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Abstract

Virtual screening is becoming an important tool for drug discovery. However, the application of
virtual screening has been limited by the lack of accurate scoring functions. Here, we present a novel
scoring function, MedusaScore, for evaluating protein-ligand binding. MedusaScore is based on
models of physical interactions that include van der Waals, solvation and hydrogen bonding energies.
To ensure the best transferability of the scoring function, we do not use any protein-ligand
experimental data for parameter training. We then test the MedusaScore for docking decoy
recognition and binding affinity prediction and find superior performance compared to other widely
used scoring functions. Statistical analysis indicates that one source of inaccuracy of MedusaScore
may arise from the unaccounted entropic loss upon ligand binding, which suggests avenues of
approach for further MedusaScore improvement.

Introduction

The current rate of emerging new pharmaceutical targets outpaces that of new drug leads1,
posing a significant challenge for drug discovery. Traditional trial-and-error approach to drug
discovery represents a substantial challenge due to the enormous dimensionality of the
chemical space. Structure-based drug design is a promising approach of rational drug
discovery, which takes advantage of the increasing amount of solved three-dimensional
structures of target proteins2. By computational modeling of the target binding site, a ligand
can be constructed de novo3 or via screening over a large database of millions of chemical
compounds (virtual screening)4, 5. In a typical virtual screening workflow, a library of small
molecules are first computationally docked to the target protein, and then ranked according to
the predicted binding affinity. A scoring function is used throughout the process to (a) recognize
the correct binding pose out of hundreds of computer-generated docking models (decoys), and
to (b) predict the binding affinity for each molecule.

Docking algorithms have undergone substantial developments over the last two decades4,
6-12. Early attempts treated receptors and ligands as rigid bodies and docking was only based
on molecular surface matching13. Docking programs nowadays not only allow full flexibility
of the ligands but also partially treat receptors as flexible objects. However, how to
systematically treat protein flexibility and ligand-induced protein conformational changes
remains a considerable challenge in the further development of docking algorithms4. Despite
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the progress in docking methodologies, recent studies have shown that scoring functions are
becoming a bottleneck in structure-based virtual screening14-16. Benchmark studies have
found that in many cases, docking programs can generate native-like docking poses, but these
are often missed at the scoring stage. Moreover, the binding scores predicted by the scoring
functions may exhibit poor correlation with the actual binding affinity, resulting in a large
percentage of false positives in the “hit list”16.

Although several types of traditional scoring functions exist, all of them have major limitations.
Physical force field-based approaches aim to describe protein-ligand interactions using
elementary physical interactions. Combined with molecular dynamics (MD) and free energy
perturbation (FEP) techniques17, 18, the binding affinity can be reproduced to within an
accuracy of 1 kcal/mol19, 20. However, such approaches often involve intensive computation,
especially in connection with the explicit solvent used to describe desolvation effects and
hydrogen bonding. Because of the sampling insufficiency, such approaches are often limited
to structurally similar targets and ligands. These speed and sampling limitations undermine the
application of the physical force field-based scoring functions in virtual screening of vast
molecular libraries. Alternatively, empirical and knowledge-based scoring functions7, 21-27

circumvent the speed and sampling problems by dissecting the protein-ligand interaction into
statistical or empirical “potentials”28. Such approaches however rely on parameter training
using known protein-ligand binding structures or binding affinity measurements or both. Due
to the limited size of the training set, the resulting scoring functions can be to too specialized
(over-trained), thus have low transferability to targets and ligands that are structurally distinct
from those in the training set 29.

To eliminate these limitations, we report a novel scoring function MedusaScore for evaluating
protein-ligand binding. MedusaScore describes the protein-ligand binding using physical
interaction model. MedusaScore includes an explicit hydrogen-bonding model 30 and EEF1
pairwise implicit solvent model31, which allows accurate modeling of the hydrogen-bonding
and desolvation effect without large-scale MD simulations. Additionally, unlike other
statistical and empirical scoring functions, MedusaScore does not depend on any specific
parameter training on protein-ligand datasets, thereby maintaining the transferability over a
wide range of potential drug candidates in the chemical space.

We test the performance of MedusaScore for docking decoy recognition and binding affinity
prediction. Using the docking decoys datasets generated by Wang et al.14, we find that the
recognition success rate for docking decoys is 82%, higher than that of 11 other scoring
functions that are currently widely used in virtual screening, including LigScore, PLP7,
PMF24, LUDI21, F-Score8, G-Score9, D-Score11, ChemScore22, Autodock10,
DrugScore25, and X-Score26. The success rate can be further improved to 85% by consensus
scoring with DrugScore25. Using the PDBBind 2005 dataset 32 for the binding affinity
prediction, we find that the MedusaScore showed a correlation coefficient of 0.60 and 0.61 for
the core set and refined set (See Methods), respectively. This correlation is higher than what
has been reported for 14 other scoring function using the same database15. Statistical analysis
suggests that the entropic contribution may be the key component for further improvement of
the accuracy of the binding affinity prediction.

Methods

Medusa force field

The Medusa force field33 is a weighted sum of six energy terms:
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where Evdw_attr, Evdw_rep are the attractive and repulsive part of the van der Waals (VDW)
interaction; Esolv is the solvation energy; Ebb_hbond, Esc_hbond and Ebb_sc_hbond are the hydrogen
bond energies formed between backbone atoms, between side chains, and between backbone
and side chains, respectively. The design of the force field is similar to that of the Rosetta force
field34, which has also been widely used in protein folding and design. The VDW interaction
model and parameters are adapted from CHARMM1935. The solvation model is the EEF1
implicit solvent model proposed by Lazaridis and Karplus31. We use the hydrogen bonding
model proposed by Kortemme and Baker36. When evaluating the non-bonded interactions, we
use a cutoff distance of 9.0 Å. The van der Waals repulsion (VDWR) potentials are
implemented with linear extrapolation to dampen the fast increase of the potential as:

Here, rij is the distance between two atoms i and j. The energy parameters ε, σ are taken from
the CHARMM19 force field of united atoms35. Since the energy terms originate from different
sources, a set of weighting parameters is assigned in order to balance their respective
contributions. These weighting coefficients are trained to recapitulate the native amino acid
sequence of 38 high-resolution crystal structures33. The force field and the coefficients have
been tested in various studies including experimental validations33,37-40

New atom types and parameterizations

The original Medusa force field was designed to model atoms types occurring in proteins. Thus,
to model small molecules for virtual screening, we extend the number of atom types as follows:

1. For chemical groups that already exist in proteins, we keep the same atom types and
parameters.

2. For new chemical groups, we define atom types based on (i) element types and
hybridization, (ii) nearest-neighbor heavy atoms types, and (iii) second-nearest
neighbor heavy atoms if they are charged. For the charged groups, we only consider
carboxyl, phosphate and sulfone groups in current implementation.

Overall, we define 23 new atoms type in addition to the 38 existing atom types (Supplementary
Table S1).

The VDW parameters are assigned according to atom sizes. For oxygen atoms, the VDW
parameters are assigned the same as that of OC atom type in EEF1 31, if they are charged, and
same as OH, if they are not charged. The VDW parameters for nitrogen and sulfur atom types
are the same as those used in CHARM1935. The VDW parameters for P, F, Cl, Br and I are
taken for Tripos TAFF force field. There are no new types for carbon atoms.

The extension of hydrogen bonding parameters is not needed since the parameterization of the
model only depends on the hybridization types, on the explicit bond coordinates and on whether
the hydrogen bonding is related to backbone36. When applying the model, we treat all ligand
atoms as protein side chain atoms, since usually there are no secondary structure constraints
for ligand molecules.

There are two key parameters to extend in the EEF1 model: (1) the total solvation energy of
the fully solvated atom ΔGfree and (2) the solvent volume V the atoms excludes31. The volume

Yin et al. Page 3

J Chem Inf Model. Author manuscript; available in PMC 2009 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



parameters are assigned by considering the full volume of the atom and subtracting the overlap
with neighboring bonded heavy atoms. The original ΔGfree parameters are taken from
experimental solvation free energy measurements31. Since such measurements are not
available for most small molecules, we assign these values according to their polarities.
Following the original EEF1 model, we assign a large ΔGfree value of -20 kcal/mol for all
charged groups. For other polar atoms, we use a linear relationship between the known partial
charge and ΔGfree to assign the new ΔGfree values.

We use the same weights WX as the original Medusa force field. Therefore, there is no additional
training involved in force field parameters for developing the MedusaScore. The force field
parameters are listed in Supplementary Table S1.

Scoring protocol

The scores are obtained from calculating the binding energy between the protein and the ligand
using the extended Medusa force field. The protein coordinates are provided in a Protein
DataBank (PDB) format and the small molecule coordinates in SYBYL mol2 format.
Hydrogen atoms are required in the mol2 file to enable hybridization type assignment. All non-
polar hydrogen atoms are ignored in the protein input file since we use united-atom model. All
polar hydrogen atoms are first reconstructed based on geometric bond constraints at
physiological pH. Subsequently, the alternative positions of the rotatable polar hydrogen atoms
are searched to optimize the protein-ligand hydrogen binding. To save computational time, the
optimization is performed only for residues that are within 4 Å of the binding interface. All
the hydrogen atoms in ligands are kept fixed during the optimization.

The computer program for MedusaScore is written in C++ and the simulation is performed on
an Intel P4 2.4G Hz workstation running Gentoo Linux. The typical CPU time needed for the
evaluation of a single protein-ligand complex is 0.11 s, of which 0.10 s is spent on parsing the
input files.

Datasets

To benchmark our force field and scoring protocol, we use publicly available datasets that have
been previously used to benchmark other scoring functions. This choice of a third party dataset
allows comparison of MedusaScore with other scoring functions in an unbiased way. For
discerning docking decoys, we use the dataset generated by Wang et al.14, which has been
used to compare docking accuracy for 11 scoring functions, including LigScore, PLP, PMF,
LUDI, F-Score, G-Score, D-Score, ChemScore, Autodock, DrugScore and X-Score. For
scoring, we use the protein pocket model in PDB format and the ligand coordinates in mol2
format.

For binding affinity prediction, we use the PDBBind database32 (version 2005), which contains
1296 high quality complex structures (the refined set) and a subset of 288 non-redundant
complexes (the core set). The latter contains structurally unrelated targets and ligands, and thus
is more challenging for scoring function testing. Since our current force field does not take
metal atoms into account, we eliminate all complexes that contain metal atoms within 4 Å of
the ligand molecules (219 complexes total, Zn atoms in the carbonic anhydrase represent about
one half of all cases). We also exclude complexes where a third molecule (mostly phosphate
and sulfate) is bound to the same pocket, which corresponds to 16 complexes in the dataset.
Finally, there are 4 complexes (PDB ID: 1duv, 1nw5, 1r6n, 2adm) containing atom types not
modeled in the current force field implementation, which are also eliminated. After this filtering
step, our dataset for benchmarking binding affinity prediction consists of 1057 complexes in
the refined set and 243 complexes in the core set.
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Results and Discussion

Docking decoy recognition

We apply the MedusaScore for the docking decoys of 100 protein-ligand complexes compiled
by Wang et al14. Following the same criterion used by the authors14, we define a successful
recognition when the best scoring (lowest binding energy) ligand decoy has a root-mean-square
deviation (RMSD) less than 2 Å from the crystal structure ( the RMSD is calculated only for
ligand coordinates). We find that MedusaScore successfully recognizes the native-like poses
for 82 of the entire 100 complexes, i.e., the success rate of MedusaScore is 82 %. This success
rate is higher than that for eleven other scoring functions studied by Wang et al.14 (see Table
1). The success rates of these scoring functions vary from 26 % (DSCORE) to 76 % (PLP).
Interestingly, the force field-based scoring functions generally feature lower success rates than
the other types of functions (see Table 1). The inclusion of EEF1 solvation model and the
explicit hydrogen bond model is likely to contribute to the improved accuracy of the
MedusaScore. An example of using MedusaScore in docking decoy recognition is shown in
Figure 1 for a thermolysin inhibitor (PDB ID: 1tlp). From the 100 docking decoys generate
using Autodock, MedusaScore correctly recognizes the native-pose while all other 11 scoring
functions mistakenly picked non-native-like poses (RMSD > 6Å)

We further test the consensus scoring using MedusaScore and the other 11 scoring functions.
We use a “rank-by-rank” strategy41, where the ranking of the decoys using both MedusaScore
and other scoring functions are calculated and the decoy with the highest average rank is
selected as the best scoring decoy. We find that consensus score with MedusaScore improves
the decoy recognition rate for almost all other scoring functions except LIGSCORE, where the
consensus scoring with MedusaScore has the same success rate as that of LIGSCORE alone.

On the other hand, we find that in most cases, consensus scoring decreases MedusaScore
performance. The only exception is when MedusaScore is combined with PLP or DrugScore
where the success rates are 83 % and 85 %, respectively. These success rates are higher than
using MedusaScore alone (82 %). We attribute this improvement to the fact that PLP and
DrugScore have significantly different energy potentials from ours. For example, DrugScore’s
energy function comprises of distance-dependent pairwise statistical potential and solvent-
accessible surface dependent potential. None of these two potentials overlaps with the energy
terms of MedusaScore. Due to these differences in the force field construction, some energy
contributions that are ignored in MedusaScore may be realized in PLP or DurgeScore, thereby
improving the accuracy. Another important fact is that both PLP and DurgScore also feature
relatively high success rates. The MedusaScore is less likely to improve by consensus scoring
with scoring functions that exhibit low recognition accuracies themselves. We also find that
consensus scorings of MedusaScore with other force field-based scoring functions in general
have lower success rates (Table 1). This observation likewise can be attributed to lacking of
complementarity between MedusaScore and other force field-based scoring functions.

Consensus using 3 scoring functions does not further improve the success rate. We find the
highest consensus scorings have success rate of 85 %, which are achieved from consensus
score using MedusaScore, DurgScore and one of the third scoring functions (FSCORE, LUDI,
or HMSScore, which is a scoring protocol from X-Score). Therefore, the consensus accuracy
seems to be ultimately limited by the inherent inaccuracy of the individual scoring functions
and no extra improvement can be obtained by further combination of the scoring functions.

Binding Affinity Prediction

Using the PDBBind database, we test the binding affinity prediction accuracy of MedusaScore.
The correlation coefficient between the MedusaScore and experimental dissociation constant
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(pKd) is 0.55 for the refined set and 0.56 for the core set. If we exclude the repulsive part of
the van der Waals energies (VDWR) from the total score, the correlation improves to 0.61 and
0.60 for the refined set and core set, respectively (Figure 2). Similar observations have been
reported in earlier studies12. This improved correlation by excluding VDWR may be due to
clashes in some of the complex structures in the PDBBind 2005 datase. Besides subtracting
the van der Waals repulsion directly, energy minimization of the complex structures should
have the same effect. For simplicity, in the following analysis we only use the VDWR excluded
MedusaScore.

Benchmarking studies have been reported15 on an earlier version of PDBBind database
(version 2002) for 14 scoring function including X-Score26, DrugScore25, D-Score11, PMF-
Score24, G-Score9, ChemScore22, F-Score8, LigScore, PLP7, PMF24, LUDI21,
GoldScore9, and HINT42. The highest correlation coefficient is 0.566 using X-Score, lower
than what we obtained using MedusaScore, albeit with a newer PDBBind database (version
2005)32. To make a more objective comparison, we also calculate the MedusaScore using the
2002 version of the PDBBind Database. Similarly, we also exclude the complexes with metal
or other heterogeneous atoms near the binding pocket. This procedure eliminates 181 out of
the 800 complexes in the refined set. Using the VDWR-excluded scoring protocol, we find a
correlation of 0.63 between the MedusaScore and the experimental binding affinity. This
prediction accuracy is also significantly higher than that of the other 14 scoring functions that
have been tested on the same dataset.

Although we do not use any binding affinity data for parameter training, MedusaScore still
predicts the experimental values with reasonable accuracy. The robust performance over the
various datasets suggests that MedusaScore likely grasps the crucial energetic component of
protein-ligand binding. Since there is no training involved, MedusaScore should be applicable
to a wide range of targets and ligands beyond those that have been tested in this study.

Size dependence

We further examine if the performance of MedusaScore depends on the ligand size. It has been
reported that scoring functions tend to predict higher binding affinity for larger ligands, due to
the inherent “stickiness” of the molecules43. To avoid any bias in the data analysis, we use the
core set (See Methods) because it contains diverse structures. We divide the core set into three
subsets, based on total number of heavy atoms (n) of the ligand molecule. The small, medium
and large ligand size subsets correspond to 6≤n≤19, 20≤n≤29 and 30≤n≤70 respectively, and
contain 83, 82 and 78 complexes, respectively. We find that for the subset of small ligands,
our scoring function features the best correlation with experimental data — the Pearson
correlation coefficient is 0.63, higher than the average correlation over the whole dataset
(Figure 3). The correlation decreases for larger ligands — the correlation coefficients for the
medium and large ligands are 0.52 and 0.37, respectively, lower than the average over the
whole dataset. In general, our observations agree with the previously described tendency of
larger molecules to have lower scores43.

When we divide the dataset according to the number of heavy atoms of the ligand that are in
contact with the protein (nc), we find a better correlation between MedusaScore estimates and
the experimental data. The three subsets, defined by 1≤nc≤6, 7≤nc≤9 and 10≤nc≤25, contain
88, 72 and 83 protein-ligand complexes, respectively. The contact is defined when the ligand
atom is within 3.5 Å of any protein heavy atom. We find that our scoring function is most
accurate for the subset with the least contact atoms (1≤nc≤6), for which the correlation
coefficient is 0.74. The correlation decreases to 0.57 and 0.42 for the subsets of 7≤nc≤9 and
10≤nc≤25, respectively. Similarly to the previous case, we observe systematic overestimation
of the binding affinity for ligands with larger nc.
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Clearly MedusaScore can be utilized more confidently for smaller-sized ligands or ligands with
a smaller number of contacts with proteins. This is partly due to the inaccuracies in the force
field, which tend to accumulate with the increase of the ligand size or the number of contacts
with the proteins. However, these force field inaccuracies alone cannot explain the systematic
overestimation of binding affinities for ligands with larger n or nc The experimental binding
affinities have less significant dependence on n or nc as shown in Figures 3 and 4, because the
favorable binding enthalpies for larger molecules are often compensated by the larger entropic
loss upon binding44. This enthalpy-entropy compensation effects are not considered in
MedusaScore, which explains the over-estimation of binding affinity.

It has been suggested that entropic contribution may play an important role in ligand binding
and that entropic contribution can be as large as the enthalpy45, and therefore may need to be
properly evaluated to achieve a better accuracy in protein-ligand binding scoring. Furthermore,
close contacts introduce significant fluctuations in the total energy due to the sensitivity/
volatility of the VDWR energy term. These factors might be important for further MedusaScore
improvement.

VDWR Terms and Energy Minimization

We have shown that excluding the VDWR term from MedusaScore in general results in slightly
improved binding affinity prediction. We further test whether this observation is due to clashes
in the molecular complexes and whether energy minimization can improve the prediction
accuracy. We examine the VDWR energies in the core set and find that there are five complexes
having exceptionally large VDWR energies (> 25 kcal/mol), compared with the rest having an
average VDWR energy of 4.7 kcal/mol and a standard deviation of 8.9 kcal/mol. After
excluding these outliers from the core set, the correlation coefficient between the MedusaScore
prediction (with all energy terms) and experimental binding affinity is 0.59. Further removal
of the VDWR term only marginally improves the correlation to 0.60. We attempt to minimize
the structures by allowing local rigid body movement of the ligand and side chain movement
of the protein. Such relaxation reduces VDWR energies in general (by ∼3-6 kcal/mol, see
Supplementary Table S2), but fails to reduce the high VDWR energies for the outliners
effectively. As a result, the overall correlation is not improved after the minimization.

Therefore, our results demonstrate that without performing explicit minimization, removing
the VDWR term, in fact, makes the scoring function more robust to structure imperfections.
This strategy might be necessary for virtual screening because it saves costly computational
time for structure minimizations. Unphysically close atom contacts in the complex structures
can be detected by applying a quick atomic distance filter before using the scoring function.

Comparison with RosettaLigand

It is interesting to compare the performance of MedusaScore with the scoring function of
RosettaLigand12 since the underling force fields behind the two scoring functions have similar
energy terms. To our best knowledge, the only published benchmark results for RosettaLigand
are in the original publication12, where the RosettaLigand’s scoring function was used for
binding affinity prediction on LPDB database46. The authors found a correlation of 0.63
between the experimental and predicted binding affinities.

In order to compare the performance of MedusaScore with RosettaLigand, we test the
performance of MedusaScore using the LPDB database. The current LPDB database contains
262 complexes. Following the same protocol as described in Methods, we eliminate complexes
with unsupported atom types or having metal and other additional hetero molecules near the
binding interface. After the preprocessing, we obtain 196 complexes for benchmarking.
Applying MedusaScore on this dataset results in correlations of 0.63 and 0.64 with and without
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the VDWR term, respectively. These correlations are comparable with the previously published
results from RosettaLigand12.

Although RosettaLigand and MedusaScore features similar accuracy in terms of binding
affinity prediction, there are several notable differences between the two scoring functions: (1)
RosettaLigand uses Tripos mol2 based atom types for ligands, while MedusaScore uses
extension of CHARMM19 atom types. (2) The weighing coefficients have been retrained in
RosettaLigands using 100 protein-ligand structures12, while we do not retrain any weighing
coefficient in MedusaScore.

Conclusion

We have developed a scoring function for protein-ligand interaction by extending the Medusa
force field and design suite. Benchmarking using available datasets show superior performance
of the MedusaScore for both docking decoy recognition and binding affinity prediction. Since
the MedusaScore does not rely on parameter training using protein-ligand binding data, it is
transferable to targets and small molecules beyond the tested datasets. Therefore, we expect
the MedusaScore to have wide application in virtual screening of novel small molecule drug
candidates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. An example of docking decoy recognition using MedusaScore

The native docking pose (ball-and-stick) for a inhibitor against thermolysin protein (PDB ID:
1tlp) is correctly recognized using MedusaScore from the 100 docking decoys (gray lines)
generate by Wang et al. 14 using Autodock10.
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Figure 2. Scatter plot of the MedusaScore predictions (without VDWR) vs. the experimental
dissociation constant pKd for the refined set

The Pearson correlation coefficient is 0.61. The solid line corresponds to a linear regression
fit (y = 4.18x - 3.59).
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Figure 3. Scatter plot of the MedusaScore vs. the experimental dissociation constant pKd for the
core set, categorized based on the number of heavy atoms in the ligand (n)

The prediction accuracy is higher (r = 0.63) for small ligands, than for medium and large sized
ligands.
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Figure 4. Scatter plot of the MedusaScore vs. the experimental dissociation constant pKd for the
core set, categorized based on the number of ligand heavy atoms in contact with protein (n

c
)

We define a contact when a ligand heavy atom is within 3.5 Å of any protein heavy atom. The
prediction accuracy is higher (r = 0.74) for ligands with fewer contacts with the proteins than
for those with more extensive contact.
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Table 1

Success rates of MedusaScore and other 11 scoring functions for docking decoy recognition

The scoring functions are tested on docking decoy dataset consisting of 100 complexes14. The success rate is defined
when the best scoring decoy ligand has RMSD less than 2 Å from the crystal structure. The MedusaScore has the
highest success rate of all the tested functions (82 %). Consensus scoring with the MedusaScore improves other scoring
functions. The combination of the MedusaScore with PLP or with the DrugScore gives a success rate of 83 % and 85
%, respectively (highlighted by the bold font), higher than the MedusaScore alone.

Scoring function Success rate

Type Name
Single

Scoring
Consensus

with Medusa

Force field

MedusaScore 82 -

Autodock 61 71

GScore 42 74

DScore 26 72

Empirical

PLP 76 83

FScore 74 79

LigScore 74 74

LUDI 67 82

X-Score 65 78

ChemScore 35 60

Statistical
potential

DrugScore 71 85

PMF 52 70
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