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Abstract

We build on work of Boris Pittel [5] concerning the number of t-tuples of par-
titions whose meet (join) is the minimal (maximal) element in the lattice of set
partitions.

1 Introduction

Recall that a partition of the set [n] = {1, 2, . . . n} is a collection of nonempty, pairwise
disjoint subsets of [n] whose union is [n]. The subsets are called blocks. One partition π1 is
said to refine another π2, denoted π1 ≤ π2, provided every block of π1 is contained in some
block of π2. The refinement relation is a partial ordering of the set Πn of all partitions
of [n]. Given two partitions π1 and π2, their meet, π1 ∧ π2, (respectively join, π1 ∨ π2) is
the largest (respectively smallest) partition which refines (respectively is refined by) both
π1 and π2. The meet has as blocks all nonempty intersections of a block from π1 with a
block from π2. The blocks of the join are the smallest subsets which are exactly a union
of blocks from both π1 and π2. Under these operations, the poset Πn is a lattice.

Recently Pittel has considered the number M (t)
n of t-tuples of partitions whose meet

is the minimal partition {{1}, {2}, . . .{n}}, and J (t)
n the number of t-tuples whose join is

the maximal partition {{1, 2, . . . , n}}. We shall prove

Theorem 1 Let Mt(x) and Jt(x) be the exponential generating functions for the sequences
M (t)

n and J (t)
n . Then

Mt(e
x − 1) =

∞∑
n=0

(Bn)
t x

n

n!
= exp{Jt(x)− 1}.

where Bn is the n-th Bell number, the total number of partitions of the set [n].
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Remark. What about n = 0 and/or t = 0? The lattice Π0 has exactly one element, and
thus is isomorphic to Π1. Generally, one takes the empty meet to be the maximal element
and the empty join to be the minimal element. Thus, there is some logical justification
to define

M
(t)
0 = J

(t)
0 = 1 for all t

M (0)
n = J (0)

n = 1 for n = 0, 1

M (0)
n = J (0)

n = 0 for all n ≥ 2

In particular, M0(x) = J0(x) = 1 + x, and M1(x) = J1(x) = ex. These latter two when
inserted in the theorem yield immediately recognized identities.

To prove the first equality of Theorem 1 we shall use the following known result:

Theorem 2 Let En be the edge set of the complete graph Kn, GS the graph with vertex
set [n] and edge set S ⊆ En, and c(G) the number of connected components in the graph
G. Then, ∑

S⊆En

(−1)|S| Xc(GS) = X(X − 1) · · · (X − n+ 1).

A consequence of Theorem 2 is our later formula (2) which gives M (t)
n as a sum of

products of Bell number powers with Stirling numbers of the first kind. With the second
equality of Theorem 1 we can prove

Theorem 3

J (2)
n = (Bn)

2 × (1 − r2

n
− 2r3 + 2r4 + 2r5 + r6

(r + 1)2n2
+ O(r7/n3))

where r is the positive real solution of the equation rer = n.

This improves on Pittel’s estimate that J (t)
n is (Bn)

t(1 + O(rt+1/nt−1). The method
by which we prove Theorem 3 yields in principle a complete asymptotic expansion of J (t)

n

in descending powers of n, although the later terms are quite complicated. In the final
section of our paper, we present a generalization of the first equality in Theorem 1.

2 Discussion of Theorem 2

We shall not give a proof of this theorem, since many are available. Indeed, using the
Principle of Inclusion-Exclusion, the left side can be interpreted as the number of ways
to color properly the complete graph Kn with X colors, which agrees with the right side.
More generally, we may replace the graph Kn on the left with an arbitrary graph G, and
then on the right we replace the displayed polynomial with the chromatic polynomial of
G. A good reference for this is [2].

the electronic journal of combinatorics 8 (2001), #R15 2



Since the coefficients of X(X − 1) · · · (X − n+ 1) are the (signed) Stirling numbers of
the first kind, s(n, k), Theorem 2 is equivalent to:∑

S⊆En
c(GS )=k

(−1)|S| = s(n, k).

In this form the theorem states that among graphs of n vertices and k connected com-
ponents, the excess of the number with an even number of edges over those with an odd
number of edges is the signed Stirling number of the first kind s(n, k). The case k = 1
of this interesting interpretation appeared as a Monthly Problem a few years ago, and in
the solution the generalization to larger k was noted, [3].

We close this section with a useful inclusion/exclusion enumeration formula based on
Theorem 2.

Corollary. Let X be a set of combinatorial objects which may have properties corre-
sponding to the pairs En, n ≥ 1. Suppose that for S ⊆ En, the number of objects which
have at least all the properties of S depends only on c(GS), the number of connected
components of the graph GS determined by the pairs S. If this number is f(c(GS)), then,

#{x ∈ X : x has no property} =
n∑

k=1

s(n, k) f(k).

3 An Application

We shall now use the above inclusion/exclusion formula to give another proof of the
beautiful formula found by Boris Pittel [5]. The formula is

M (t)
n = e−t

∞∑
i1=1

· · ·
∞∑

it=1

(i1 · · · it)n
i1! · · · it! , (1)

where, again, M (t)
n is the number of t-tuples of partitions satisfying

π1 ∧ π2 ∧ · · · ∧ πt = {{1}, {2}, . . . , {n}}.
A striking feature of Pittel’s formula is its resemblance to Dobinski’s formula (see [6])

Bn = e−1
∞∑
i=1

in

i!
,

or its t-th power:

(Bn)
t = e−t

∞∑
i1=1

· · ·
∞∑

it=1

(i1 · · · it)n
i1! · · · it! .

A collection of t partitions will have nontrivial meet precisely when there is at least
one pair of integers i and j which belong to the same block in all t of the partitions. Let
X be the set of all t-tuples of partitions, and let (i, j) be the property that when the meet
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of a t-tuple is formed, elements i and j are still in the same block. Then, by the Corollary
of the previous section,

M (t)
n =

n∑
k=1

s(n, k)(Bk)
t. (2)

Herb Wilf pointed out that the previous identity is equivalent to, (1). Indeed,

e−t
∞∑

i1=1

· · ·
∞∑

it=1

(i1 · · · it)n
i1! · · · it! = e−t

∞∑
i1=1

· · ·
∞∑

it=1

∑n
k=1 s(n, k)(i1 · · · it)k

i1! · · · it!

=
n∑

k=1

s(n, k)
(
e−1

∞∑
i=1

ik

i!

)t

=
n∑

k=1

s(n, k)(Bk)
t,

proving the theorem.

4 Proof of the First Equality in Theorem 1

Since (see for example [1])

∑
n≥0

s(n, k)
xn

n!
=

(log(1 + x))k

k!
,

equation (2) is equivalent to

[
xn

n!
]Mt(x) =

∑
k≥0

(Bk)
t [

xn

n!
]
(log(1 + x))k

k!
.

The linear operator [x
n

n!
], “take the coefficient of xn

n!
,” can be moved outside the summation

on the right. Then, we may drop the [x
n

n!
] from both sides, leaving an identity. The identity

is exactly the first equality in Theorem 1, after substituting ex − 1 for x.

5 Proof of the Second Equality in Theorem 1

There is a Basic Principle of Exponential Generating Functions which says that if J(x) is
the egf of certain labeled combinatorial objects, then exp{J(x)−1} is the egf for partitions
of n with a J-object built on each block. A very good account of this exponential formula
is given in [7], Chapter 3. It suffices, therefore, to establish a bijection

Πn × Πn × · · · × Πn︸ ︷︷ ︸
t factors

←→ Qn t (3)

where Qn t consists of all sets of t-tuples of partitions

{ (x1 1, x1 2, . . . x1 t), . . . , (x
 1, x
 2, . . . x
 t) } (4)
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with the property that each join

xi 1 ∨ xi 2 ∨ · · · ∨ xi t

is a one-block partition {Si}, where Si ⊆ [n] and {Si : 1 ≤ i ≤ �} is a partition of [n]. To
repeat for clarity, each member ofQn t is a nonempty set (whose size is denoted here � ≥ 1),
each element of which is a t-tuple (xi 1, . . . , xi t). The various xi j are themselves partitions
of a set Si ⊆ [n]; the join (over j) of the xi j equals {Si}; and π = {Si : 1 ≤ i ≤ �} is a
partition of [n].

Once the definition of the set Qn t has been comprehended, the bijection (3) with the
Cartesian product (Πn)

t is fairly natural. In the direction −→, let a t-tuple of partitions
(π1, . . . , πt), be given. Let π = {Si : 1 ≤ i ≤ �} be their join. The partitions xi j ,
(1 ≤ i ≤ �, 1 ≤ j ≤ t), are the nonempty intersections of the blocks of πj with the set Si.

In the other direction ←−, let T be a set of the form (4), consisting of t-tuples of
partitions xi j . We know that each join ∨t

j=1xi j is a one-block partition {Si}. Since xi j is
a partition of Si, and {Si : 1 ≤ i ≤ �} is itself a partition of [n], it follows that

πj = x1 j ∪ x2 j ∪ · · · ∪ x
 j

is a partition of [n]. The t-tuple (π1, π2, . . . πt) so formed is the one to be associated by
the bijection with the initially given set T .

6 Calculations

The equation (2) yields efficient calculation ofM (2)
n . By differentiating the second equality

of Theorem 1, we obtain, by a familiar technique, the recursion

J
(t)
n+1 = (Bn+1)

t −
n∑

j=1

(
n

j

)
(Bj)

tJ
(t)
n−j+1, n ≥ 0, (5)

and this permits efficient calculation of J (t)
n . By these means we determine the following

table for t = 2.
n M (2)

n J (2)
n

0 1 1
1 1 1
2 3 3
3 15 15
4 113 119
5 1153 1343
6 15125 19905
7 245829 369113
8 4815403 8285261
9 111308699 219627683
10 2985997351 6746244739
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7 Proof of Theorem 3

To simplify and avoid proliferation of cases, we take t = 2 and accuracy n−2; the method
can be adapted for any fixed t ≥ 2, and any desired accuracy. It is an iterative method,
and we need an initial estimate. From [5] we know

J (2)
n = (Bn)

2 (1 + O(r3/n)), (6)

where r is the positive real solution of rer = n. By the Moser-Wyman method [4] we have

Bn+1

Bn
=

n + 1

r
(1 + O(n−1)), (7)

and from the recursion (5),

J
(2)
n+1

(Bn+1)2
= 1 − n

J (2)
n

(Bn+1)2
− 1

(Bn+1)2

n∑
j=2

(
n

j

)
(Bj)

2J
(2)
n+1−j.

We bound the summation above by replacing J
(2)
n+1−j with (Bn+1−j)

2. The resulting con-
volution can be further bounded as in the proof of Theorem 5 in [5]; namely, it is the
terms at the extreme ends of the sum which dominate:

1

(Bn+1)2

n∑
j=2

(
n

j

)
(BjBn+1−j)

2 = O(r4/n2).

With
J (2)

n

(Bn+1)2
=

J (2)
n

(Bn)2
(

Bn

Bn+1

)2,

the bound for the summation, (6), and (7) we have

Jn

(Bn)2
= 1 − r2

n
+ O(r5/n2).

(When we replace n by n − 1, we must replace r by r + O(n−1).) We now repeat the
process. This time we substitute into

Jn+1

(Bn+1)2
= 1 − n

J (2)
n

(Bn+1)2
− 4

(
n

2

)
J

(2)
n−1

(Bn+1)2
− J

(2)
1 (

Bn

Bn+1

)2

− 1

(Bn+1)2

n−1∑
j=3

(
n

j

)
(Bj)

2J
(2)
n+1−j ,

using in place of (7) the more accurate

Bn+1

Bn
=

n+ 1

r
(1− 2 + 4r + r2

2(r + 1)2n
+O(r2/n2)),

and
1

(Bn+1)2

n−1∑
j=3

(
n

j

)
(BjBn+1−j)

2 = O(r6/n3).

The result, after some algebra, including this time a replacement of n by n− 1 and of r
by r − r/(1 + r)n+O(n−2), is the formula stated as Theorem 3.
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8 A Generalization in Terms of Whitney Numbers

In the lattice Πn, 0 is the finest partition {{1}, . . . , {n}}, and 1 is the coarsest {{1, . . . , n}}.
The intervals of Πn have an interesting recursive structure. Consider first an interval of
the form [π, 1] Observe that the latter interval is isomorphic to Πk, where π has k blocks.
Now, if we take any t-tuple of partitions, and form their meet, we obtain some partition
π. Thus, we can count all t-tuples according to their meet, as follows:

(Bn)
t =

∑
k

S(n, k)M
(t)
k .

This provides, by inversion, another proof and further understanding of equation 2. We
can formalize this as follows.

Theorem 4 Let Ln be a sequence of lattices with rank(1) = n. Assume that each interval

[x, 1] ⊆ Ln is isomorphic to Lk if x ∈ Ln and rank(x) = n−k. If M
(t)
L n equals the number

of t-tuples of points in Ln whose meet is 0, then

|Ln|t =
∑
k

Wn−kM
(t)
L k,

where Wk are the Whitney numbers of the second kind, the number of elements of rank k.

As an example, consider the lattice Bn of subsets of [n]. Theorem 4 tells us

2nt =
∑
k

(
n

k

)
M

(t)
B k.

By inversion, we conclude there are

∑
k

(−1)k
(
n

k

)
2tk = (2t − 1)n

t-tuples of subsets of [n] whose intersection is empty.
A similar remark can be made for the join operation in Πn. Namely, the interval [0, π]

is isomorphic to a Cartesian product of λ1 copies Π1 with λ2 copies Π2, etc., where the
shape of partition π is 1λ1 , . . . nλn . Hence,

(Bn)
t =

∑
λ�n

n!∏
i(i!)λiλi!

∏
i

(J
(t)
i )

λi .

In this equation, the fraction on the right is the well known [1] formula for the number
of partitions of shape λ. This identity is equivalent to the second equality of Theorem 1.
We will not formulate a generalization, since no examples other than Πn come to mind!
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