RAS gene mutations have been found in 0–68% RET-

negative MTC (Moura et  al. 2011, 2015, Ciampi et  al. 

2013), and a recent meta-analysis has shown that the RAS 

mutation appears to lack significant prognostic value in 

predicting tumor aggressiveness (Vuong et  al. 2018). In 

our center, we identified a mutation in exon 2 of H-RAS in 

3.8% of patients with sporadic MTC, 70% of whom were 

positive for somatic M918T in RET (CV Ferreira & AL Maia 

unpublished observations). The oncogenic RAS mutations 

and mutations in other components of the RAS/MAPK 

signaling pathway appear to be mutually exclusive 

events in most tumors, indicating that the deregulation 

of Ras-dependent signaling is an essential requirement 

for tumorigenesis (Moura et al. 2011, Ciampi et al. 2013, 

Nikiforova et al. 2013).

RAS genes (H-RAS, chromosome 11; K-RAS, 

chromosome 12 and N-RAS, chromosome 1) encode 

highly related G-proteins that play a central role in 

intracellular signal transduction by activation of the 

MAPK and other signaling pathways, such as PI3K/AKT 

(Santarpia et al. 2010, Fernandez-Medarde & Santos 2011). 

The H-RAS, K-RAS, and N-RAS genes all have a similar 

exonic structure, and therefore, all probably derive from 

a common, spliced ancestral gene (Shimizu et al. 1983).

The molecular mechanism proposed for RAS-derived 

tumorigenesis is the constitutive activation of distinct 

pathways that are linked to the functional control 

of a vast assortment of cellular outcomes, including 

cell cycle progression, growth, migration, cytoskeletal 

changes, apoptosis, and senescence (Santarpia et al. 2010, 

Fernandez-Medarde & Santos 2011). The ras-mutated 

protein mediates its effects on cellular proliferation in part 

by activation of a cascade of kinases: RAF (A-RAF B-RAF 

and C-RAF), dual-specificity mitogen-activated protein 

kinases (MEK1/2), extracellular signal-regulated kinases 

(ERK1/2) and p38 mitogen-activated protein kinase.  
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RAS also activates the PI3K pathway via direct interaction 

with the catalytic subunit of the protein. PI3K activation 

leads to the accumulation of the second messenger, 

phosphatidylinositol 3,4,5-trisphosphate (PIP3), resulting 

in pyruvate dehydrogenase kinase isozyme 1 (PDK1) and 

v-akt murine thymoma viral oncogene homolog (AKT) 

activation (Krasilnikov 2000, Vojtek and Der 1998).

MET pathway

Overexpression of MET and co-expression of HGF-MET  

has been reported in MTC tumors and has been associated 

with multifocality (Papotti et  al. 2000, Ricarte-Filho 

et  al. 2009). Silencing of the MET proto-oncogene has 

resulted in the impairment of the execution of the fully 

invasive growth program in vitro, lack of tumor growth 

and decreased generation of experimental metastases  

in vivo (Corso et  al. 2008). Crosstalk has been 

demonstrated between MET and RET at transcriptional 

and signaling levels, leading to the promotion of thyroid 

cell transformation and invasive phenotypes (Cassinelli 

et al. 2009, Bentzien et al. 2013).

The MET proto-oncogene is located on chromosome 

7q21-31 and encodes a single-pass tyrosine kinase 

protein. MET kinase is a cell-surface receptor for 

hepatocyte growth factor (HGF), a cytokine that conveys 

a unique combination of pro-migratory, anti-apoptotic, 

and mitogenic signals expressed in the epithelial cells 

of many organs during embryogenesis and in adulthood 

(liver, pancreas, prostate, kidney, muscle, and bone 

marrow) (Cooper & Spaulding 1984, Gonzatti-Haces et al. 

1986, Park et  al. 1986). In tumor cells, MET activation 

triggers a diverse series of signaling cascades resulting 

in cell growth, proliferation, invasion, and protection 

against apoptosis (Birchmeier et al. 2003, Liu et al. 2008). 

Signaling for growth and mitogenesis occurs via the  

RAS-MAPK signaling pathway and plays an essential 

role in the epithelial-to-mesenchymal transition that 

results from loss of intracellular adhesion via cadherins 

and integrins, with a change in cell shape (Boccaccio & 

Comoglio 2006).

mTOR pathway

The oncogenic RET activity in MTC seems to be partially 

modulated by overactivation of the PI3K/Akt/mTOR 

pathway (Drosten et  al. 2004). Interestingly, studies 

have shown that mTOR has a higher activation in 

lymph node metastases than in primary MTC and that 

the expression of eiF4E has a strong correlation with 

the tumor stage, suggesting a role of mTOR in tumor 

progression (Kouvaraki et  al. 2011, Tamburrino et  al. 

2012). Besides, mTOR activation appears to be an early 

event in C-cell transformation, playing a role early in the 

MTC tumorigenic process (Tamburrino et al. 2012).

The mTOR gene is located on chromosome 1p36.22 

and contains 60 exons. mTOR encodes a serine/threonine 

kinase, in the family of phosphatidylinositol kinase-

related kinases, which is involved in the regulation of 

cell proliferation, apoptosis, the cell cycle, angiogenesis, 

metabolism, and protein synthesis (Meric-Bernstam & 

Gonzalez-Angulo 2009). mTOR functions as part of 2 

structurally and functionally distinct signaling complexes: 

mTOR complex 1 (mTORC1), which consists of mTOR, 

mammalian LST8 (mLST8), proline-rich Akt substrate 40 

(PRAS40), and raptor; mTOR complex 2 (mTORC2), which 

includes mTOR, mLST8 (GβL), mSIN1, PRR5 (protor), and 

Rictor (Jacinto et al. 2006, Wullschleger et al. 2006, Martin 

et al. 2008).

The deregulation of mTOR pathway activation is 

observed in several types of cancer. The main pathway 

of mTOR activation is PI3K/Akt. Specific growth factors 

are responsible for stimulating RTKs that lead to PI3K/

Akt activation. Once these receptors are stimulated, 

PI3K is recruited and catalyzes the conversion of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to 

phosphatidylinositol 3,4,5-triphosphate (PIP3) and 

thus activates Akt. The control of Akt activation and, 

consequently of mTOR, is done by PTEN, a tumor 

suppressor that converts PIP3 to PIP2 thus inhibiting the 

activation of Akt (Sekulic et al. 2000, Meric-Bernstam & 

Gonzalez-Angulo 2009).

Molecular target therapy: 
multikinase inhibitors

The advances in knowledge of the molecular mechanisms 

and intracellular signaling pathways involved in MTC 

pathogenesis have allowed the development of target 

therapy, promoting noteworthy developments and new 

perspectives on metastatic MTC therapy.

Several multikinase inhibitors (MKI) compounds 

have been tested for MTC treatment, including motesanib 

(Schlumberger et  al. 2009), sorafenib (Lam et  al. 2010, 

de Castroneves et  al. 2016), sunitinib (Carr et  al. 2010), 

axitinib (Cohen et  al. 2008), imatinib (de Groot et  al. 

2007), pazopanib (Bible et al. 2014), anlotinib (Sun et al. 

2018), lenvatinib (Haugen et al. 2016), vandetanib (Wells 

et al. 2012), and cabozantinib (Elisei et al. 2013b) (Fig. 1). 
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Because patients with metastatic MTC may present 

indolent disease and long life expectancy, prospective 

trials use surrogates than overall survival (OS) to evaluate 

drug efficacy. The objective response rate (ORR) and the 

progression-free survival (PFS) are the most used outcomes 

since they show a better correlation with OS (Hadoux & 

Schlumberger 2017).

Vandetanib and cabozantinib are the only MKIs 

approved for advanced MTC treatment. The first approved 

compound, vandetanib, selectively targets RET, VEGF, 

and epidermal growth factor (EGF) receptors (Wedge et al. 

2002). The efficacy of vandetanib was evaluated in 331 

individuals with metastatic MTC who were randomized 

to receive vandetanib (300 mg) or placebo (Wells et  al. 

2012). The results showed a significant increase in PFS 

in the vandetanib-treated group (30.2 vs 19.2  months; 

HR = 0.46, 95% CI = 0.31–0.69) Vandetanib has also been 

successfully used to treat children with MEN 2B (Fox et al. 

2013). The second approved compound, cabozantinib, 

is a c-MET, VEGFR2, and RET MKI. A randomized study 

of 330 individuals with documented MTC progression 

demonstrated a significant increase in PFS in the 

cabozantinib-treated group (11.2 vs 4.0 months; HR = 0.28, 

95% CI = 0.19–0.40, P < 0.0001) (Elisei et  al. 2013b). The 

effect of vandetanib or cabozantinib on the survival of 

MTC patients remains unknown, but interim analyses 

have not revealed any differences between the two drug-

treated and placebo groups (Wells et al. 2012, Elisei et al. 

2013b).

Lenvatinib, an MKI of the VEGFR-1, 2, and 3,  

FGFR-1–4, PDGFRa, RET, and KIT signaling networks, 

was evaluated in a phase 2 trial. Fifty-nine patients with 

unresectable progressive MTC were included in that study. 

The disease control rate was 80% (95% CI: 67–89%), 

which is the highest reported rate to date. Of interest, 

the objective response rate (ORR) was similar between 

patients with (35%) and without (36%) prior anti-VEGFR 

therapy, confirming the lack of cross-resistance among 

MKIs (Haugen et al. 2016).

Given that RET and RAS activate the PI3K/AKT/mTOR 

pathway, a small phase 2 trial was conducted to evaluate 

the efficacy of everolimus, an mTOR inhibitor approved 

for the treatment of neuroendocrine tumors and renal 

cell carcinoma, in patients with progressive metastatic or 

inoperable MTC (Schneider et  al. 2015). Seven patients 

were enrolled, of whom five (71%) showed stable disease. 

The median PFS was 33 weeks, and no objective responses 

were observed. Similar findings were observed in another 

everolimus phase 2 trial that included 9 MTC patients 

(Lim et  al. 2013), indicating that everolimus alone has 

limited activity against MTC. Nevertheless, promising 

data have been reported from a phase 2 trial in patients 

with progressive, advanced thyroid cancer who received 

everolimus in combination with sorafenib (Sherman 

et al. 2016). In another report, everolimus was prescribed 

in addition to vandetanib in a patient who presented 

disease progression and observed a 25% tumor reduction 

(Heilmann et  al. 2016). The combination of RET kinase 

inhibitors and mTOR inhibitors might be an exciting 

dual targeting strategy, but it awaits further evaluation in 

clinical trials.

A limitation of MKI therapy is that the tumor cells 

might develop an escape mechanism, allowing the tumor 

to start to grow again after a variable period of treatment. 

This phenomenon is independent of the type of MKI used 

or tumor treated (Arao et al. 2011). Secondary mutations 

in the kinase domains that sterically block the binding 

of MKIs, usually downstream from the TKI target, or in 

parallel pathways that result in a mechanism to bypass 

the action of the drug, have been demonstrated in other 

tumors, but is still unclear in MTC (Viola et  al. 2016, 

Liu et  al. 2018). Interestingly, a suggestive case of an 

acquired RET V804M gatekeeper resistance mutation to 

vandetanib has been described (Subbiah et al. 2018b). In 

such cases, a second MKI might be considered. Of note, 

the discontinuation of an MKI treatment could lead to a 

rapid increase in tumor growth and disease progression 

(Resteghini et al. 2017, Trimboli et al. 2018).

Mutational profile and response to 
multikinase inhibitor therapy

Several recent studies have indicated the potential 

clinical relevance of the identification of oncogenic driver 

alterations on molecular target therapeutic strategy. In the 

phase III trial of vandetanib, patients with sporadic MTC 

harboring a somatic RET M918T mutation had a higher 

response rate to vandetanib as compared with patients 

without this mutation (54.5 vs 32%), although the results 

were inconclusive due to the small sample size (Wells 

et al. 2012).

In the cabozantinib phase III trial, patients with RET 

mutation exhibited a longer PFS when compared with 

the placebo group (60 vs 20  weeks), with the subgroup 

of patients harboring RET M918T achieving the greatest 

PFS (61 vs 17 weeks). Patients with RAS mutations treated 

with cabozantinib also exhibited a longer PFS when 

compared with those treated with placebo (Sherman et al. 

2016). Subsequent exploratory analyses have shown a 
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statistically nonsignificant increase in the OS on the group 

who received cabozantinib as compared with placebo. 

Of note, the most significant benefits of cabozantinib 

treatment were observed in patients with RET M918T 

positive tumors (Hadoux & Schlumberger 2017). Despite 

these findings, there is no specific recommendation for 

treatment based on RET status. Some patients without 

documented RET mutations have benefited from MKI 

therapy. In vitro studies have shown that RET codon 

804 and 806 mutations confer resistance to vandetanib 

therapy (Carlomagno et al. 2004, 2009).

MTC is a highly vascularized tumor, and overexpression 

of VEGF and its coreceptors have already been shown in 

MTC samples (Capp et al. 2010). Angiogenesis is critical 

for tumor growth, and the MKI anti-angiogenic effect is 

likely to play a role in response to therapy. Of interest, 

angiogenesis appears to be more intense in RET positive 

tumors, a feature that might increase their susceptibility 

to antiangiogenic treatment (Verrienti et al. 2016).

The choice of the first-line drug

The chronic use and side-effect profiles of MKIs must be 

taken into account when selecting patients since it is not 

clear which patients will benefit the most from TKI therapy. 

The criteria for initiating therapy include a high tumor 

burden and a rapid rate of disease progression, tumor 

involvement that threatens vital structures that cannot be 

managed by localized therapy. Only a selected group of 

patients with metastatic MTC should be considered for 

systemic therapy (Fig. 3).

Despite the established benefits of MKI for PFS, it 

is essential to consider the several adverse effects often 

noticed during their use and how much they can impact 

the patients’ life quality. The majority of MKI-related 

adverse events are familiar among the different drugs. The 

most frequent adverse events are diarrhea, rash, fatigue, 

and nausea. The most common AEs are usually of mild 

intensity (grade 1 or 2) and can be easily prevented or 

managed with symptom-related treatment, but in a non-

negligible percentage of cases, dose reduction (up to 79% 

for cabozantinib and 35% for vandetanib) was needed in 

clinical trials (Elisei et al. 2013b, Viola et al. 2016). MKI-

induced hypothyroidism is also frequent and requires an 

increase in the levothyroxine dose. Adverse events might be 

severe or life-threatening (G3–G4) in 5–10% of cases. MKI-

related grade 5 adverse events have also been reported (de 

Groot et al. 2007, Schlumberger et al. 2009, Lam et al. 2010,  

Wells et al. 2012, Elisei et al. 2013b, Scheffel et al. 2013, 

Haugen et al. 2016). Of interest, recent studies examining 

the use of vandetanib and sorafenib outside of a 

clinical trial have reported similar adverse event profiles 

(Chougnet et al. 2015, de Castroneves et al. 2016).

In addition to the different side-effect profiles of the 

MKIs, the attending physician must also take into account 

the patient’s risk factors, past medical history, and adverse 

effect tolerance (Maia et  al. 2017). Particular caution 

should be taken when prescribing MKIs for patients with 

a medical history of hemoptysis and hemorrhages, tumor 

invading vital structures of the neck, radiation treatment 

of the neck or mediastinum since they may be at higher 

risk for hemorrhages and fistula formation, a rare but 

life-threatening antiangiogenic MKI adverse event 

(Blevins et al. 2014). Vandetanib carries a higher risk for 

prolongation of the QT interval and should be avoided 

in patients with heart conduction disorders (Massicotte 

et al. 2013, Cabanillas et al. 2014). The use of vandetanib 

would be a better choice for patients whose occupation 

requires the use of the hands (e.g., carpenters, musicians) 

since the hand-foot syndrome is a common side effect of 

cabozantinib (Bastholt et al. 2016, Maia et al. 2017). The 

management of side effects related to MKI is essential to 

maximize the clinical benefits and increase the patient's 

quality of life (Grande et al. 2013, Bastholt et al. 2016).

Figure 3
Schematic diagram of the main aspects of disease presentation to be 
considered before recommend or not MKI therapy in patients with 
metastatic medullary thyroid carcinoma. *Evaluate case-by-case basis 
considering patients concomitant medical conditions, medical history, as 
well as the patient quality of life and lifestyle.
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Selective TKIs

Despite the advances in the management of metastatic 

MTC in the last decade, the clinical experience with the 

MKIs has been somewhat disappointing. While MKIs 

have increased the PFS, there was no improvement in OS. 

Almost all studies have shown a relatively low rate of partial 

responses, absence of complete response, and eventual 

tumor progression due to acquired drug resistance, which 

most commonly is due to secondary mutations in the 

kinase domains that sterically block the binding of MKIs 

in the target genes (Liu et al. 2018). These drawbacks of 

MKI therapy may be partially explained by ‘off-target’ 

side effects that limit the drug doses and consequently the 

degree of RET-specific inhibition. The vast and common 

adverse effects of MKIs results from concurrent inhibition 

of other targets, such as VEGFR2/KDR and lead to dose 

reductions or discontinuation (Romei et  al. 2016, Wells 

2018). Recently, new next-generation small-molecule 

TKIs designed for highly potent and selective targeting of 

oncogenic RET alterations have been developed with the 

goal of promoting a potent RET pathway inhibition and 

improve the pharmacokinetic properties of the currently 

available MKIs (Subbiah et al. 2018b).

LOXO-292 and BLU-667

LOXO-292 is an orally bioavailable compound, selective 

and highly active RET inhibitor in preclinical models of 

RET-altered cancers in vitro and in vivo. In contrast to MKIs, 

LOXO-292 retains nanomolar potency against various RET 

alterations, with potential antineoplastic activity. A phase 

1 study was designed to evaluate the safety, tolerability, 

pharmacokinetics and preliminary anti-tumor activity of 

LOXO-292 in patients with advanced solid tumors. The 

study included 82 patients, including 29 RET-mutant 

MTC tumors. The ORR in MTC patients was 45% (CI 95%: 

24–68%). Tumor reduction was achieved in (9/20) 49% 

of MTC tumors, including a patient with a RET V804M 

mutation, and MKI-pretreated patients. Ninety percent 

(19/24) of the MTCs had a ≥50% decrease in serum 

calcitonin. Overall, the compound appeared to be well 

tolerated among the patients. AEs (≥10%) were fatigue 

(20%), diarrhea (16%), constipation (15%), dry mouth 

(12%), nausea (12%) and dyspnea (11%). Only two 

treatment-related AEs ≥grade 3 were reported: tumor lysis 

syndrome (DLT) and increased ALT. Most MTC patients 

(93%; 27/29) remained on treatment (ClinicalTrials.gov 

Identifier: NCT03157128) (Subbiah et al. 2018b).

BLU-667 is also a highly selective RET inhibitor. In 

vitro, BLU-667 demonstrated ≥10-fold increased potency 

over approved MKIs against oncogenic RET variants and 

resistance mutants. In vivo, BLU-667 potently inhibited 

the growth of thyroid cancer xenografts driven by various 

RET mutations and fusions without VEGFR-2 inhibition. 

The closest BLU-667 kinase off-target identified was Janus 

kinase 1 (JAK1). To investigate the clinical impact of 

BLU-667, a phase I, first-in-human, the dose-escalation 

study was conducted (ClinicalTrials.gov Identifier: 

NCT03037385). Fifty-one patients were enrolled with 

unresectable advanced solid tumors. Of them, 29 patients 

were found to have RET-mutant MTC. Overall, BLU-667 

appeared to be well tolerated among the patients. The 

most common AE was grade 1 constipation (23%). Grades 

3 to 4 AEs were also found, including hypertension 

(8%) and neutropenia (4%). Additional AEs included 

fatigue, diarrhea and a decrease in white blood cells (2% 

each). There were no reports of grades 4/5 AEs (Subbiah 

et  al. 2018a). Of interest, the potential side effects of 

JAK inhibition (reduced reticulocytes, red blood cells, 

neutrophils/monocytes) has not been observed among 

the patients tested, suggesting the preferential activity of 

BLU-667 for RET versus JAK.

Immunotherapy

In the last few years, immunotherapy has transitioned 

from a promising to a well-established option as an 

oncological treatment for several types of malignancies, 

acting as an immune checkpoint inhibitor (Emens et al. 

2017). Preclinical studies on MTC have revealed potential 

new treatments through the use of immunotherapy 

(Naoum et al. 2018). Several ongoing trials are investigating 

this type of therapy, including a phase II trial studying a 

therapy directed toward cells presenting CEA (GI-6207), 

a therapy focused on programmed death ligand 1 (PDL1) 

with the use of pembrolizumab (Arasanz et  al. 2017). 

Despite the lack of published results regarding the efficacy 

of these compounds on advanced MTC, all of these drugs 

have the potential to serve as new treatments.

Conclusion and perspectives

MTC is a very rare cancer with a good prognosis when 

diagnosed at early stages. For patients with advanced 
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or metastatic disease, there is no effective therapeutic, 

curative option. In recent years, MKI therapy led to 

increases in the PFS, but no changes in the OS have been 

demonstrated to date. These compounds commonly 

cause toxicity, and it is crucial to establish an appropriate 

stratification of the clinical risk of patients to whom these 

drugs will be administered. The relatively low rate of 

partial responses and eventual tumor progression indicate 

the need to synergistic combinations of therapeutic 

targets whereas significant off-target toxicities may occur, 

limiting the degree of TKI-specific inhibition. Recently, 

next-generation small-molecule TKIs designed for 

highly potent and selective targeting of oncogenic RET 

alterations have been developed, and with the emergence 

of immunotherapy as an effective cancer treatment, there 

is hope for new promising drugs for the treatment of 

advanced MTC.
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