
 Open access Book Chapter DOI:10.4018/978-1-61692-857-5.CH011

MEDUSA: Middleware for End-User Composition of Ubiquitous Applications
— Source link

Oleg Davidyuk, Nikolaos Georgantas, Valérie Issarny, Jukka Riekki

Institutions: University of Oulu

Published on: 01 Jan 2011

Topics: Ubiquitous robot and Middleware (distributed applications)

Related papers:

 Autonomic composition of ubiquitous multimedia applications in REACHES

 Method and apparatus for providing content over multiple displays

 Method and procedure in creating a server side digital image file as receipt for web transactions

 Distributed overlay browser for transparent streaming media support in virtualized desktop environment

 Remote user interface adapter

Share this paper:

View more about this paper here: https://typeset.io/papers/medusa-middleware-for-end-user-composition-of-ubiquitous-
2v4zogwb7g

https://typeset.io/
https://www.doi.org/10.4018/978-1-61692-857-5.CH011
https://typeset.io/papers/medusa-middleware-for-end-user-composition-of-ubiquitous-2v4zogwb7g
https://typeset.io/authors/oleg-davidyuk-3ik8yp5apa
https://typeset.io/authors/nikolaos-georgantas-2191p5qp5n
https://typeset.io/authors/valerie-issarny-14tniosilx
https://typeset.io/authors/jukka-riekki-47tblb34d5
https://typeset.io/institutions/university-of-oulu-28pgymin
https://typeset.io/topics/ubiquitous-robot-1iv3ttvf
https://typeset.io/topics/middleware-distributed-applications-114spjtl
https://typeset.io/papers/autonomic-composition-of-ubiquitous-multimedia-applications-qp3eu6ajsy
https://typeset.io/papers/method-and-apparatus-for-providing-content-over-multiple-4ew2t2nyf8
https://typeset.io/papers/method-and-procedure-in-creating-a-server-side-digital-image-2te8pqlcw1
https://typeset.io/papers/distributed-overlay-browser-for-transparent-streaming-media-320qjisn9a
https://typeset.io/papers/remote-user-interface-adapter-4pxo37895v
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/medusa-middleware-for-end-user-composition-of-ubiquitous-2v4zogwb7g
https://twitter.com/intent/tweet?text=MEDUSA:%20Middleware%20for%20End-User%20Composition%20of%20Ubiquitous%20Applications&url=https://typeset.io/papers/medusa-middleware-for-end-user-composition-of-ubiquitous-2v4zogwb7g
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/medusa-middleware-for-end-user-composition-of-ubiquitous-2v4zogwb7g
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/medusa-middleware-for-end-user-composition-of-ubiquitous-2v4zogwb7g
https://typeset.io/papers/medusa-middleware-for-end-user-composition-of-ubiquitous-2v4zogwb7g

HAL Id: inria-00432675
https://hal.inria.fr/inria-00432675

Submitted on 17 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MEDUSA: Middleware for End-User Composition of
Ubiquitous Applications

Oleg Davidyuk, Nikolaos Georgantas, Valérie Issarny, Jukka Riekki

To cite this version:
Oleg Davidyuk, Nikolaos Georgantas, Valérie Issarny, Jukka Riekki. MEDUSA: Middleware for End-
User Composition of Ubiquitous Applications. Mastrogiovanni, F. and Chong, N.Y. Handbook of
Research on Ambient Intelligence and Smart Environments: Trends and Perspectives, 11, IGI Global,
pp.197-219, 2011, 9781616928575. ฀10.4018/978-1-61692-857-5.ch011฀. ฀inria-00432675฀

https://hal.inria.fr/inria-00432675
https://hal.archives-ouvertes.fr

Davidyuk, O., Georgantas, N., Issarny, V. & Riekki, J. (2009). MEDUSA: Middleware for End-User Composition of

Ubiquitous Applications. In: Mastrogiovanni, F. & Chong, N.Y. (Eds.), Handbook of Research on Ambient Intelligence

and Smart Environments: Trends and Perspectives. IGI Global, to appear.

MEDUSA: Middleware for End-User Composition of

Ubiquitous Applications

Oleg Davidyuk

1,2
, Nikolaos Georgantas

1
, Valérie Issarny

1
 and Jukka Riekki

2

1ARLES Research Team, INRIA Paris-Rocquencourt,

Domain de Voluceau, Le Chesnay, 78153, France

{Firstname.Lastname}@inria.fr

2Dept. of Electrical and Information Engineering and Infotech Oulu,

University of Oulu, P.O. Box 4500, 90014, Finland

{Firstname.Lastname}@ee.oulu.fi

Abstract. Activity-oriented computing (AOC) is a paradigm promoting the run-time realization

of applications by composing ubiquitous services in the user's surroundings according to

abstract specifications of user activities. The paradigm is particularly well-suited for enacting

ubiquitous applications. However, there is still a need for end-users to create and control the

ubiquitous applications because they are better aware of their own needs and activities than any

existing context-aware system could ever be. In this chapter, we give an overview of state of the

art ubiquitous application composition, present the architecture of the MEDUSA middleware

and demonstrate its realization, which is based on existing open-source solutions. On the basis

of our discussion on state of the art ubiquitous application composition, we argue that current

implementations of the AOC paradigm are lacking in end-user support. Our solution, the

MEDUSA middleware, allows end-users to explicitly compose applications from networked

services, while building on an activity-oriented computing infrastructure to dynamically realize

the composition.

1. Introduction

Ubiquitous computing as envisioned by Mark Weiser (1991) emphasizes the interaction of users

with smart spaces composed of humans and multiple networked computing devices. This vision

has been empowered by continuing progress in various relevant fields of research, such as

wireless communication, mobile computing, mobile sensing and human-computer interaction

(HCI). Firstly, wireless communication standards (e.g., WiFi and Bluetooth) have enabled users

to access smart spaces using their mobile terminals and portable devices. Secondly, efficient

low-powered CPUs make mobile terminals capable of running software platforms which

support advanced interoperability between different devices. In addition, mobile sensing

technologies, like RFID and GPS, make ubiquitous applications context-aware and they also

enable alternative HCI interfaces based on, e.g., physical contact (Nokia, 2009). However,

despite all these technical developments, the user-centric nature of ubiquitous computing should

not be neglected.

An important new trend in ubiquitous computing research is activity-oriented computing

(AOC) (Masuoka, Parsia & Labrou, 2003; Ben Mokhtar, Georgantas & Issarny, 2007; Sousa,

Schmerl, Steenkiste & Garlan, 2008a). This paradigm adopts a user-centric perspective and

assumes that smart spaces are aware of user needs and activities and reactively, or even

proactively, satisfy user demands by composing and deploying the appropriate services and

resources. User activities consist of the users’ everyday tasks and they can be abstractly

described in terms of (i) the situation (context) where the tasks take place, (ii) the system

functionalities required for accomplishing the activities, and (iii) user preferences relating to

2

QoS, privacy, security or other non-functional requirements. The system then dynamically

realizes the activities by composing the applications according to the activity descriptions.

Under the AOC paradigm, the research community concentrates on introducing autonomic

systems, which are self-manageable, self-configurable and adaptive, and therefore do not

require user involvement. However, as pointed out by Hardian, Indulska & Henricksen (2008)

and confirmed through user evaluation and usability tests (Davidyuk, Sánches, Duran & Riekki,

2008a; Vastenburg, Keyson & de Ridder, 2007), involving users in application control is

essential for ensuring the user acceptance of autonomous products, especially in home or office

automation domains. The AOC approach also has another drawback which limits its

applicability. Application composition in AOC systems is performed by matching user activity

descriptions with the networked services and resources discovered in the vicinity of the user

according to the chosen criteria. Although some prototypes allow end-users to adjust the criteria

at run-time (Davidyuk, Selek, Duran & Riekki, 2008b; Sousa et al, 2008a), the composition is

limited to predefined activity descriptions (i.e. templates), which are complex structures and are

not supposed to be understood or modified by end-users. Thus, users are neither able to

customize the existing applications nor able to create their own smart space applications.

To address the aforementioned limitations of AOC systems, we present MEDUSA, a

middleware solution which enables user-driven application composition in smart spaces.

MEDUSA enables end-users to create simple applications from available ubiquitous resources

discovered in the vicinity of the users. The applications are composed on the users’ handheld

devices. MEDUSA employs an end-user approach to programming applying it to the Ambient

Intelligence (AmI) and ubiquitous computing domains (Kawsar, Nakajima & Fujinami, 2008;

Mavrommati & Darzentas, 2007; Mavrommati & Kameas, 2003; Sousa, Schmerl, Steenkiste &

Garlan, 2008b). The design of the MEDUSA middleware builds on our years of experience in

developing middleware interoperability solutions, e.g., Amigo (2009) and PLASTIC (2009) as

well as RFID-based user interfaces for smart spaces (Davidyuk et al, 2008a; Davidyuk,

Sanches, Duran & Riekki, 2009; Riekki, 2007).

This chapter describes the design rationale for the MEDUSA middleware architecture and it

organized as follows. Section 2 surveys the background of ubiquitous application composition

focusing on developments in AOC research, thus providing an overview of the key aspects

relating to the specification of ubiquitous applications, the middleware support of dynamic

application realization and end-user involvement. Section 3 then introduces MEDUSA, which

empowers end-users to participate in application development and further leverages existing

open-source middleware solutions for the actual realization of application composition. Finally,

Section 4 concludes with a summary of the contribution of this study and our plans for future

research.

2. Related Work

Before presenting related work, we first introduce the notion of application composition, which

here refers to the process of building applications by assembling services offered by computing

devices embedded in the environment.

3

Fig. 1. Generic application composition process.

As shown in Figure 1, the application composition process generally involves two separate

actors, the end-user and the service provider. The role of the service provider is to develop and

publish services which provide some functionalities through a well-defined interface. The end-

user's role is to create applications and utilize (i.e., interact with) applications. Some authors

further separate the roles of application users and application developers, thus assuming that

applications are developed and used by different persons (Masuoka et al, 2003; Sousa, Poladian,

Garlan, Schmerl & Shaw, 2006; Sousa et al, 2008a). Others do not consider the end-user role at

all and suggest a view in which only application developers are involved in the application

composition process (Paluska, Pham, Saif, Chau, Terman & Ward, 2008).

The application composition process relies on descriptions of applications and services. An

application description specifies the abstract services the application is composed of and the

relationships between them (i.e. control and data flows). The application composer is

responsible for decision-making in the application composition process. The application

composer uses application descriptions and possible composition criteria (preferences, fidelity

constraints, costs and so on) provided by the end-user as inputs and chooses available services

which satisfy the given criteria. The selection of services is supported by a service discovery

protocol, which is responsible for the matchmaking functionality (i.e., for matching service

discovery requests against the service descriptions stored in the service registry). Since the

discovered set of services may potentially contain redundant instances, the application

composer optimizes (i.e., further reduces) the service set and produces an application

configuration (i.e., application composition plan), which satisfies the criteria given earlier.

Different application configurations may be produced depending on the criteria and the situation

in the environment. After this, the application is instantiated and executed by the runtime

environment. During execution, the application can be adapted (i.e. recomposed) according to

user defined adaptation policies. These policies are formal rules which trigger predefined

actions when the application or user context changes.

To date, several studies supporting ubiquitous application composition have been presented.

They focus on service provisioning issues (Chantzara, Anagnostou & Sykas, 2006; Nakano,

Takemoto, Yamato & Sunaga, 2006; Takemoto, Oh-ishi, Iwata, Yamato, Tanaka, Shinno,

Tokumoto & Shimamoto, 2004), context-aware adaptation (Preuveneers & Berbers, 2005a;

Hesselman, Tokmakoff, Pawar & Iacob, 2006; Jianqi & Lalanda, 2008; Bottaro, Gerodolle &

Lalanda, 2007; Bottaro, Bourcier, Escofier & Lalanda, 2007; Handte Herrmann, Schiele &

Becker, 2007; Rouvoy, Eliassen, Floch, Hallsteinsen & Stav, 2008; Rouvoy, Barone, Ding,

Eliassen, Hallsteinsen, Lorenzo, Mamelli & Scholz, 2009), service validation and trust

4

(Bertolino, De Angelis, Frantzen & Polini, 2008; Bertolino, De Angelis & Polini, 2009; Buford,

Kumar & Perkins, 2006), service communication path optimization (Kalasapur, Kumar &

Shirazi, 2005), automatic application code generation (Nakazawa, Yura & Tokuda, 2004) and

distributed user interface deployment (Rigole, Vandervelpen, Luyten, Berbers, Vandewoude &

Coninx, 2005). Several design styles for developing adaptive ubiquitous applications through

composition have also been suggested (Paluska et al, 2008; Saif, Pham, Paluska, Waterman,

Terman & Ward, 2003; Sousa et al, 2008b).

Some of the most promising research deals with the activity-oriented computing approach

(Masuoka et al, 2003; Ben Mokhtar et al 2007; Sousa et al, 2008a). These solutions focus on

decoupling the end-user tasks from their system-level realization, i.e., they let the end-users

concentrate on the tasks or activities they need, rather than ask them to specify how they want

these tasks to be performed by the system. User tasks are simple everyday activities (e.g., in the

home or office environment), which can be achieved by compositing an application. AOC

solutions take a user-centric approach to application composition by suggesting that users

explicitly provide descriptions to the system via dedicated task composition and control

interfaces (Davidyuk et al, 2008a; Messer, Kunjithapatham, Sheshagiri, Song, Kumar, Nguyen

& Yi, 2006; Sousa et al, 2006). Other approaches assume that the descriptions are provided to

the system implicitly through user context recognition facilities (Ranganathan & Campbell,

2004) or that user task descriptions are developed by application developers (Beauche & Poizat,

2008; Ben Mokhtar et al, 2007).

Next, we discuss related work in the context of three key issues, namely, the specification

language, middleware support and end-user involvement.

2.1. Specification Language

The specification language is the cornerstone of the application composition process as it

essentially serves the following purposes: (i) it enables service providers to advertise the

properties of their services, both the functional and the non-functional properties; (ii) it enables

the discovery of networked services by matching the service specifications with query requests

sent by consumers; and (iii) it helps in arranging the discovered services in order of priority

according to their non-functional properties and optimization criteria.

The solution presented by Paluska et al (2008) suggests a design style called “goal-oriented

programming” and a proprietary scripting language for describing composite applications. The

solution is centered around application developers who create applications by describing the

goals and the techniques corresponding to these goals. The goals are abstract decision points

which determine the application's structure and behavior by describing the functionalities

required by certain parts of the application. Each goal is described in terms of quality

parameters, which are used to evaluate whether or not the goal has been reached. The

techniques are specified as programming scripts which describe ways of achieving goals, e.g.,

by using certain hardware instances. The scripts introduced by the techniques do not directly

implement application functionalities. Instead, what they provide is rather an abstraction of the

existing component modules and ubiquitous devices required by the application. The structure

of resulting application resembles trees; this is due to the planning algorithm which is used to

optimize the set of techniques.

Most of the work on dynamic composition uses proprietary XML-based specification

languages bound to particular application domains (e.g., office automation, web services and

mobile services). The structure of these specifications has two features: it is fixed (i.e., adding a

new property requires redesigning the language) and it resembles a tree because XML is used.

An XML-based specification is used, for instance, by Sousa et al (2006; 2008a) for describing

user activities. In their paper, Sousa et al (2008a) present an example activity that describes the

services and the service properties required to review a movie clip. Their example consists of

two services, namely “play Video” and “edit Text”. The properties of these services are

“material” (i.e., required files) and “service state” (i.e., video playback position, video

5

dimensions etc.). Sousa's specification supports two types of attributes: numeric (integer) values

and enumerations (i.e., sets of integer or string values). Although XML-based languages allow

the tailoring of specifications to certain problems (or application domains), they themselves do

not contain any interpretation of the concepts (i.e., semantic meaning of attributes, values, etc),

instead they leave this task to the system or the application. This means that the interpretation of

XML-based specifications depends on the application or system logic, which can potentially

create ambiguity if two different systems interpret the same specification differently.

In addition to XML-based models, multiple service specification standards exist, such as

Web Services Description Language (WSDL)
1
 and YAWL

2
. Although they have been used

successfully in many existing systems, none of these languages has been accepted as a global

standard in the application composition domain. Therefore, systems using different description

languages may be incompatible with each other due to the diversity of their service and

application descriptions. This is also known as semantic heterogeneity (Halevy, 2005) and it

occurs because service description languages in general support different concepts (i.e., the

service descriptions vary content-wise) and they may specify the same concepts in different

ways. For example, service behavior can be modeled using multiple techniques, such as process

modeling (e.g., BPEL
3
) and conversations (e.g., WSCL

4
).

Another alternative to the XML-based approach to specifications is the ontology-based

approach which also solves the problem of semantic heterogeneity. This approach models

applications, services, their properties and possible relationships between them using a common

theory (also called the “upper ontology”), thus enabling the participating parties to reason and

match service concepts, even if their descriptions do not comply in syntax.

Several ontology-based languages have been suggested for service descriptions, such as

Web Service Ontology (OWL-S)
5
 and Web Services Modeling Framework (WSMF)

6
. These

languages have been used frequently, especially in dynamic application composition systems

(Hesselman et al, 2006; Lee, Chun & Geller, 2004; Ben Mokhtar et al, 2007; Preuveneers &

Berbers, 2005a; Preuveneers & Berbers, 2005b; Ranganathan & Campbell, 2004). For example,

iCOCOA (Ben Mokhtar et al, 2007) uses an OWL-S based semantic language for specifying

user activities, services and their properties. iCOCOA particularly focuses on dynamic service

properties and models service behavior using workflows. Thus, each service is modeled as a set

of service operations which are interconnected with control and data relationships. In addition,

iCOCOA also describes service QoS properties using qualitative and quantitative attributes.

Another OWL-S based specification language is used by CODAMOS middleware

(Preuveneers & Berbers, 2005a; Preuveneers & Berbers, 2005b). The main focus of the

CODAMOS middleware is the hierarchical composition of service-based mobile systems, in

which each service can consist of a sequence (i.e., a hierarchy) of other services. The

CODAMOS specification defines the functional and non-functional properties of the services

and relationships between them, i.e., connectors. The connectors link services and provide

communication channels within the composed structures of the services. The non-functional

properties of the services include contracts specifying user requirements and context and service

control interfaces.

The language used for the application and service specification has a significant impact on

middleware support in dynamic application composition. This point is discussed further in the

next section.

1
 http://www.w3.org/TR/wsdl

2
 http://www.yawl-system.com/

3
http://docs.oasis-open.org/wsbpel/

4
http://www.w3.org/TR/wscl10/

5
http://www.daml.org/services/owl-s/1.0/

6
http://www.wsmo.org

6

2.1. Middleware Support

We distinguish between two important middleware functionalities in the dynamic composition

of ubiquitous applications: (i) the application composer, which realizes the application by

implementing a matching or a planning algorithm to choose the necessary services and (ii) the

functionality that enables the interoperability of the service discovery, the service descriptions

and the service communication.

Application composer. The application composer implements an algorithm to select service

instances which realize the application. The algorithm performs either a matching or a planning

function. Matching algorithms select appropriate services simply by matching the attributes of

the services. In contrast, planning algorithms perform optimization and select the set of services

which best satisfies a certain criteria. Planning algorithms are usually applied to systems in

which finding a solution requires significant time and computing resources.

Application composition by matching is used in the iCOCOA (Ben Mokhtar et al, 2007),

InterPlay (Messer et al, 2006), PCOM (Handte et al, 2005), CASE (Hesselman et al, 2006),

USON (Takemoto et al, 2004), Galaxy (Nakazawa et al, 2004) and SesCo (Kalaspur et al, 2005)

projects. For example, iCOCOA suggests an application composition engine that uses semantic

reasoning as well as a QoS attribute- and a conversation-based matching algorithm. The

algorithm dynamically integrates the available service instances into the application according

to the service behavior and application QoS constraints.

Several solutions use planning algorithms for application composition (Beauche & Poizat,

2008; Chantzara et al, 2006; Preuveneers & Berbers, 2005a; Ranganathan & Campbell, 2004;

Rouvoy et al, 2009; Sousa et al, 2006; Sousa et al 2008a). For example, Sousa et al (2006,

2008a) and Ranganathan & Campbell (2004) use similar planning approaches to compose

applications and particularly to address fault-tolerance issues. Their application composition

engines take the goal description of an abstract user into account, in addition to the user's

current context and preferences, in order to find a sequence of actions which leads to the best

realization of the user activity. The resulting sequence (or plan) has to be executed by the

application framework to ensure that none of the executions fail because of resource

unavailability. This is done by dynamically monitoring the execution of the plan and the

resources.

The composition mechanism of MUSIC (Rouvoy et al, 2008; Rouvoy et al, 2009) uses a

utility-based planning algorithm, which relies on the normalized utility function determined by

the required properties of the application and its current execution context. The utility function

defines the relevancy of the QoS properties and reflects the application state (i.e. deployed or

running), which affects the way particular QoS properties are estimated. This planning

algorithm is also capable of negotiating QoS values directly with service providers during

planning.

Another project, CODAMOS (Preuveneers & Berbers, 2005a), uses the Protégé reasoning

tool to take the capacities of the client devices into consideration during planning. The

algorithm estimates the resource capacities of the client devices and composes the applications

accordingly. The algorithm uses the backtracking approach to optimization, i.e., it cuts down on

the user preferences if it does not find any suitable solutions which fit the required device set.

CODAMOS is a particularly interesting project, as their algorithm optimizes the structure and

the functionality of the application according to the available devices, instead of optimizing the

set of services to meet the application QoS requirements.

Middleware interoperability. According to Ben Mokhtar (2007), dynamic application

composition requires two types of middleware interoperability, that is, among service discovery

and among service communication protocols. As discussed in 2.1, the former relates to

overcoming semantic heterogeneity and can be addressed through the semantic description of

services and composite applications. The latter requires adequate mapping among

heterogeneous middleware protocols.

7

A number of solutions have been proposed recently to address the interoperability issues of

the service discovery and communication functionalities. For example, MUSDAC (Raverdy,

Issarny, Chibout & de la Chapelle, 2006) and ubiSOAP (Caporuscio, Raverdy & Issarny, 2009)

use auxiliary service components to translate messages sent between different service discovery

networks. An instance of such a service is added to each service discovery network enabling the

clients to use multiple protocols at the same time. Siebert, Cao, Zhou, Wang & Raychoudhury

(2007) and Bromberg & Issarny (2005), on the other hand, suggest a universal adaptor approach

which implements both client and server-side functionalities for discovering services and for

mapping the primitives used by the universal adaptor with the primitives used by various

service discovery systems.

Similarly, the ANSO architecture (Bottaro et al, 2007; Jianqi & Lalanda, 2008) suggests

using adaptive adaptors to target service discovery heterogeneity issues. ANSO uses the UPnP

service discovery protocol and provides explicit mappings of other protocols for UPnP in order

to integrate sensors, computing devices and web services into one coherent and manageable

network. Unlike other solutions, the ANSO service discovery engine generates a separate proxy

component for each service instance which needs to use some other protocol than UPnP. Each

time the service providers register a new service, ANSO dynamically generates a proxy using

Java reflection (i.e. the bytecode generation technique) which implements the service discovery

protocol required by the service instance. The proxies also provide access to the service

functionalities.

Application composition also needs another kind of interoperability which is related to

service communication protocols. Service communication interoperability is required because

service instances may use incompatible communication protocols, such as Bluetooth and Wi-Fi.

This kind of interoperability has been addressed in particular by the AmIi (Georgantas, Issarny,

Ben Mokhtar, Bromberg, Bianco, Thomson, Ravedy, Urbeita & Cardoso, 2009) and ubiSOAP

(Caporuscio et al, 2009) solutions. Although AmIi is a middleware solution which focuses on

semantic interoperability, it also provides interoperability among heterogeneous RPC-protocols.

For this reason AmIi introduces a proprietary AmIi-COM communication mechanism, which is

based on runtime protocol translation. Similar to AmIi, the ubiSOAP middleware addresses

communication interoperability. It implements a custom SOAP protocol to enable service

communication in wireless networks. We discuss these two solutions in Section 3.3.

2.3. End-User Involvement

In ubiquitous computing, end-users rarely play an active role. This is best demonstrated by

research in context-aware application composition in which users do not explicitly interact with

the system (i.e., through a user interface), but rather influence the decisions made by the system

passively, i.e., through sensors which autonomously capture the users’ preferences, their

behavior, current needs and other parameters. For this reason, end-user involvement in

ubiquitous computing is very limited and often non-existing.

However, end-user involvement has been more extensively studied in AOC research. The

AOC systems assume that application composition is performed on the basis of predefined

activity templates that are developed by application programmers, thus restricting the role of the

end-users in composing applications (or activities) to simply matching the templates. This is

simultaneously, both a major drawback and a contradiction in the AOC approach, because, on

one side, the AOC promises to support end-user activities, but on the other side it restricts the

user choice to activity templates that are predefined by the system. Thus, studies on end-user

involvement in AOC have mainly focused on interfaces used to customize user activity

templates.

For example, Sousa et al (2006, 2008a) present a set of user interfaces for customizing

activity templates and specifying end-user preferences. These preferences define the constraints

and requirements that are taken into account by the application composer, which chooses the

service instances for the corresponding user activity. The example shows a user activity

8

template, which includes the following tasks: editing text, browsing the Web and editing a

spreadsheet. Users can associate each of these single tasks with specific material (filename or

address). Sousa's user interfaces also support multiple dimensions of application QoS

requirements and the particular value of each dimension is represented by the slider position.

The user chooses the QoS dimension (e.g., latency) and then adjusts the position of the slider to

define the value intervals “bad”, “moderate”, “good” and “excellent”.

Fig. 2. Physical user interface for providing user preferences used by Davidyuk et al (2008a).

In our previous study, we suggested another approach to collect user preferences based on

physical interfaces (Davidyuk et al, 2008a). In this approach, users specify their preferences by

touching the appropriate RFID tags. An example of such an interface, the interface of a

ubiquitous movie player application, is shown in Figure 2. This interface allows the users to

choose the quality of the video they want to play with the application, which can be “very low”,

“low”, “medium” or “high”. For example, in order to choose the maximum quality, users need

to touch (i.e. read the tag using a mobile terminal) the corresponding RFID tag labeled “high”.

Although we find that Sousa's interfaces are more flexible in terms of the value ranges of the

captured preferences, RFID-based interfaces demonstrate a higher usability and also require less

learning effort.

The InterPlay middleware (Messer et al, 2006) provides several user interfaces for querying

device and content information and for obtaining the status of user activities at home. This

interface set also includes a work interface for activity composition similar to the one in Sousa's

study, which uses a verb-subject-device template. In order to compose an activity, users perform

three steps in this interface: (i) they choose an action from the “play”, “print” and “show”

options, then (ii) they choose a material (i.e., content type) from the “movie”, “music” and

“photo” options and finally (iii) they choose the target device they want to use to watch the

content. However, the template only allows the user to choose one device instance per user

activity. If a user needs to compose an activity from two device instances, then this kind of

template will not support it.

2.4. Summary

Our review of dynamic application composition solutions can be summarized by stating that in

the related work the XML-based service specification languages are primarily used. These

languages are easier to design than, e.g. ontology-based alternatives, but they neither allow

reasoning nor encoding interpretation (i.e., meaning) of specification concepts. Thus, XML-

based specifications may cause semantic heterogeneity (i.e., ambiguity) issues. Therefore, we

consider the ontology-based specification approach as the most promising solution for

supporting application composition. Such an approach does not require global agreement among

service providers and consumers on a specification standard, thus different legacy specification

standards can be supported by mapping them to a common ontology. In addition, this approach

9

offers greater flexibility and expressiveness compared to XML-based specification languages.

Still, there is one argument against using ontologies in specifications: they increase the overall

latencies, because the ontologies need to be processed.

Solution Specifi-

cation

Composer Interope-

rability

End-User

Involvement

Paluska et al (2008) Script-

based

Planning - -

Sousa et al (2006, 2008a) XML Planning - Yes

iCOCOA (Ben Mokhtar et al,

2007)

OWL-S Matching Semantic -

Gaia (Ranganathan &
Campbell, 2004)

DAML Planning Semantic -

PerSo (Beauche & Poizat,
2008)

YAWL Planning - -

InterPlay (Messer et al, 2006) RDF Matching - Yes

PCOM (Handte et al, 2007) XML Matching - -

CODAMOS (Preuveneers &

Berbers, 2005a)

OWL-S Planning Semantic -

ANSO (Bottaro et al, 2007a) XML - Semantic -

MUSIC (Rouvoy et al, 2009) XML Planning - -

CASE (Hesselman et al, 2006) OWL-S Matching Semantic -

USON (Takemoto et al, 2004) XML Matching - -

Galaxy (Nakazawa et al, 2004) XML Matching - -

SesCo (Kalaspur et al, 2005) XML Matching - -

IST-Context (Chantzara et al,
2006)

XML Planning - -

DRACO (Rigole et al, 2005) XML - - -

Table 1. Comparison of related work.

As can be seen from Table 1, only a few of the discussed ubiquitous application

composition solutions deal with middleware interoperability. Supporting interoperability is the

cornerstone functionality, which allows an application composition system to utilize services

that are specified in different service description languages and use various communication

protocols. Since the large number of existing (and well-established) service discovery protocols,

service description languages and service communication protocols make the adoption of one

unique solution a rather unrealistic scenario, then supporting middleware interoperability is an

essential requirement for making an application composition system truly ubiquitous.

End-user involvement has been studied in the context of ubiquitous application composition

by Sousa et al (2006, 2008a) and Messer et al (2006). However, these two approaches assume

that application composition is performed on the basis of predefined activity templates (i.e.,

application descriptions), which are developed by professional programmers. As a result, end-

users are not able to create their own applications and activities according to their own needs.

Ideally, applications should be created by the end-users themselves, as they are the ones with in-

depth knowledge of their own needs and activities. Involving users in the process of creating

applications would result in a better understanding of how the applications should be created

and what services should be used. In addition, it would give the users a feeling of having more

control over the environment, which is an important factor in ensuring user acceptability of

prototypes as demonstrated by Davidyuk et al (2008a).

10

3. MEDUSA Middleware

In this section we discuss our earlier research on application composition and explain how our

findings motivated the development of the MEDUSA middleware.

In our previous work on ubiquitous application composition we have developed two system

prototypes which were used in building our example applications (Davidyuk et al, 2008a;

Davidyuk et al, 2008b; Davidyuk et al 2009). These prototypes include a proprietary service

discovery protocol, an application composition algorithm and support composite multimedia

applications using the application deployment and messaging facilities of the REACHES

framework (Sánchez, Cortés & Riekki, 2007). The prototypes use a mobile terminal as a remote

control unit which allows the users to create audio/video playlists by touching physical objects

associated with certain multimedia files (Davidyuk et al, 2008a; Davidyuk et al, 2009). The

applications in both prototypes have fixed structures, i.e. composition is performed using

predefined application templates.

We also conducted a user study to evaluate the feasibility of the first prototype, which relied

on an autonomic algorithm to compose applications. We reported this study in Davidyuk et al

(2008a). The end-user involvement in that prototype was very limited and focused on

application-related issues, such as choosing multimedia content and specifying preferences over

it. As the result, we observed that the user acceptance of the autonomous application

composition was very low, because the users were bound by the decisions made by the

algorithm. Thus, a key finding was that end-user control in application composition is

necessary.

We used the results from the feasibility test as a base for designing our second prototype,

CADEAU (Davidyuk et al, 2009) which focuses on end-user control in application composition.

Unlike the first prototype, CADEAU allows the user to choose service instances (more

specifically, services that represent real devices) manually by touching or interactively. In other

words, the users are able to choose the most appropriate means of interaction according to their

needs and the situation at hand. However, the prototype restricts application composition to

simply matching the predefined application descriptions with the services discovered according

to a given criteria. Therefore, the matching approach to composition forces the end-users to rely

on applications designed by application developers, instead of giving them the possibility to

create their own applications in a do-it-yourself fashion.

The main goals of the MEDUSA middleware are related to providing end-user support for

the creation and customization of applications and for controlling the composition process

according to user needs. To achieve these goals, MEDUSA utilizes a composition tool for

encoding user intent into applications and a set of control interfaces. These interfaces are based

on our previous work (Davidyuk et al, 2009). Another important issue addressed by MEDUSA

is interoperability between heterogeneous devices, networks and platforms. Achieving

interoperability is a prerequisite for building an open application composition system, as the

services constituting an application need to be able to discover each other, exchange

information and indeed interpret this information meaningfully. This is especially important if

the environment, in which the application composition system operates, consists of services

implemented and deployed by independent providers (Ben Mokhtar, Raverdy, Urbeita &

Speicys Cardoso, 2008).

The following section introduces the overall architecture of the MEDUSA middleware

(Section 3.1) paying special attention to end-user support (Section 3.2) and interoperability

(Section 3.3).

11

3.1. MEDUSA Middleware Architecture

Fig. 3. MEDUSA conceptual architecture.

The architecture of MEDUSA is decomposed into the following layers; including end-user

support and communication management in ubiquitous computing environment (see Figure 3):

1) The communication interoperability layer uses a common network interface to both

integrate and hide the underlying multi-radio networking technologies. The layer contains

two entities, namely multi-radio networking and multi-protocol network management

(Caporuscio et al, 2009). The first one effectively manages the nodes’ multi-radio

facilities using a cross-network addressing scheme and provides point-to-point and

multicast communication primitives. Whereas, the second entity is responsible for multi-

protocol network management, communication mobility and multi-network routing. In

other words, it handles the mobility of the nodes to the upper layers in a transparent

manner and also enables messages to be routed across nodes physically located in

different networks. The realization of this layer is further discussed in Section 3.3.

2) The key role of the service interoperability layer is to enable semantic and syntactic

interoperability between different service providers and consumers without imposing

them to use a specific standard. Interoperability is achieved using a common service

description model, which specifies the mapping function between the service concepts

and the functionalities provided by the platform nodes (Ben Mokhtar, 2007). In addition

to this, the layer is also responsible for the service discovery, which stores descriptions of

available services and performs matchmaking (i.e. searches for service descriptions in the

repository matching the service query). The MEDUSA service discovery supports various

legacy service discovery protocols through pluggins. This enables interoperability as

presented by Georgantas et al (2009). The application composition engine employs

multiple composition algorithms to produce application configurations, which are

optimized using QoS requirements and user-defined criteria (Davidyuk et al, 2008b). We

describe the realization of this layer in Section 3.3.

3) The user-centric layer provides functionality for creating and customizing

applications and interfaces. The functionality can be used to control the composition of

applications at run-time, and it can be used by end-users to encode their intents into the

applications before they are composed by the application composition engine. In addition,

12

end-users can utilize this functionality to control the composition process and to adapt

applications at run-time by providing information on their preferences and by choosing

the service instances that constitute the application. The MEDUSA end-user support is

explained in further detail in the following section.

3.2. End-User Support

The functionality of the user-centric layer is provided by the end-user application composition

tool and the application control interfaces. The composition tool helps users to arrange services

into applications according to their own needs. We assume that each ubiquitous environment

provides a set of cards which are associated with the service instances available in the

environment. These cards can be issued, e.g., by the administrator who is responsible for

maintaining and installing the actual services. Thus, each service is represented with a square

paper card with a graphical icon on one side and an RFID tag attached the other side. A sticker

with an RFID tag used in our prototype and an example set of cards representing a file server, a

display, a remote controller, and an audio service are shown in Figure 4. Each of these RFID

tags contains a web link to its service description which can be read by touching the card with

an RFID-equipped mobile phone, as shown in Figure 4.B. Users can arrange the cards into

different structures or sequences (an example sequence is shown in Figure 4.C), which are then

read by touching them with a remote controller. In addition to sequences, other structures are

also supported, however, they require connection cards to combine different parts of application

structures. The main advantage of using a physical RFID-based interface for application

composition is that it enables user cooperation and collaboration in designing ubiquitous

applications, which would be difficult to realize using a traditional desktop-based user interface.

Once the application structure is provided to the system by touching service cards, end-

users have to specify control and data dependencies between the services they have chosen

through the mobile phone UI. This step can be supported using a mobile phone-based assistant,

e.g. the office assistant in MS Word, which will guide the users through the application

composition process. So, for example, if the users designed an application which is not

complete structure-wise, the assistant would suggest how to complete the application using e.g.,

information from a database with existing application descriptions. Similar approach is used by

Wisner & Kalofonos (2007) for programming smart homes.

Fig. 4. Sticker with RFID tag (A), RFID reader (B), and set of service cards (C).

13

Fig. 5. Two MEDUSA users jointly developing an application.

We have tested our approach with a prototype composition tool and an initial set of cards.

Figure 5 shows test subjects jointly implementing an application using a mobile phone. Two

users participated in the preliminary experiment which lasted 1.5 hours. The users were asked to

design abstract applications using the given service cards. In addition, they were allowed to use

service cards they thought up themselves, if necessary. Altogether six applications were

designed for multiple domains and several additional services were suggested during the

experiment. The application domains included home, office, hospital and learning

environments. We learned three lessons from this experiment. First, the graphical designs of the

tags (i.e. icons) have to be self-explanatory and very intuitive for the users, and match their

technical background. Secondly, we found that our set of service cards for application

composition should be further extended. Thirdly, our composition tool needs a mechanism to

motivate users to build applications, because motivation is necessary to balance the effort

needed to learn to use the tool.

When the users develop applications using the composition tool, the applications only exists

as abstract descriptions which have to be realized by service instances. In other words, the

services constituting an application have to be connected at run-time to the service instances

available in the environment. This task is performed by the application composer and it can be

controlled by users through a set of user interfaces, which have two functions: (i) they allow

users to choose among the possible application configurations (i.e. they are able to map the

application descriptions to the service instances) suggested by the application composition

engine; (ii) they permit users to directly choose service instances which are physically available

in the environment. MEDUSA offers four different control interfaces, which enable different

degrees of user involvement in controlling the application composition.

14

Fig. 6. MEDUSA end-user control interfaces.

The MEDUSA middleware supports the following interfaces: manual, semi-manual, mixed-

initiative and automatic. The interfaces are shown in Figure 6 where they are arranged

according to the level of user involvement and system autonomy they provide.

The manual interface assumes that the users have full control over application

composition. Thus, the application composition engine is not utilized at all. The users can

choose service instances by touching them with their mobile phone, as shown in Figure 7 (left).

The interface is based on RFID technology and each service instance has an RFID tag attached

to it. Each occasion when the tag is touched it uniquely identifies the service instance associated

with the tag. Non-visual resources, i.e., abstract services or services located in a hard to reach

places (e.g., on the ceiling) are represented with RFID-based control panels. Figure 7 (right)

shows an example of such a control panel for a multimedia projector service. The application is

started once the user has chosen all the necessary service instances.

Fig. 7. User selecting a service instance (left), and example service control panel (right).

The semi-manual interface does not require users to choose manually all the services. The

users can select some services by touching while the application composition engine will

complete the application configuration by assigning the missing services automatically. The

advantage of this interface is that in the fact only a part of the application configuration will be

15

realized by the system. Thus, the users can choose the most important services in their opinion,

and leave the less important decisions to be made automatically by the system.

The mixed-initiative interface restricts user control to the options suggested by the

application composer. However, the users can always switch to another control interface if they

are not satisfied with the options suggested by the system. The options are dynamically

produced and ordered according to user defined criteria into a list of application configurations

starting with the most attractive one. The list also shows the service instances required by each

application. Before the application starts, the user can browse through the application

configuration list and identify the services used by clicking the phone's soft buttons. This feature

is essential if users need to validate the configuration of the application before starting it.

The autonomic interface uses the application composer to start and run an application

configuration without distracting the user. This interface assumes that the user does not want to

control the application composition.

3.3. MEDUSA Middleware Interoperability

The MEDUSA communication interoperability layer is realized using ubiSOAP (Caporuscio et

al, 2009). The ubiSOAP communication middleware is specifically designed for resource-

limited portable ubiquitous devices which can be interconnected through multiple wireless links

(i.e. Bluetooth, Wi-Fi, GPRS, etc). This feature is essential for MEDUSA, because the front-end

functionality of the middleware is intended for mobile phones. In addition, ubiSOAP adopts

Web Service standards as a baseline for implementing ubiquitous services, extends the standard

SOAP protocol with group messaging connectivity and supports node mobility. ubiSOAP has

been implemented into two SOAP engines, Axis2
7
 and CSOAP

8
, which demonstrates that

ubiSOAP allows legacy applications to communicate using the standard SOAP protocol. This

feature guarantees the compatibility of MEDUSA with thousands of existing online services.

Figure 8 shows the two-layered architecture of ubiSOAP (for details please refer to

Caporuscio et al (2009). The lower layer is the ubiSOAP connectivity layer which selects the

network based on user policies, as users may require the utilization of a certain type of network

for personal reasons. This layer also identifies and addresses the applications in the networking

environment. The upper layer is the ubiSOAP communication layer which extends the use of

the standard SOAP protocol for messaging between the participating services by introducing

SOAP multi-network multi-radio point-to-point transport and group (multicast) transport

protocols.

Fig. 8. ubiSOAP architecture. Adapted from Caporuscio et al (2009).

7
 available from http://ws.apache.org/axis2/

8
 available from http://www-rocq.inria.fr/arles/download/ozone/

16

The upper MEDUSA service interoperability layer is realized by adopting the AmIi

(Ambient Intelligence interoperability) service description model (Georgantas et al, 2009) and

the interoperable ambient service discovery (Ben Mokhtar, 2007). AmIi is a semantic-based

solution which achieves conceptual interoperability between heterogeneous service platforms.

This type of interoperability is required from service providers wanting to register services

using different service discovery protocols, which in turn use different service description

languages. AmIi relies on the interoperable service description model and the multi-protocol

service discovery engine. The former enables mapping between the heterogeneous service

description languages, thus providing conformance on both a syntactical and a semantic level.

As a result, the service descriptions, which were originally written in languages such as UPnP or

WSDL, can be translated into corresponding interoperable service descriptions. As shown in

Figure 9, the AmIi service description model captures both functional (i.e. interface-related) and

non-functional (e.g., QoS) service properties in addition to conveying information on service

behavior and service grounding. The latter specifies how the service can be accessed using a

legacy communication protocol. The service behavior is modeled using a workflow language

e.g. BPEL. However, the model also supports other alternatives. The functional and non-

functional properties are either specified with a reference to an existing ontology or they may

contain embedded semantic descriptions.

Fig. 9. AmIi Service Description Model (AMSD), adapted from Ben Mokhtar (2007).

The interoperable service discovery function provided by AmIi is achieved using distributed

service repositories which support legacy service discovery protocols. This means that each

repository runs a set of plugins (i.e., proxies) associated with various service discovery

protocols. The legacy service discovery protocols are then able to exchange service descriptions

with the repositories and answer query requests. However, such a mechanism requires the

translation of all the service descriptions into one interoperable format, which may potentially

increase the latency of the discovery protocol. Therefore, the interoperable ambient service

discovery also supports a plugin for registering and querying the service descriptions directly in

the interoperable format.

The application composition engine in MEDUSA is realized using the composition

algorithms initially introduced in Davidyuk et al (2008b). These optimization algorithms are

based on the theories of evolutionary and genetic computing and they are used to optimize

application configurations (i.e. set of services that constitute the application). The algorithms

perform the optimization on the basis of user specified criteria (the nearest, the fastest or the

17

cheapest option) and user preferences (fidelity and QoS requirements). For example, an

application configuration can be optimized in order to minimize the overall application

bandwidth consumption and to maximize the QoS properties of interest. These algorithms are

generic and support (i) customizable criteria which may include multiple simultaneous

optimization goals and (ii) various application QoS property types which can be added and

removed from the service descriptions as needed at run-time.

4. Conclusions

The vision of activity-oriented computing advocates the development of systems which are

explicitly aware of user needs and activities. These activities consist of the users’ everyday tasks

(e.g., in a home or office environment), which are abstractly described in terms of the situation

in which the activities take place, the required system functionalities for accomplishing the

activities, and the user preferences such as fidelity, privacy, or using other non-functional

requirements. These activities are dynamically realized by the system composing the

applications according to the users’ activity descriptions. Although existing AOC systems are

autonomous and rarely involve users in the actual application composition, we argue that end-

user support in such systems should not be neglected.

To address this issue, we present MEDUSA, our middleware solution for end-user

application composition with a two-fold goal: (i) enabling end-user application development

and controlling the composition of applications at run-time; and (ii) solving issues relating to

the interoperability of service communication and service discovery, thus promising to integrate

thousands of already existing services. We discussed the middleware architecture, its

functionality and also presented realizations of MEDUSA utilizing the open-source solutions

ubiSOAP and AmIi. MEDUSA end-user support helps avoid predefined activity descriptions,

which are used in most of the related work. The end-user composition tool supports users who

do not have advanced technical skills. The tool relies on mobile terminals and RFID-based

physical interfaces. These technologies were found very promising in terms of usability and

user acceptance (Davidyuk et al, 2008a).

One lesson learned from this work is that end-users have a need to create their own services,

thus the role of the end-user has to expand into the role of a service developer. Our plan is to

achieve this change iteratively, in a few steps. For example, at first our system will allow an

exporting functionality which enables user-composed applications to be exported as services, so

that these applications can be used to compose other applications.

In the future we are planning on experimenting with the middleware and the end-user

composition tool. In addition to conducting performance measurements, we will evaluate our

solution with a series of user experiments in order to assess factors relating to user acceptance

and usability. It would also be interesting to study what kinds of applications the end-users

usually compose and what kinds of services they typically need in different situations.

We are also planning on making the service cards from thick cardboard or pieces of wood,

thus the cards would resemble pieces of a jigsaw puzzle. By making different cutout interfaces

we will restrict the ways in which the services can be combined together. This is necessary

because some services may not be permitted to combine directly, but they can be combined

using an auxiliary service in between.

Acknowledgements

This work has been funded by Tekes (National Technology Agency of Finland) under

UBICOM technology program, GETA (Finnish Graduate School in Electronics,

Telecommunications and Automations) and Nokia Foundation.

18

The authors would like to thank personnel of ARLES team in INRIA, especially Animesh

Pathak, Pushpendra Singh, Elena Kuznetsova and Sneha Godbole for their valuable comments

and ideas regarding the functionality of the MEDUSA middleware and the content of this

chapter.

Keywords

Service-oriented and ubiquitous computing, ambient intelligence, end-user and

interaction design, application composition.

References

Amigo. (2009). Project web site. Retrieved on November 16, 2009, from http://www.hitech-

projects.com/euprojects/amigo

Beauche S. & Poizat P. (2008). Automated Service Composition with Adaptive Planning. In Bouguettaya,

A., Krueger, I. & Margaria, T. (Eds.), Proceedings of the 6th International Conference on Service-

Oriented Computing (pp. 530-537). Berlin, Heidelberg: Springer-Verlag.

Bertolino, A., De Angelis, G., Frantzen, L. & Polini, A. (2008). The PLASTIC Framework and Tools for

Testing Service-Oriented Applications. In Software Engineering: International Summer Schools,

ISSSE 2006-2008 (pp. 106-139).

Bertolino, A., De Angelis, G. & Polini, A. (2009). Online Validation of Service Oriented Systems in the

European Project TAS3. Proceedings of the ICSE Workshop on Principles of Engineering Service

Oriented Systems, PESOS (pp. 107-110). Washington DC: IEEE Computer Society.

Bottaro, A., Bourcier, J., Escofier, C. & Lalanda, P. (2007a). Context-Aware Service Composition in a

Home Control Gateway. Proceedings of the IEEE International Conference on Pervasive Services.

Washington DC: IEEE Computer Society.

Bottaro, A., Gerodolle, A. & Lalanda, P. (2007b). Pervasive Service Composition in the Home Network.

Proceedings of the 21
th

 International Conference on Advanced Networking and Applications

AINA'07 (pp. 596-603), Washington, DC: IEEE Computer Society.

Bromberg, Y.-D. & Issarny, V. (2005). INDISS: Interoperable Discovery System for Networked

Services. In Alonso, G. (Ed.) Proceedings of the of ACM/IFIP/USENIX 5
th

 International

Conference on Middleware Middleware’05 (pp. 164-183), New York, NY: Springer-Verlag New

York.

Buford, J., Kumar, R., & Perkins, G. (2006). Composition Trust Bindings in Pervasive Computing

Service Composition. Proceedings of the 4th IEEE International Conference on Pervasive

Computing and Communications Workshops, Washington DC: IEEE Computer Society.

Caporuscio, M., Raverdy, P.-G. & Issarny, V. (2009). ubiSOAP: A Service Oriented Middleware for

Ubiquitous Networking. Journal of Transactions on Service Computing. To appear.

Chantzara, M., Anagnostou, M. & Sykas, E. (2006). Designing a Quality-Aware Discovery Mechanism

for Acquiring Context Information. Proceedings of the 20
th

 International Conference on Advanced

Information Networking and Applications, 1(6), AINA’06. Washington DC: IEEE Computer

Society.

Davidyuk, O., Sánchez, I., Duran, J. I. & Riekki, J. (2008a). Autonomic Composition of Ubiquitous

Multimedia Applications in REACHES. Proceedings of the 7th International ACM Conference on

Mobile and Ubiquitous Multimedia, MUM’08 (pp. 105-108). New York, NY: ACM.

Davidyuk, O., Sánchez, I., Duran, J. I. & Riekki, J. (2009). CADEAU: Collecting and Delivering

Multimedia Information in Ubiquitous Environments. In Kamei K. (Ed.) Adjunct Proceedings of

the 7
th

 International Conference on Pervasive Computing PERVASIVE’09 (pp. 283-287).

Davidyuk, O., Selek, I., Duran, J. I. & Riekki, J. (2008b). Algorithms for Composing Pervasive

Applications, International Journal of Software Engineering and Its Applications, 2 (2), 71-94.

19

Georgantas, N., Issarny, V., Ben Mokhtar, S., Bromberg, Y.-D., Bianco, S., Thomson, G., Raverdy, P.-G.,

Urbieta, A. & Speicys Cardoso, R. (2009). Middleware Architecture for Ambient Intelligence in

the Networked Home. In Nakashima, H., Augusto, J. C. & Aghajan, H. (Eds.), Handbook of

Ambient Intelligence and Smart Environments. Springer. To appear.

Halevy, A. (2005). Why Your Data Wont Mix. ACM Queue 3(8), 50-58.

Handte, M., Herrmann, K., Schiele, G. & Becker, C. (2007). Supporting Pluggable Configuration

Algorithms in PCOM. Proceedings of International Workshop on Pervasive Computing and

Communications (pp. 472-476).

Hardian, B., Indulska, J. & Henricksen, K. (2008). Exposing Contextual Information for Balancing

Software Autonomy and User Control in Context-Aware Systems, Proceedings of the Workshop

on Context-Aware Pervasive Communities: Infrastructures, Services and Applications CAPC’08.

(Sydney, May, 2008).

Hesselman, C., Tokmakoff, A., Pawar, P. & Iacob, S. (2006). Discovery and Composition of Services for

Context-Aware Systems. Proceedings of the 1
st
 IEEE European Conference on Smart Sensing and

Context (pp. 67-81). Berlin: Springer-Verlag.

Jianqi, Y. & Lalanda, P. (2008). Integrating UPnP in a Development Environment for Service-Oriented

Applications. Proceedings of the IEEE International Conference on Industrial Technology

ICIT'08, (pp. 1-5).

Lee, Y., Chun, S. & Geller, J. (2004). Web-Based Semantic Pervasive Computing Services. Proceedings

of the IEEE Intelligent Informatics Bulletin, 4(2).

Kalasapur, S., Kumar, M. & Shirazi, B.A. (2005). Personalized Service Composition for Ubiquitous

Multimedia Delivery. Proceedings of the 6th IEEE International Symposium on a World of

Wireless Mobile and Multimedia Networks WoWMoM'05 (pp. 258-263), Washington, DC: IEEE

Computer Society.

Kawsar, F., Nakajima, T. and Fujinami, K. (2008). Deploy Spontaneously: Supporting End-Users in

Building and Enhancing a Smart Home. Proceedings of the 6th International Conference on

Ubiquitous Computing, UbiComp'08 (pp. 282-291). Vol. 344. New York, NY: ACM.

Masuoka, R., Parsia, B. & Labrou, Y. (2003). Task Computing - the Semantic Web meets Pervasive

Computing. In Fensel D. et al (Eds.) Proceedings of the 2
nd

 International Semantic Web

Conference ISWC’03 (pp. 866-881), Lecture Notes In Computer Science, Vol. 2870. Berlin,

Heidelberg: Springer-Verlag.

Mavrommati, I. & Darzentas, J. (2007). End User Tools for Ambient Intelligence Environments: An

Overview. In Jacko J. (Ed.) Human-Computer Interaction Part II (pp. 864-872). Springer-Verlag

Berlin Heidelberg.

Mavrommati, I. & Kameas, A. (2003). End-User Programming Tools in Ubiquitous Computing

Applications. In Stephanidis C. (Ed.), Proceedings of International Conference on Human-

Computer Interaction (pp. 864-872). London, UK: Lawrence Erlbaum Associates.

Messer, A., Kunjithapatham, A., Sheshagiri, M., Song, H., Kumar, P., Nguyen, P. & Yi, K.H. (2006).

InterPlay: A Middleware for Seamless Device Integration and Task Orchestration in a Networked

Home. Proceedings of the Annual IEEE International Conference on Pervasive Computing

PerCom'06 (pp. 296-307), Washington DC: IEEE Computer Society.

Ben Mokhtar, S. (2007). Semantic Middleware for Service-Oriented Pervasive Computing. Doctoral

dissertation, University of Paris 6, Paris, France.

Ben Mokhtar, S., Georgantas, N. & Issarny, V. (2007). COCOA: COnversation-based Service

Composition in PervAsive Computing Environments with QoS Support. Journal of Systems and

Software, 80(12), 1941-1955.

Ben Mokhtar, S., Raverdy P.-G., Urbieta, A. & Speicys Cardoso, R. (2008). Interoperable Semantic and

Syntactic Service Matching for Ambient Computing Environments. Proceedings of the 1st

International Workshop on Ad-hoc Ambient Computing, France.

Nakano, Y., Takemoto, M., Yamato, Y. & Sunaga, H. (2006). Effective Web-Service Creation

Mechanism for Ubiquitous Service Oriented Architecture. Proceedings of the 8th IEEE

International Conference on E-Commerce Technology and the 3
rd

 IEEE International Conference

on Enterprise Computing, E-Commerce, and E-Services CEC/EEE'06 (p. 85). Washington DC:

IEEE Computer Society.

20

Nakazawa, J., Yura, J. & Tokuda, H. (2004). Galaxy: a Service Shaping Approach for Addressing the

Hidden Service Problem. Proceedings of the 2
nd

 IEEE Workshop on Software Technologies for

Future Embedded and Ubiquitous Systems (pp. 35-39).

Nokia. (2009). Point&Find API for mobile phones. Retrieved on November 16, 2009, from

http://pointandfind.nokia.com

Paluska, J. M., Pham, H., Saif, U., Chau, G., Terman, C. & Ward, S. (2008). Structured decomposition of

adaptive applications. International Journal of Pervasive and Mobile Computing, 4(6), 791-806.

PLASTIC. (2009). Project's web site. Retrieved on November 16, 2009, from http://www-

c.inria.fr/plastic/the-plastic-middleware

Preuveneers, D. & Berbers, Y. (2005a). Automated Context-Driven Composition of Pervasive Services to

Alleviate Non-Functional Concerns. International Journal of Computing and Information

Sciences, 3(2), 19-28.

Preuveneers, D. & Berbers, Y. (2005b). Semantic and Syntactic Modeling of Component-Based Services

for Context-Aware Pervasive Systems Using OWL-S. Proceedings of the 1
st
 International

Workshop on Managing Context Information in Mobile and Pervasive Environments (pp. 30-39).

Takemoto, M., Oh-ishi, T., Iwata, T., Yamato, Y., Tanaka, Y., Shinno, K., Tokumoto, S. & Shimamoto,

N. (2004). A Service-Composition and Service-Emergence Framework for Ubiquitous-Computing

Environments. Proceedings of International Symposium on Applications and the Internet,

SAINT’04-W (pp. 313-318). Washington DC: IEEE Computer Society.

Ranganathan A. & Campbell, R. H. (2004). Pervasive Autonomic Computing Based on Planning.

Proceedings of the IEEE International Conference on Autonomic Computing ICAC’04 (pp. 80-

87), Washington, DC: IEEE Computer Society.

Raverdy, P.-G., Issarny, V., Chibout, R. & de La Chapelle, A. (2006). A Multi-Protocol Approach to

Service Discovery and Access in Pervasive Environments. Proceedings the 3
rd

 Annual

International Conference on Mobile and Ubiquitous Systems: Networks and Services

MOBIQUITOUS'06 (pp. 1-9), Washington DC: IEEE Computer Society.

Riekki, J. (2007). RFID and Smart Spaces. International Journal of Internet Protocol Technology, 2(3-4),

143-152.

Rigole, P., Vandervelpen, C., Luyten, K., Berbers, Y., Vandewoude, Y. & Coninx, K. (2005). A

Component-Based Infrastructure for Pervasive User Interaction. Proceedings of the International

Conference on Software Techniques for Embedded and Pervasive Systems (pp. 1-16).

Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., Mamelli, A. & Scholz, U.

(2009). MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-Oriented

Environments. In Cheng, B. H. et al (Eds.) Software Engineering For Self-Adaptive Systems (pp.

164-182), Lecture Notes In Computer Science, Vol. 5525. Berlin, Heidelberg: Springer-Verlag.

Rouvoy, R., Eliassen, F., Floch, J., Hallsteinsen, S. & Stav, E. (2008). Composing Components and

Services Using a Planning-Based Adaptation Middleware. Proceedings of the 7
th

 Symposium on

Software Composition SC'08 (pp. 52-67).

Saif U., Pham, H., Paluska, J.M., Waterman, J., Terman, C. & Ward, S. (2003). A Case for Goal-oriented

Programming Semantics. Proceedings of the System Support for Ubiquitous Computing Workshop

at Ubicomp’03.

Sánchez, I., Cortés, M. & Riekki, J. (2007). Controlling Multimedia Players using NFC Enabled mobile

phones. Proceedings of the 6
th

 International Conference on Mobile and Ubiquitous Multimedia

MUM'07, Vol. 284. (pp.118-124). New York, NY: ACM.

Siebert, J., Cao, J., Zhou, Y., Wang, M. & Raychoudhury, V. (2007). Universal Adaptor: A Novel

Approach to Supporting Multi-Protocol Service Discovery in Pervasive Computing. In Kuo T.-W.

et al (Eds.), Proceedings of the International Conference on Embedded and Ubiquitous Computing

EUC'07 (pp. 683-693), Lecture Notes In Computer Science, Vol. 4808. Berlin, Heidelberg:

Springer-Verlag.

Sousa, J. P., Poladian, V., Garlan, D., Schmerl, B. & Shaw, M. (2006). Task-Based Adaptation for

Ubiquitous Computing, (Tech. Rep.). Pittsburgh, PA: Carnegie Mellon University, School of

Computer Science.

21

Sousa, J. P., Schmerl, B., Steenkiste, P. & Garlan, D. (2008a). Activity-Oriented Computing, In

Mostefaoui, S., Maamar, Z. & Giaglis, G. M. (Eds.), Advances in Ubiquitous Computing: Future

Paradigms and Directions (pp. 280-315). Hershey, PA: IGI Publishing.

Sousa, J. P., Schmerl, B., Steenkiste, P. & Garlan, D. (2008b). uDesign: End-User Design Applied to

Monitoring and Control Applications for Smart Spaces. Proceedings of the 7
th

 IEEE/IFIP

Conference on Software Architecture (pp. 72-80). Washington, DC: IEEE Computer Society.

Vastenburg, M., Keyson, D. & de Ridder, H. (2007). Measuring User Experiences of Prototypical

Autonomous Products in a Simulated Home Environment, International Journal of Human

Computer Interaction, (2), 998-1007.

Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265(3), 94-104.

Wisner P. & Kalofonos D.N. (2007). A Framework for End-User Programming of Smart Homes Using

Mobile Devices. Proceedings of the 4
th

 IEEE Consumer Communications and Networking

Conference CCNC'07 (pp. 716-721), Washington DC: IEEE Computer Society.

Yang, Y., Mahon, F., Williams. M.H. & Pfeifer, T. (2006). Context-Aware Dynamic Personalized

Service Re-composition in a Pervasive Service Environment. In Ma J. et al (Eds.) Proceedings of

the 3rd International Conference on Ubiquitous Intelligence and Computing UIC'06 (pp. 724-

735). Berlin, Heidelberg: Springer-Verlag.

22

Authors

Oleg Davidyuk received his MSc degree in Information Technology

from Lappeenranta University of Technology, Finland, in 2004. He is

currently working towards his PhD degree in MediaTeam Oulu Research

Group in University of Oulu, Finland. His research interests include

application and service composition, user interaction design, middleware

and ubiquitous computing. Oleg's publications can be found at

www.mediateam.oulu.fi/publications/?search=davidyuk.

Nikolaos Georgantas received his Ph.D. in 2001 in Electrical and

Computer Engineering from the National Technical University of Athens.

He is currently a researcher at INRIA with the ARLES research project-

team. His research interests relate to distributed systems, middleware,

ubiquitous computing systems and service and network architectures for

telecommunication systems. He is or has been involved in a number of

European projects and several industrial collaborations.

Valérie Issarny got her PhD and "Habilitation à diriger des recherches"

in computer science from the University of Rennes I, France, in 1991 and

1997 respectively. She currently holds a "Directeur de recherche" position

at INRIA. Since 2002, she is the head of the INRIA ARLES research

project-team at INRIA-Rocquencourt. Her research interests relate to

distributed systems, software engineering, mobile wireless systems,

middleware and ubiquitous computing. Further information about Valérie's

research interests and her publications can be obtained from http://www-

rocq.inria.fr/arles/members/issarny.html.

Jukka Riekki is professor at the University of Oulu, in the Department

of Electrical and Information Engineering. He leads together with his

colleague the Intelligent Systems Group. His main research interests are in

context-aware systems serving people in their everyday environment.

Currently he studies in several projects physical user interfaces, context

recognition, and service composition. In these projects he cooperates with

research groups from China, Japan, and Sweden. He is a member of IEEE.

