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Abstract. Design of distributed architectures for content-based publish-
subscribe (pub-sub) service networks has been a challenging problem. To best 
support the highly dynamic and diversified content-based pub-sub communica-
tion, we propose a new architectural design called MEDYM - Match-Early with 
DYnamic Multicast. MEDYM follows the End-to-End distributed system de-
sign principle. It decouples a pub-sub service into two functionalities: complex, 
application-specific matching at network edge, and simple, generic multicast 
routing in the network. This architecture achieves low computation cost in 
event matching and high network efficiency and flexibility in event routing. For 
higher scalability, we describe a novel approach to extend MEDYM to a hierar-
chy structure called H-MEDYM, which effectively balances the trade-off be-
tween event delivery efficiency and server states maintenance. We evaluate 
MEDYM and H-MEDYM using detailed simulations and real-world experi-
ments, and compare them with major existing design approaches. Results show 
that MEDYM and H-MEDYM achieve high event delivery efficiency and system 
scalability, and their advantages are most prominent when user subscriptions are 
highly selective and diversified. 

Keywords: Content-based publish-subscribe network, multicast. 

1   Introduction  

Content-based publish-subscribe (pub-sub for short) is an important paradigm for 
asynchronous communication among entities in a distributed network. In such sys-
tems, users subscribe to future events that are of their interest by specifying complex 
conditions on event content, and are notified when events satisfying the conditions are 
published into the system. For example, a user who subscribes to stock ticker events 
with condition “PriceChange > 10% AND Volume > 100m” is notified when a stock 
has price movement of above 10% or transaction volume of more than 100 million 
shares. Such timely delivery of customized information is of great value to many 
distributed applications, and has become an interesting and important research topic. 

For scalability and reliability reasons, a large-scale pub-sub system often takes  
the form of a distributed service network: as shown in Fig. 1, a set of pub-sub servers 
is distributed over the Internet; clients access the service, either to publish events  
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or to register subscriptions, through servers that are close to them or in the same  
administrative domains. In this paper, we study the problem of efficient event deliv-
ery in the service network, i.e. from servers where the events are published to servers 
with matching subscriptions. We do not address the “last-mile” event delivery from 
servers to local clients in this paper.  

Efficient event delivery is challenging for two reasons: first, published events do 
not carry destination address information. Rather, it is the system’s responsibility to 
match each event with user subscriptions to identify the servers that are interested in 
it. Second, even if the destinations are known, it is not clear how to route the events to 
the destination servers. This is because of the highly diversified user interests in a 
content-based pub-sub system: every event can match the interest of a different set of 
servers, and in the worst case, there can be 2#servers such destination sets. How to 
achieve efficient delivery to so many destination sets is yet an open question.  

Existing architecture designs for content-based pub-sub networks typically connect 
servers into pre-configured overlay networks. Events are routed along the overlay 
network topology, choosing which connections to follow based on matching results. 
Because event delivery routes are constrained by the overlay topology, it is inevitable 
that events are sent to/through servers that are not interested in them, generating extra 
processing and network load. As analyzed in the paper, such overhead can be espe-
cially high when user interests are highly selective and diversified.  

In this paper, we explore the possibility of a very different approach. Correspond-
ing to the dynamic communication patterns in pub-sub networks, we propose an  
architecture called MEDYM: Match-Early with DYnamic Multicast. In MEDYM, 
events are first matched with subscriptions to identify destination servers, and then 
delivered to destinations along multicast routes computed and constructed on the fly. 
In this way, MEDYM allows fine-grained optimization for delivery of each individual 
event. For example, it is able to send events only to the servers that are interested  
in them, minimizing event traffic load on pub-sub servers. Using configured overlay 
networks, no existing solution achieves this highly desirable property. MEDYM  
network is also easy to deploy, and highly flexible to support various matching and 
routing policies. 

The basic form of MEDYM is well-suited to service networks with up to thousands 
of servers. Given that each pub-sub server can support a large number of end users, 
this scale is adequate for many interesting pub-sub applications in the foreseeable 
future. For even further scalability, we propose a hierarchy structure called H-
MEDYM. Different from existing hierarchal pub-sub network designs, H-MEDYM 
partitions the server network as well as the content space of a pub-sub system, to 
effectively reduce server states without introducing skewed load distribution.  

The rest of the paper is organized as follows: in Section 2, we briefly review exist-
ing pub-sub network design approaches. We present design and efficient implementa-
tion techniques of MEDYM in Section 3, and the hierarchy extension to H-MEDYM 
in Section 4. In Section 5, we present simulation and experimental evaluation results 
of MEDYM and H-MEDYM, in comparison with the major existing approaches. In 
Section 5.8, we conclude the paper with directions for future work. 
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Fig. 1. Example of a publish-subscribe service network 

2   Existing Solutions  

Existing distributed content-based pub-sub architecture design can be largely catego-
rized into two classes, which we call the Content-based Forwarding (CBF) approach 
[1][6][7][8][9][21][26] and the Channelization approach [11][18][19][25]. They  
balance the tradeoff between event matching complexity and routing accuracy  
differently. 
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Fig. 2. Event delivery in a CBF tree Fig. 3. Event delivery in Channelization 

2.1   Content-Based Forwarding (CBF)  

CBF proposes an elegant intelligent-network architecture. CBF servers are organized 
into an overlay network, on top of which one or more CBF trees are extracted. For 
simplicity, we use the single-tree case to illustrate the idea in Fig. 2. Each CBF server 
maintains a forwarding table that keeps track of the sum of subscriptions from servers 
in each direction of the tree. A published event is broadcast on the tree, matched 
against the forwarding tables at every step, and forwarded only in directions with 
matching subscriptions. 

Through per-step filtering, CBF achieves highly accurate event routing. Its major 
challenges are the computation and maintenance cost introduced. First, the per-step 
content-based event matching is a computationally expensive operation; furthermore, 
many of the operations may be redundant, as an event may be repeatedly matched 
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with the same subscriptions before reaching the destination servers. Second, events 
are often routed through uninterested intermediate servers, generating extra network 
as well as processing load. Servers and network links close to the center of the net-
work are especially likely to carry irrelevant event traffic and become system bottle-
necks. Finally, the forwarding tables can be expensive to maintain. When the overlay 
topology changes, e.g. to adapt to network environment changes, the relative positions 
of servers in the CBF tree(s) also change. Since subscriptions from each direction on 
the old tree have been aggregated together in the forwarding tables, there is no easy 
way to adjust the forwarding tables to reflect the new topology, except by transferring 
large amount of subscriptions along the new topology and re-computing forwarding 
tables, generating high network traffic and processing load.    

In this paper, we use the work by the Siena group in [6] and [7] as representatives 
for the CBF approach, as they are perhaps the most prominent and complete works in 
this direction. They have also designed efficient event forwarding algorithms in [8]. 
Many other distributed pub-sub systems follow the CBF approach. In JEDI [9], a 
hierarchical event routing network was proposed, but was found to perform worse 
than the peer-to-peer topology in [6]. The Gryphon group [1][26] designed efficient 
content-based matching algorithms used in forwarding, and proposed using virtual time 
vectors to convey temporal consistency of subscription propagation. The Elvin system 
[21] proposed the concept of quenching, in which publishers are aware of the sum of 
all subscriptions in the system, so that they only publish events that have at least some 
interested subscribers. 

2.2   Channelization 

The central idea in the Channelization approach is to utilize existing group-based 
multicast techniques, such as IP multicast or application-level multicast, for  
event delivery. As shown in Fig. 3, offline, the event space is partitioned into a small 
number of disjoint event channels. For each channel, a multicast group is built that 
spans all servers whose subscriptions may match any event in that channel. When an 
event is published, the server first determines if any server wants the event. If so, it 
identifies the channel it belongs to, and then sends it to the multicast group for that 
channel.  

The group-based multicast event routing in Channelization is very simple and  
fast. The main challenge for the approach is its routing accuracy. As discussed  
in Section 1, event traffic pattern in a content-based pub-sub system is highly diversi-
fied. The number of multicast groups a system can build is often much smaller  
than the total number of different event destination sets. As a result, the same event 
channel often has to accommodate events with different destination sets, and servers 
can receive many events that they are not interested in. To reduce such extraneous 
traffic, intelligent algorithms are used to cluster events with similar destination sets 
into the same channels. However, the effectiveness of clustering heavily depends on 
the event and subscription distribution. Unless the distribution offers promising  
clustering opportunity, as [18] pointed out, it is usually difficult to accurately support 
diversified user interests with only a small number of groups. Furthermore, the data 
distribution can be difficult to estimate and change over time. 
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In this paper, we use [18] as a representative for the Channelization approach.  
As a companion paper, [19] proposed optimization techniques for [18] and more ex-
tensive evaluation results. Although the techniques are proven to be effective, we 
expect them to be potentially applicable in other approaches as well, and therefore do 
not consider them as part of Channelization design in this paper. [11] studied the 
Channelization problem from a theoretical perspective. [25] experimented with  
different methods of clustering for different data distributions. 

3   MEDYM  

We propose a pub-sub network architecture called MEDYM, for Match-Early with 
Dynamic Multicast. Fig. 4 illustrates the event delivery process in MEDYM: a pub-
lished event is first matched against subscriptions from remote servers, to obtain a 
destination list of successfully matched servers. Then, the event is routed to these 
servers through dynamic multicast: a transient, stateless multicast tree is computed 
and constructed on the fly, based on the destination lists carried in event message 
headers.  
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Fig. 4. Event delivery in MEDYM Fig. 5. Dynamic multicast routing 

MEDYM can be seen as following the End-to-End distributed system design prin-
ciple [20]. It decouples the content-based pub-sub service into two functionalities: 
complex, application-specific matching at network edge, and simple, generic address-
based routing in the network core. Such architecture offers several advantages: 

• Low computation cost. Each event is matched with subscriptions for only once; 
the rest of the delivery process is through simple address-based routing.  

• Minimum event traffic. Events are sent only to the servers with matching sub-
scriptions. This not only minimizes the total event traffic on pub-sub servers, but 
also distributes the traffic consistently with servers’ self-interests. Given the het-
erogeneous user interests in content-based pub-sub networks, this can be an im-
portant incentive for servers to join a network.  

• Fine-grained routing optimization. Dynamic multicast allows network-efficient 
routing decisions be made based on individual event traffic patterns.  
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• Easy deployment and management. Servers are loosely coupled by soft states 
rather than configured overlay topology. This makes the network easy to deploy 
and adapt to changes and failures. Content-independent dynamic multicast can 
also support seamless integration of servers or networks running different pub-
sub applications, and upgrade to different data types or matching semantics. 

In this paper, we treat the relatively well-studied event matching problem ([1][8]) 
as an independent plug-in module and do not discuss it further. Next, we present de-
sign and implementation of dynamic multicast, and MEDYM server states mainte-
nance. Due to space limitation, we omit the bootstrapping and self-organization of the 
MEDYM network, which are described in detail in [5].  

3.1   Dynamic Multicast  

Dynamic multicast is a generic scheme for routing messages to dynamic destination 
sets. As shown in Fig. 5, it serves a simple interface to the upper layer application: 
send (DestinationList, message), and delivers received messages to the application 
through a callback function Receive(message). Upon receiving a message with desti-
nation list DL, from either upper layer application or a remote server, a routing algo-
rithm fs runs as follows: 

< ni, DLi > = fs (DL)           i = 1 . . . d 

The algorithm computes a list of d < ni, DLi > pairs, where ni is the ith next-hop 
server, and DLi is the new destination list for ni. Different routing algorithms can be 
designed to suit different optimization goals, but the input and output of fs should 
always satisfy the following routing invariants: 

(a)  U
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i sDLDL
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=
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(c)  ii DLn ∈   

These invariants guarantee that step by step, the message is sent to all its destina-
tion servers and to each server only once. Routing loops and redundant paths are natu-
rally prevented. A multicast tree is thus resolved in a recursive way.  

One of the major advantages of dynamic multicast is that because no routing states 
or pre-defined “groups” are maintained, there is no scalability limit on the number of 
destination sets it can support. 

3.1.1   Distributed Dynamic Multicast 
To avoid the fragility of centralized decision-making, in this paper, we focus on  
distributed dynamic multicast: each server accurately computes its local part of the 
multicast tree – its next-hop servers; it resolves the remote part of the tree only on a 
coarse-grain level, by assigning destinations to the destination lists for the next-hop 
servers. How the message will be routed beyond the next-hops is transparent and of 
no concern to the current server. This strategy suits well the fact that servers in a dis-
tributed network often have more accurate or up-to-date knowledge about their local 
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environment than distant areas. In the event delivery process, servers improve routing 
decisions on a finer-grained level, and can easily adapt to network changes or failures. 
For example, when a server fails to deliver a message to a next-hop server ni, it sim-
ply re-runs fs (DLi -{ni}) so that the message is still delivered to other servers in DLi. It 
also inserts ni into the destination lists for one of the new next-hops, so that some 
other server will try to contact ni, to bypass the possible network failure between the 
current server and ni. After three such attempts, ni is concluded to have failed. 

3.1.2   Routing Algorithms  
In this paper, we measure communication cost by network latency. Each MEDYM server 
maintains a DistanceMatrix, which contains the latency between every pair of servers  
in the system. Maintenance of the DistanceMatrix will be described in Section 3.2.  

To minimize total network cost, we first experimented with routing algorithm that 
computes the multicast tree as a minimum spanning tree (MST) across destination 
servers. The major drawback of the MST algorithm is its high computation complex-
ity, O(D2logD) where D is the number of destination servers. As the routing algorithm 
is run in real-time for every event message received, it is important that it can run fast 
enough to support high event routing throughput.  

We then developed algorithm SPMST, for Short-Path-MST, which computes an 
approximate minimum spanning tree among the destination servers in a fast and dis-
tributed way. This algorithm is as shown in Fig. 6. Offline, an array called Shadow-
BitVectors is maintained to help quickly identify next-hop servers. We say that server 
si is shadowed by server sj, if si is closer to sj than to current server s, and s is closer to 
sj than to si. Under this condition, sj would forward the message to si at lower (la-
tency) cost than s does. Therefore, a server is a next-hop server if and only if it is not 
shadowed by any other destination. This can be quickly determined by the intersec-
tion of its ShadowBitVector and DLBitVector, the bit vector for DL. After choosing 
next-hops, the rest destinations are assigned to the destination lists of the next-hop 
servers closest to them. 

computeShadowBitVectorss() {              // offline 
    foreach server si { 
        foreach server sj  
            if (DistanceMatrix[i][j]<DistanceMatrix[s][i] &&  
                DistanceMatrix[s][j]<DistanceMatrix[s][i]) 
                Set_jth_bit_in_ShadowBitVector[i]; }} 
 
SPMSTRoutings(DL) {                                         // online 
    Nexthops = DL;                       
    foreach server si in DL  
        if (ShadowBitVector[i] & DLBitVector !=0)  
            Nexthops_remove(si); 
    if (|Nexthops|>maxNextHops))  
        Nexthops = closest_nexthops(maxNextHops); 
   foreach server sj in (DL-Nexthops) {  
        ni = closest_nexthop_to(sj); 
        DLi +={sj}; } 
    return(<ni, DLi>); }  

 

Fig. 6. SPMST routing algorithm 
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Table 1 shows the computation time of MST and SPMST algorithm. The algo-
rithms are written in Java and run with 2.0 GHz Pentium-III CPU and 512MB  
memory. Results show that SPMST runs much faster than MST, and can support 
routing of more than thousands of events per second. Furthermore, note that the aver-
age destination list size in a dynamic multicast message, as analyzed in Section 3.1.3, 
is much shorter than the |DL| sizes in the table. Therefore, compared to the results on 
content-based matching [1][8], we expect the computation cost of dynamic multicast 
routing to be lower and the process faster. 

Table 1. Computation time of d-cast routing algorithms, with destination list size |DL| 

Computation time (ms) Routing 
algorithm |DL|=100 |DL|=500 |DL|=1,000 

MST 1.8 9 34 
SPMST 0.08 0.29 0.62 

Route Caching. An interesting question is whether dynamic multicast routes 
can/should be cached, so that future routing decisions can be made by cache look-up 
rather than real-time computation. The effectiveness of caching highly depends on the 
temporal locality of the pub-sub communication. We plan to study it in the context of 
specific pub-sub workload in the future, and do not assume caching as a general solu-
tion here. This results in a conservative estimation of the dynamic multicast routing 
computation overhead. 

Routing on Mesh. Routing algorithms described above assume that every pair of 
servers may directly connect, which we expect is the normal scenario in a large-scale 
dedicated service network. When this is not the case, e.g. due to configurations or 
network failures, it may be inevitable that event messages be sent through non-
destination servers. Our experiments show that the better connected the servers are, 
the more routing flexibility dynamic multicast can exploit, and the better performance 
it achieves. As this does not affect the overall MEDYM design, due to space limita-
tion, we do not discuss such scenarios further in this paper.  

3.1.3   Destination List Overhead 
Destination lists carried in event messages introduce traffic overhead in MEDYM. 
Fig. 7 gives an informal analysis of the average destination list size in the process of 
delivery of one event: in a dynamic multicast tree, the destination lists are reduced at 
every step by a factor of the fan-out of the server in the tree. Therefore, the average 
list size is about equal to the diameter of the tree. This is confirmed by Fig. 8, which 
shows that as the diameters of the SPMST multicast trees are short and grow slowly 
with total number of destinations, so do the average destination list sizes. For exam-
ple, to route an event to 1000 servers, an average message carries only 8 server IDs in 
its destination list. Such overhead is quite acceptable, especially considering that 
event messages in content-based pub-sub networks often carry rich content, such as 
attribute-value pairs, full-text or XML documents. 

Although the destination lists are short on average, the overhead may not be  
well balanced, as the lists are longer at locations closer to the publisher. Instead of 
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considering destination lists alone, we developed a routing algorithm to balance 
server routing load as a whole, as described in [5]. In Section 5, we examine through 
simulations the destination list overhead in various scenarios.  

Note that the low destination list overhead is of critical importance to the scalabil-
ity of dynamic multicast. [2] and [13] also proposed routing messages based on the 
destination information carried in message headers. However, as these approaches route 
messages on top of off-line maintained unicast routes, messages are inevitably sent 
through non-destination nodes. Traversing such nodes cannot reduce the destination 
information in the messages. Therefore, the average destination information in the 
messages is about linear to the number of destinations (rather than about logarithmic 
in dynamic multicast), and both approaches were developed on the assumption of a 
very small number (tens of) of receivers. 
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Fig. 7. Intuitive analysis of average destination 
list size in a dynamic multicast tree 

Fig. 8. Simulation results for SPMST multi-
cast tree diameters and average destination 
list sizes 

3.2   Server States  

MEDYM servers maintain two data structures: routing tables to support dynamic 
multicast routing, and matching tables for early event matching. 

Routing Table. A routing table includes a server list of (serverID, IPaddress, status) 
for all servers in the system, and a distance matrix M, where Mi,j represents communi-
cation cost between server i and j. In MEDYM, servers periodically broadcast Refresh 
messages using dynamic multicast. A refresh message contains the server’s ID, IP 
address, network location and status (e.g. load condition). Servers receiving the Re-
fresh message update their routing tables accordingly. 

Server network location can be measured in two ways: servers may actively probe 
each other and broadcast the probing results. This approach generates O(#servers3) 
total network traffic and therefore only scales to small networks. As an alternative, 
MEDYM can utilize state-of-the-art techniques [16][22] to approximately estimate 
server locations with much lower overhead. Note that inaccurate server location  
information or even inconsistent information across servers does not affect the correct-
ness of dynamic multicast, which is guaranteed by the routing invariants. In Section 5, 
we present experimental results of using both probing and the available GNP estima-
tion service [16]. More detailed simulation results of using [22] can be found in [5]. 
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Matching Table. In a pub-sub network, servers often specialize in publishing only 
certain kinds of events. In MEDYM, a server maintains a matching table, with an entry 
(serverID, sum_of_subscriptions) for every other server in the system, which records 
the sum of subscriptions from that server that are relevant to local publication interest. 
To make a new subscription or to cancel a previous one (so-called unsubscibe), a 
server broadcasts a Subscribe or Unsubscribe message via dynamic multicast; servers 
receiving the message update their matching tables. As an optimization, servers may 
first broadcast advertisements on their publication interests, so that subscriptions are 
sent (via dynamic multicast) only to servers with relevant advertisements. 

Scalability. We do not expect MEDYM routing tables or matching tables to introduce 
major storage or maintenance overhead for  small or medium scale pub-sub networks. 
First, as each pub-sub server is expected to support a large number of end users, rout-
ing tables are expected to be much smaller and more stable than the matching tables. 
Second, for any pub-sub network to achieve the highly desirable quenching capability 
([21]), i.e. to filter off events that nobody wants locally, publication servers must 
know the sum of all (relevant) subscriptions in the network. Servers in MEDYM and 
the two existing approaches discussed in Section 2 all have the quenching capability, 
though they differ in subscription replication formats and optimization techniques. 
We compare their subscription replication cost in detail in Section 5.3.   

4   H-MEDYM  

MEDYM requires servers to know about all other servers in the network and the  
sum of their subscriptions. We believe such information needs are practical for  
service networks with up to thousands of servers. Beyond this point, the storage and 
maintenance cost of the server states can become the system scalability bottleneck. 
Hierarchy is an effective method that makes IP routing extremely scalable. However, 
different from IP addresses, content-based subscriptions from servers geographically 
close are not necessarily similar and may not be succinctly summarized. Therefore, a 
similar hierarchy structure for pub-sub network can impose heavy load on servers at 
the upper level of the hierarchy [6][9]. 

Based on our experience from an earlier work [4], we propose a different hierar-
chical solution called for MEDYM, called H-MEDYM for Hierarchical MEDYM.  An 
H-MEDYM network is partitioned along two dimensions: geographically, servers are 
clustered based on their network locations; content-wise, the event space is partitioned 
into non-overlapping topics. Each event falls into one topic, while a subscription may 
overlap with multiple topics (Event space partitioning will be discussed later in more 
detail). In each cluster, for each topic, one or more servers are designated as matchers, 
which will be responsible for matching events falling into that topic.  

An example of event delivery in H-MEDYM is shown in Fig. 9. When an event  
is published, the publication server identifies the topic the event belongs to, and sends 
it the closest matcher for that topic in local cluster. At the matcher, the event is 
matched against subscriptions for that topic, and then dynamic-multicast to two sets 
of destinations: matched servers in the local cluster, and matched matchers for that 
topic from remote clusters. At each remote matcher, the event is matched again with 
subscriptions from servers in that matcher’s cluster and dynamic-multicast to the 
matched servers.  
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Fig. 9. Event delivery in H-MEDYM. Server A publishes an event in topic T2. It sends the 
event to matcher B, which matches the event and dynamic-multicasts it to matched servers in 
the local cluster (not shown) as well as to matched matchers C, G, F in other clusters. The event 
is matched again at C, G, F and dynamic-multicast to the matched servers in their local clusters. 

4.1   Cluster Configuration and Server States  

Unlike in MEDYM, servers in H-MEDYM need to know about only a subset of other 
servers and subscriptions. Specifically, the first row in Table 2 describes the content 
of the routing and matching tables at a server that is a matcher: the routing table con-
tains only servers in the same cluster and other matchers for the same topic; the 
matching table contains only subscriptions from this subset of servers that overlap 
with that topic (subscriptions overlapping with multiple topics can be divided into 
smaller subscriptions each covering one topic). A server that is not a matcher (not 
shown in Table 2) maintains a routing table only for servers in the same cluster, and 
no matching table.  

Table 2. Server states at an H-MEDYM matcher for topic t in cluster c. N: #servers, C: #clus-
ters, T: #topics.  

 Routing table Matching table 
 

Table content 
Network location of  

servers in c and  
matchers for t 

Subscriptions in topic t 
from servers in c and  

matchers for t 

Table size, as a fraction 
of global knowledge 

~ 1/C+max(1/T, C/N) ~ max(C/N, 1/T) 

The second row in Table 2 provides an approximate estimate of the table sizes, 
normalized as a fraction of global information, i.e. it shows the fraction of all servers 
or subscriptions in the system that a server needs to know about. The results can be 
intuitively explained as follows: increasing the number of topics T partitions the event 
space at finer level, and reduces the number of subscriptions that need to be replicated 
for each topic and the number of matchers for each topic. However, increasing T 
beyond N/C no longer reduces matching table size at an average server, as the server 
now has to match for more than one topic; on the other hand, it continues to increase 
the routing table size, as the server needs to know about more other matchers. We 
expect a good H-MEDYM configuration to be around T ~ N/C ~ N1/2, in which case 
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the matching table size is reduced by a factor of O(N1/2) compared to that in 
MEDYM. (We do not focus on routing tables, as they are usually much smaller and 
more stable than matching tables, as mentioned in Section 3.2). Such reduction can be 
quite substantial in a large-scale network. In Section 5.2, we present simulation results 
of H-MEDYM server states under various configurations. 

4.2   Scalability Analysis 

Compared to MEDYM, H-MEDYM improves scalability in several aspects. First, it 
reduces server states as described above. Second, event delivery is divided into two 
steps: dynamic multicast within each server cluster, and among matchers for the same 
topic. As each step involves only a small subset of servers, messages carry shorter 
destination lists. Third, events are no longer matched at publication servers. Separa-
tion of publication and matching responsibility allows for more flexible load man-
agement, as replication of subscriptions and the workload of event matching can now 
be allocated based on server capabilities rather than determined by the publication 
interests of their nearby end users.  

On the other hand, H-MEDYM introduces new overheads. An event is now 
matched twice, at local and remote matchers, before reaching a destination server. 
The event may also traverse matchers that are not be interested in it. The quenching 
capability is moved from publication server to the first matcher the event is sent to. 
Finally, managing server clusters and content space partitions introduces additional 
cost. 

Overall, H-MEDYM trades off efficiency in event delivery for lower server states 
overhead, and is applicable to very large pub-sub networks where such overhead is the 
scalability bottleneck. We will evaluate these tradeoffs quantitatively in Section 5. 

4.3   Other Issues  

Several orthogonal design and algorithmic issues need to be addressed in building an 
H-MEDYM system. This paper does not make new contributions in these areas. In-
stead, we explore the possibility of applying existing technologies, and expect these 
issues to be fertile ground for further optimization and evaluation in the future. 

Event Space Partitioning. In H-MEDYM, it is desirable that event space be  
partitioned into topics with balanced load, and with few subscriptions overlapping 
with more than one topic. The partition should also be easy to maintain and adaptive 
to data changes. Many pub-sub applications have inherent concepts of topics, such as 
news categories, stock industries or geographic area partitions, which are natural 
candidates for the partitioning in H-MEDYM. In [4] we propose to partition the space 
into continuous zones, possibly using multi-dimensional partitioning techniques 
[12][17][24]. Event clustering in Channelization is also an alternative, although the 
process can be relatively complex and results sensitive to data distribution. Note that 
unlike Channelization, H-MEDYM matches each event accurately with user sub 
scriptions, and delivers events only to matched servers or matchers. A bad event space 
partition is likely to affect the load distribution and server states reduction in  
H-MEDYM, but will not lead to high extraneous event traffic.   
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Matcher Selection. When assigning H-MEDYM servers as matchers for topics, sub-
scription replication and the workload of event matching should be allocated consis-
tently with server capabilities. Load distribution is a well-studied problem in parallel 
and distributed computing [10], and even in pub-sub itself [24]. In H-MEDYM, local-
ity is another key issue: it is desirable that servers match for events that are of local 
publication or subscription interests, so as to reduce the probability of sending events 
to matchers who are not interested in them. How to best assign matchers given these 
potentially conflicting goals is an interesting area for future work.   

5   Evaluation  

We evaluate our work and compare with existing solutions through qualitative analy-
sis, quantitative simulations and real-world experiments. 

5.1   Simulation Methodology 

We developed a message-level, event-driven pub-sub network simulator. The IP to-
pology is generated using the GT-ITM transit-stub model [3] with 2500 routers and 
8938 links in total. 1000 pub-sub servers are randomly attached to the routers. Each 
event message has a payload of 200 bytes and a TCP/IP header of 44 bytes. 
MEDYM/H-MEDYM destination lists have server IDs of 2 bytes each. For simplicity 
and without loss of generality, we use integers as event and subscription values and 
perform only equality matching. The results presented are independent of data types 
or matching algorithms used.  

We compare five architectural approaches: MEDYM and H-MEDYM with the 
SPMST routing algorithm; two versions of CBF: CBF_MST as in [6], where a single 
CBF tree is built as the minimum spanning tree across all servers, and CBF_SPT as in 
[7], where CBF trees are shortest path trees rooted at publication servers; Channeliza-
tion approach as in [18], using Forgy K-Means algorithm to cluster events into 50 chan-
nels, as this algorithm was found to produce the best partition results in the paper. 

A major challenge in evaluation of pub-sub systems has been the lack of represen-
tative application data. In the absence of this, we attempt to gain a comprehensive 
understanding of the performance of different systems under various distinguishing 
scenarios. We define a key parameter, matching ratio, as the fraction of servers with 
matching subscriptions for an event, or equivalently, the fraction of events that a 
server’s subscriptions match. We examine scenarios with widely varying matching 
ratios and our results can be interpreted in several ways: first, low matching ratios 
imply highly selective subscriptions and high matching ratios represent popular 
events. We are interested to see how systems perform for these different scenarios. 
Second, for a given matching ratio, we can understand performance results not only in 
“absolute” terms, e.g. resource usage numbers, but also in “relative” terms, i.e. how 
far is the performance from the optimal case. For example, with 10% matching ratio, 
a server that receives 20% of all published events can be seen as carrying 100% traffic 
overhead. Third, a pub-sub network may scale along three dimensions: number of 
servers, number of total user subscriptions, and volume of event publications. As we 
focus on evaluation of per event delivery, we do not consider the third factor in this 
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paper. Table 3 shows three scaling scenarios as combinations of the first two dimen-
sions. Users can infer system scalability in these three scenarios from results with 
different matching ratios. Finally, we have experimented with different event and 
subscription data distributions, such as uniform, Zipf, exponential and normal distri-
butions. We found that only Channelization is sensitive to data distribution; its clus-
tering is more effective when both event and subscription distributions are highly 
skewed and have the same peaks. Even so, in all realistic settings, the relative posi-
tions of different approaches are the same under all distributions. Due to space limita-
tions, we present results only with uniformly randomly generated event and subscrip-
tion values, as this provides the most basic and clear understanding of system’s per-
formance. Results for many other distributions can in fact be computed as the weighted-
sums of the results with different matching ratios. 

Table 3. Pub-sub network scaling scenarios 

Scenario Total subscriptions Number of servers Matching ratio 
A ↑ − ↑ 
B ↑ ↑ − 
C − ↑ ↓ 

5.2   H-MEDYM Configuration  

We first look at the configuration of H-MEDYM networks. We use the Hierarchical 
Agglomerate Clustering (HAC) algorithm [14] to cluster servers based on their net-
work locations, and partition the event space into continuous ranges with equal 
lengths. Fig. 10 shows the average size of routing tables and matching tables at  
H-MEDYM servers, normalized as a percentage of global information (see Table 2). 
The results validate our quantitative analysis in Section 4.1. Partitioning in both  
dimensions is necessary to reduce server state in H-MEDYM: when there is only 1 
topic or 1 server per cluster (i.e. 1000 clusters), servers maintain 100% of global  
information. Increasing the number of topics is effective in reducing server states only 
when there are more servers in each cluster than the number of topics. In subsequent 
simulations, we use the configuration in Fig. 10 that is closest to our choice of  
T ~ N/C ~ N1/2 in Section 4.1: 20 topics and 50 clusters. In this case, on average, each 
server knows about 10% of other servers, and 5% of total subscriptions.  

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000
Number of clusters

R
ou

tin
g 

ta
bl

e 
si

ze

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000
Number of clusters

M
at

ch
in

g 
ta

bl
e 

si
ze

1 topic
2 topics
5 topics
20 topics
100 topics

  

Fig. 10. H-MEDYM server states under different configurations 
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5.3   Subscription Replication 

Subscription replication is a major source of storage and maintenance cost in pub-sub 
networks. This cost differs across systems in three ways: 

First, the number of remote subscriptions a server needs to replicate depends on its 
matching responsibility. In MEDYM and Channelization, servers only match for 
locally published events, and therefore only need to replicate subscriptions that are 
relevant to their publication interests. In H-MEDYM, a server replicates subscriptions 
that fall into the topics it matches for, and the replication is independent of its own 
publication interest. In CBF, a server needs to replicate all subscriptions for which it 
appears on the CBF tree path between the subscriber and any possibly matching pub-
lisher. The number of such subscriptions is dependent on other servers’ publication and 
subscription interests, not just its own. 

Second, replicated subscriptions can be aggregated ([23][26]) to achieve more effi-
cient storage and update. In MEDYM and H-MEDYM matching tables, only subscrip-
tions from the same server can be aggregated. In CBF forwarding tables, subscriptions 
from all servers in the same direction in the CBF tree can be aggregated, since the server 
needs only determine in which directions to forward an event. In Channelization, all 
subscriptions in the network can be aggregated, as the publication server only needs to 
know whether an event matches any subscription in the system, for the purpose of quench-
ing. Therefore, Channelization offers greater opportunity for optimization by aggrega-
tion than CBF, which in turn offers greater opportunity than MEDYM and H-MEDYM.  

Subscription aggregation is a difficult problem whose solution and effectiveness 
heavily depends on pub-sub data type and distribution. It can also make canceling sub-
scriptions difficult, as mentioned in [7]. Therefore, in Fig. 11, we look at subscription 
replication assuming no aggregation. In the figure, the x-axis shows an average 
server’s publication interest, measured as a percentage of the entire event space; the 
y-axis shows the number of subscriptions replicated on an average server, measured 
as a percentage of all subscriptions in the system. For the CBF approach, we show 
two curves that represent different subscription selectivity: an average server sub-
scribes to events falling into 1% or 100% of the event space. For example, if each  
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server publishes 1% of events and subscribes to (not necessarily the same) 1% of 
events, an average server needs to replicate 8% of total subscriptions.  This figure can 
be combined with the effectiveness of a particular subscription aggregation scenario 
to estimate the subscription replication storage cost in a system.  

In the face of network changes, subscription replication in CBF is likely to be more 
expensive to maintain than in other systems, as discussed in Section 2.1. 

Overall, we expect H-MEDYM to be an effective way to reduce subscription repli-
cation, while a quantitative comparison between the other approaches is likely to be 
dependent on application properties. 

5.4   Server Processing Load  

For generality and comparability, we measure the processing load at a server by the 
number of events the server receives. Note that to route each event, the content-based 
forwarding process in CBF is likely to be more computationally expensive than  
the address-based routing in Channelization and MEDYM/H-MEDYM, though the 
concrete results depend on the data type, subscription size, and matching algorithms 
used. Fig. 12 plots the number of events a server receives, as a percentage of all 
events published in the system, under varying matching ratios. Channelization servers 
receive the most events, showing the ineffectiveness of clustering in filtering out 
extraneous event traffic. When matching ratio is higher than 15%, almost every 
Channelization server joins all the multicast groups and receives all the events. CBF 
servers receive much fewer events, due to its accurate per-step filtering. MEDYM 
servers receive the fewest possible events, i.e. only the events that they subscribe to. 
H-MEDYM introduces a small overhead over MEDYM, as events can be sent to 
irrelevant matchers. The difference between the approaches is most apparent when 
matching ratio is low. For example, a server that subscribes to only 1% events  
receives 1% events in MEDYM, 2% in H-MEDYM, 8% in CBF_MST, 9% in 
CBF_SPT, and 29% in Channelization. For very high matching ratios, all approaches 
converge to broadcast.  
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Next, we look at the distribution of processing load across pub-sub servers. Fig. 13 
shows the percentage of servers that receive no more than a given number  
of events,when each server matches 10% of total events. We see that all MEDYM 
servers receive 10% events each, while most Channelization servers receive more 
than 90% of total events. CBF server load is in between, but is highly imbalanced: 
about 40% of servers receive only 10% events each, while 20% servers in CBF_MST 
and 10% in CBF_SPT receive more than 80% events each. As expected in Section 
2.1, these heavily loaded servers are located at the center of the network, and route for 
many irrelevant servers. The imbalance problem is more serious in CBF_MST than in 
CBF_SPT, because CBF_SPT has multiple CBF trees and higher routing diversity. 

5.5   Server Bandwidth Consumption  

Server bandwidth is a very precious resource in service networks. Fig. 14 shows the 
average bandwidth a server consumes in the process of delivering one event. Different 
from Fig. 12, MEDYM servers only achieve close to minimum bandwidth consump-
tion; the difference between its curve and the optimal line shows its destination list 
overhead. While the overhead is small for low matching ratios, for high large match-
ing ratios (above 90%) it makes MEDYM server bandwidth surpass that of CBF and 
Channelization by a small amount. H-MEDYM server bandwidth consumption is 
higher than MEDYM when matching ratio is low, due to events traversing irrelevant 
matchers, but it is lower than MEDYM when matching ratio is high, due to its shorter 
destination lists. 

Unlike the average case, the maximum server bandwidth consumption can be sen-
sitive to publisher distribution. In Fig. 15 and Fig. 16, we study two extreme scenar-
ios: the all-publisher scenario, in which every server publishes the same number of 
events, and the single-publisher scenario, in which only one server publishes all the 
events. In both cases, the maximum bandwidth consumption in both CBF approaches 
is much higher than the average consumption, again showing the load imbalance 
across servers. Different form the processing load case, CBF_SPT has more serious 
bandwidth imbalance than CBF_MST. This is because the CBF trees in CBF_SPT, 
built as shortest-path trees on the overlay layer, are likely to degenerate into star-
shaped topology with the publication servers at the center (since the shortest path 
between a publisher and a subscriber is usually just the direct overlay connection 
between them). Therefore, the publication servers often send out a large number of 
copies of the same event, and the event routing becomes close to unicasting. The poor 
performance of CBF_SPT for single-publisher case especially illustrates this point. In 
MEDYM and H-MEDYM, server load is well balanced; the destination list overhead 
does not prevent them from significantly outperforming the other approaches for the 
all-publisher case. However, MEDYM performs less well for the single-publisher 
case, especially when matching ratio is high, due to the destination list overhead at the 
publication server. H-MEDYM effectively alleviates this problem, because even with 
a single publication server, the destination lists are first generated at different match-
ers. Interested readers can refer to [5] for a dynamic multicast routing algorithm we 
developed to balance MEDYM server bandwidth.   
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Fig. 17. Average link stress 
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Fig. 19. Maximum link stress 
in single-publisher case 
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Fig. 20. Average event path length in simulation 
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5.6   Network Link Stress  

Next, we look at event traffic load on underlying network links. We measure link 
stress by the total amount of data transferred over a link in the process of delivering 
one event. The average link stress results are shown in Fig. 17, and maximum link 
stress under both all-publisher and single-publisher scenarios are shown in Fig. 18 and 
Fig. 19. The results exhibit similar trends as server bandwidth consumption results, 
but the differences between different approaches are of less extent. This is because the 
underlying IP topology offers lower routing diversity than at the overlay layer: differ-
ent systems may route events through different sets of servers, but the messages often 
traverse similar sets of underlying network links, especially when there are only a few 
long-distance links across IP domains. We expect that in larger IP networks the dif-
ference between the approaches would be more significant, and the results would be 
more favorable to MEDYM and H-MEDYM. 

5.7   Event Delivery Latency  

In real-time pub-sub applications, it is desirable that events arrive at subscribers 
within short latency. The end-to-end event delivery latency consists of the processing 
latency at intermediate servers and the transmission latency on network links. Fig. 20 
shows the average number of servers in an event path in different architectures. In 
CBF, the average event path lengths are always equal to the diameters of the CBF 
tree(s), with CBF_SPT trees being flatter than CBF_MST trees. In Channelization, 
when the matching ratio is low, clustering is effective in constructing small multicast 
groups, and events are routed through fewer servers. In MEDYM, since a multicast 
tree only spans the matched servers, the average path length is about equal to the 
logarithm of the number of matched servers. H-MEDYM has shorter event paths 
thanMEDYM, because of the two-level event routing hierarchy. Fig. 21 presents the 
average Relative Delay Penalty (RDP) of event paths. RDP is defined as the ratio of 
the sum of network latency of event routing in the pub-sub network over the latency 
of IP routing between the publication server and the destination server. With shortest 
path routing trees, CBF_SPT achieves lowest RDP of close to 1. The other  
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approaches all route events along minimum spanning trees or its approximations. 
RDP in MEDYM and H-MEDYM is lower than in CBF and Channelization, due to 
the smaller trees MEDYM and H-MEDYM build. H-MEDYM has higher RDP than 
MEDYM because events are “detoured” to matchers first. Fig. 20 and Fig. 21 can be 
used, together with the event processing latency at intermediate servers and the IP 
latency between publication and destination servers, to estimate the end-to-end deliv-
ery for events with certain matching ratios. 

5.8   MEDYM Implementation Results  

We deployed a prototype of MEDYM on PlanetLab test bed [15]. MEDYM servers 
are run on 86 PlanetLab sites, 68 in the United States and 18 abroad. Experimental 
results for server processing load and bandwidth consumption confirm our simulation 
results above, and are not presented here due to space limitations. To understand 
event delivery performance in real networks, we focus on network latency results.  

In the experiments, we measure server locations in two ways: first, each server  
randomly pings another server in every 10 seconds, and broadcasts the pinging results 
every 10 minutes; as an alternative, we used the GNP [16] service to estimate  
server locations: each MEDYM server pings one of the 8 GNP servers every minute. 
Based on the pinging results, it computes an 8 dimensional virtual coordinate,  
and broadcasts its coordinates once every 8 minutes. Distance matrices are then  
computed locally using the servers’ coordinates. Fig. 22 presents the RDP (as defined 
in Section 5.7) for the event paths. It shows that the routing latency using pair-wise 
pinging is consistent with our expectation and the overhead of using GNP is quite 
acceptable. We observe that the inaccuracy of GNP estimation happens most when 
servers that are geographically close and derive similar coordinates in GNP in fact 
have high IP latencies between them, possibly due to congestions or configurations. 
This can also be seen from Fig. 23, which shows that event paths with high RDP  
typically have low IP latencies. Overall, Fig. 22 and Fig. 23 confirm our expectation 
that MEDYM constructs high-quality event routing paths, and network location  
estimation as by GNP is a promising scalable solution. 

6   Conclusions and Future Work 

We have presented the design and evaluation of MEDYM, a new architecture for  
content-based pub-sub service networks, and H-MEDYM, an approach to extend the 
architecture to a hierarchical structure for greater scale. While these architectures each 
have their challenges and limitations, we believe that they achieve some important  
advantages over existing approaches in performance, flexibility and manageability that 
are highly desirable for many pub-sub applications. 

A key goal of our research has been to gain a comprehensive understanding of the 
characteristics of different content-based pub-sub network designs for different applica-
tion circumstances. Our evaluation in this paper leads us to the following conclusions.  

CBF is an elegant design that achieves accurate event delivery; however, its in-
network event processing can be computationally intensive, and the server states that are 
tightly associated with network topology can be expensive to maintain in a dynamically 



312 F. Cao and J.P. Singh 

changing network environment. Therefore, we expect CBF to be suitable for stable  
pub-sub networks with abundant computational resource. Channelization incurs low 
computation and subscription replication overhead, but its routing quality heavily  
depends on pub-sub data distribution and can be very poor when the distributions do not 
offer very promising clustering opportunity. It is mostly suitable for applications whose 
user interests can be approximated by a small number of groups with high accuracy.  

MEDYM achieves low and well-balanced routing load on servers and network links 
by sending events only to interested servers via customized routes; its major overhead 
comes from the servers’ global knowledge of location and sum-of-subscription informa-
tion of all other servers, and the destination lists in its messages. It is well-suited for 
pub-sub networks with up to a few thousand servers; beyond this point, H-MEDYM is 
likely to be more suitable: it effectively reduces both the number of servers and the 
amount of subscription information each server needs to know about, and the destina-
tion list overhead. Its overheads are its complexity and the routing constraints it imposes 
on event delivery paths. MEDYM and H-MEDYM appear to perform well across a 
range of circumstances; compared to CBF and Channelization, they are most advanta-
geous when user subscriptions are highly selective and diversified. We observe that this 
is exactly the scenario in which intelligence and efficiency of a pub-sub service is most 
needed, and therefore their properties would be highly desirable for many applications. 

To better understand the characteristics of realistic pub-sub workloads and their 
implications for architectural tradeoffs, in addition to extrapolating and inferring 
characteristics from existing information access systems, we plan to deploy a public 
pub-sub service on PlanetLab [15] and collect real workloads to drive further re-
search. We also plan to investigate several open questions raised in this paper, such as 
dynamic multicast route caching, event space partitioning and matching distribution 
in H-MEDYM. 
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