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We present a model of opinion dynamics in which agents adjust continuous opinions as a result of random

binary encounters whenever their difference in opinion is below a given threshold. High thresholds yield

convergence of opinions toward an average opinion, whereas low thresholds result in several opinion clusters.

The model is further generalized to network interactions, threshold heterogeneity, adaptive thresholds, and

binary strings of opinions. � 2002 Wiley Periodicals, Inc.
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T
he present work was initially motivated by an empiri-

cal study about the diffusion of environmentally

friendly practices (agri-environmental measures)

among European farmers [1]. From 1992 Common Agricul-

tural Policy (CAP) of European Communities was changed

from the postwar policy of financially supporting produc-

tion to a financial support of environmentally friendly prac-

tices such as input (fertilizers and pesticide) reduction, set-

aside, and preservation of biodiversity. The next problem

was the implementation by farmers of the policy defined at

the highest level, the European Commission. Our “IMAGES”

teams then studied the factors and processes, which favor

(or prevent) the adoption by farmers of the new policy. The

empirical data collected through surveys and interviews

with farmers and agricultural counselors are in accordance

with previous literature on the Sociology of Agriculture [2]

and demonstrate that:

● changing practices involves a lot of uncertainties for the

farmer; for instance, fertilizers reduction combined with

best farming practices might imply a complete reorgani-

zation of crop choice and annual rotation.

● To decrease uncertainties, farmers engage in many dis-

cussions with their peers; in addition to the propagation

of information, the interactions between farmers perform

a normative control and a prestige allocation. The nor-

mative control is based on an agreement about what con-

stitutes ‘good’ or ‘bad’ farming practices.

● The specific interviews done in our project showed that

the decision of adopting an agri-environmental measure

is the result of a process, which involves social and infor-

mational influences, sometimes during several years

(for more information about the interviews and data see

Deffuant [3]).
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In this context of numerous information exchanges be-

fore any adoption decision, modeling adoption dynamics

through methods inspired from information contagion is

more appropriate than game theory often used in environ-

mental economics. In the game theoretical approach, pay-

offs are directly learned by switching behaviors, but the

long-term costs of switches are underestimated with re-

spect the “inertial” conditions faced by farmers in Europe:

several-year contracts have to be signed with local author-

ity, and they involve major reorganization of the farm (capi-

tal investment, crop rotation, labor).

A first possibility to model the information diffusion pro-

cess is to use binary state models (the state representing

whether the farmer adopted green practices or not). Such

models correspond to the classical threshold models of in-

novation diffusion developed by sociologists [4, 5]. These

models assume that each individual has a threshold, which

is interpreted as his personal interest to change his behav-

ior. Then, the social pressure is represented as a function of

the number of neighbors who already adopted. The deci-

sion of adoption is based on the sum of the threshold and

this social pressure.

Many models about opinion dynamics [6–10] are based

on binary opinions, which social actors update as a result of

social influence, often according to some version of a ma-

jority rule. Binary opinion dynamics have been well studied,

such as the herd behavior described by economists [6,7,11].

One expects that the attractor of the dynamics will display

uniformity of opinions, either 0 or 1, when interactions oc-

cur across the whole population. Clusters of opposite opin-

ions appear when the dynamics occur on a social network

with exchanges restricted to connected agents. Clustering is

reinforced when agent diversity, such as a disparity in in-

fluence, is introduced [10,12].

One issue of interest concerns the importance of the

binary assumption: what would happen if opinion were a

continuous variable such as the worthiness of a choice (a

utility in economics), or some belief about the adjustment

of a control parameter?

The rationale for binary versus continuous opinions is

related to the kind of information used by agents to validate

their own choice:

● the actual choice of the other agents, a situation common

in economic choice of brands: “do as the others do”;

● or the actual opinion of the other agents, about the

“value” of a choice: “establish one’s opinion according to

what the others think or at least according to what they

say.”

More generally, we expect opinion (rather than choice)

dynamics to occur in situation where agents have to make

important choices and care to collect many opinions before

taking any decisions: adopting a technological change

might often be the case. Political elections also belong to the

same category, because of uncertainties concerning new

candidates, new challenges in the future, long electoral

mandate (especially in Europe), etc. European integration is

an obvious example of a quasi-irreversible decision, which

involved many uncertainties and was subject to all sorts of

discussions among citizens.

Modeling of continuous opinions dynamics was earlier

started by applied mathematicians and focused on the con-

ditions under which a panel of experts would reach a con-

sensus [13–18].

The purpose of this article is to present results concern-

ing continuous opinion dynamics subject to the constraint

that convergent opinion adjustment only proceeds when

opinion difference is below a given threshold. The rationale

for the threshold condition is that agents only interact when

their opinions are already close enough; otherwise they do

not even bother to discuss. The reason for refusing discus-

sion might be for instance lack of understanding, conflicting

interest, or social pressure. The threshold would then cor-

respond to some openness character. Another interpreta-

tion is that the threshold corresponds to uncertainty: the

agents have some initial views with some degree of uncer-

tainty and would not care about other views outside their

uncertainty range.

Social Psychology literature discusses social influence

and the conditions under which individual attitudes and

decisions are influenced by others (see e.g., Petty and Ca-

cioppo [19]). Part of this literature concentrates on how ini-

tial attitudes determine the outcome of interactions [20–22].

One can summarize the general outcome of the reported

experiments as an increase of influence when initial posi-

tions are close enough. The threshold condition that we

introduce here is also used in Axelrod’s model of dissemi-

nating culture [23].

Many variants of the basic idea can be proposed, and the

article is organized as follows:

● We first expose the simple case of complete mixing

among agents under a unique and constant threshold

condition.

● We then check the genericity of the results obtained for

the simplest model to other cases such as localized inter-

actions, distribution of thresholds, varying thresholds,

and binary strings of opinions.

A previous publication [24] and a working paper [25]

report more complete results on several aspects.

2. THE BASIC CASE: COMPLETE MIXING AND ONE

FIXED THRESHOLD
Let us consider a population of N agents i with continuous

opinion xi. We start from an initial distribution of opinions,

most often taken uniform on [0,1] in the computer simula-
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tions. At each time step any two randomly chosen agents

meet: they readjust their opinion when their difference in

opinion is smaller in magnitude than a threshold d. Suppose

that the two agents have opinion x and x�. Iff |x-x�| < d

opinions are adjusted according to

x = x + � � �x� − x� (1)

x� = x� + � � �x − x�� (2)

where � is the convergence parameter whose values may

range from 0 to 0.5.

In the basic model, the threshold d is taken as constant

in time and across the whole population. Note that we here

apply a complete mixing hypothesis plus a random serial

iteration mode. (The “consensus” literature most often uses

parallel iteration mode when they suppose that agents av-

erage at each time step the opinions of their neighborhood.

Their implicit rationale for parallel iteration is that they

model successive meetings among experts.)

The evolution of opinions may be mathematically pre-

dicted in the limiting case of small values of d [26]. (The

other extreme is the absence of any threshold, which yields

consensus at infinite time as earlier studied in Stone [13]

and others.) For finite thresholds, computer simulations

show that the distribution of opinions evolves at large times

toward clusters of homogeneous opinions.

● For large threshold values (d > 0.3) only one cluster is

observed at the average initial opinion. Figure 1 repre-

sents the time evolution of opinions starting from a uni-

form distribution of opinions.

● For lower threshold values, several clusters can be ob-

served (see Figure 2). Consensus is then not achieved

when thresholds are low enough.

Obtaining clusters of different opinions does not surprise

an observer of human societies, but this result was not a

priori obvious because we started from an initial configu-

ration where transitivity of opinion propagation was pos-

sible through the entire population: any two agents however

different in opinions could have been related through a

chain of agents with closer opinions. The dynamics that we

describe ended up in gathering opinions in clusters on the

one hand, but also in separating the clusters in such a way

that agents in different clusters do not exchange anymore.

The number of clusters varies as the integer part of 1/2d:

this is to be further referred to as the “1/2d rule” (see Figure

3; notice the continuous transitions in the average number

of clusters when d varies. Because of the randomness of the

initial distribution and pair sampling, any prediction on the

FIGURE 3

Statistics of the number of opinion clusters as a function of d on

the x-axis for 250 samples (µ = 0.5, N = 1000).

FIGURE 1

Time chart of opinions (d = 0.5 µ = 0.5 N = 2000). One time unit

corresponds to sampling a pair of agents.

FIGURE 2

Time chart of opinions for a lower threshold d = 0.2 (µ = 0.5, N

= 1000).
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outcome of dynamics such as the 1/2d rule can be ex-

pressed as true with a probability close to one in the limit of

large N, but one can often generate a deterministic se-

quence of updates which would contradict the “most likely”

prediction.).

3. SOCIAL NETWORKS
The literature on social influence and social choice also

considers the case when interactions occur along social

connections between agents [6] rather than randomly

across the whole population. Apart from the similarity con-

dition, we now add to our model a condition on proximity,

i.e., agents only interact if they are directly connected

through a pre-existing social relation. Although one might

certainly consider the possibility that opinions on certain

unsignificant subjects could be influenced by complete

strangers, we expect important decisions to be influenced

by advice taken either from professionals (doctors, for in-

stance) or from socially connected persons (e.g., through

family, business, or clubs). Facing the difficulty of inventing

a credible instance of a social network as in the literature on

social binary choice, we here adopted the standard simpli-

fication and carried out our simulations on square lattices:

square lattices are simple, allow easy visualization of opin-

ion configurations, and contain many short loops, a prop-

erty that they share with real social networks.

We then started from a two-dimensional (2D) network of

connected agents on a square grid. Any agent can only in-

teract with his four connected neighbors (N, S, E, and W).

We used the same initial random sampling of opinions from

0 to 1 and the same basic interaction process between

agents as in the previous sections. At each time step a pair

is randomly selected among connected agents, and opinions

are updated according to Equations 1 and 2 provided of

course that their distance is less than d.

The results are not very different from those observed

with nonlocal opinion mixing as described in the previous

section, at least for the larger values of d (d > 0.3, all results

displayed in this section are equilibrium results at large

times).

As seen in Figure 4, the lattice is filled with a large ma-

jority of agents who have reached consensus around x = 0.5,

whereas a few isolated agents have “extremists” opinions

closer to 0 or 1. The importance of extremists is the most

noticeable difference with the full mixing case described in

the previous section.

Interesting differences are noticeable for the smaller val-

ues of d < 0.3 as observed in Figure 5.

For connectivity 4 on a square lattice, only one cluster

percolates [27] across the lattice. All agents of the percolat-

ing cluster share the same opinion as observed on Figure 4,

but for d < 0.3 several opinion clusters are observed and

none percolates across the lattice.

Similar opinions, but not identical, are shared across

several clusters. The differences of opinions between groups

of clusters relate to d, but the actual values inside a group of

clusters fluctuate from cluster to cluster because homogeni-

zation occurred independently among the different clusters:

the resulting opinions depend on fluctuations of initial

opinions and histories from one cluster to the other. The

same increase in fluctuations compared to the full mixing

FIGURE 5

Display of final opinions of agents connected on a square lattice

of size 29 × 29 (d = 0.15 µ = 0.3 after 100.000 iterations). Color

code: purple 0.14, light blue 0.42, red 0.81–0.87. Note the pres-

ence of smaller clusters with similar but not identical opinions.

FIGURE 4

Display of final opinions of agents connected on a square lattice

of size 29 × 29 (d = 0.3 µ = 0.3 after 100,000 iterations). Opinions

between 0 and 1 are coded by gray level (0 is black and 1 is

white). Note the percolation of the large cluster of homogeneous

opinion and the presence of isolated “extremists.”

58 C O M P L E X I T Y © 2002 Wiley Periodicals, Inc.



case is observed from sample to sample with the same pa-

rameter values.

The qualitative results obtained with 2D lattices should

be observed with any connectivity, either periodic, random,

or small world.

The above results were obtained when all agents had the

same invariant threshold. The purpose of the following sec-

tions is to check the general character of our conclusions:

● when one introduces a distribution of thresholds in the

population;

● when the thresholds themselves obey some dynamics.

4. HETEROGENEOUS CONSTANT THRESHOLD
Supposing that all agents use the same threshold to decide

whether to take into account the views of other agents is a

simplifying assumption. When heterogeneity of thresholds

is introduced, some new features appear. To simplify the

matter, let us exemplify the issue in the case of a bimodal

distribution of thresholds, for instance, 8 agents with a large

threshold of 0.4 and 192 with a narrow threshold of 0.2 as in

Figure 6.

One observes that in the long run, convergence of opin-

ions into one single cluster is achieved because of the pres-

ence of the few “open minded” agents (the single cluster

convergence time is 12,000, corresponding to 60 iterations

per agent on average, for the parameters of Figure 6). How-

ever, in the short run, a metastable situation with two large

opinion clusters close to opinions 0.35 and 0.75 is observed

because of narrow minded agents, with open minded

agents opinions fluctuating around 0.5 because of interac-

tions with narrow minded agents belonging to either high or

low opinion cluster. Because of the few exchanges with the

high d agents, low d agents opinions slowly shift toward the

average until the difference in opinions between the two

clusters falls below the low threshold: at this point the two

clusters collapse.

This behavior is generic for any mixtures of thresholds.

At any time scale, the number of clusters obeys a “general-

ized 1/2d rule”:

● on the long run clustering depends on the higher threshold;

● on the short run clustering depends on the lower threshold;

● the transition time between the two dynamics is propor-

tional to the total number of agents and to the ratio of

narrow minded to open minded agents.

In some sense, the existence of a few “open minded”

agents seems sufficient to ensure consensus after a large

enough time for convergence. The next section restricts the

validity of this prediction when threshold dynamics are

themselves taken into account.

5. THRESHOLD DYNAMICS

5.1. The Model
Let us interpret the basic threshold rule in terms of agent’s

uncertainty: agents take into account others’ opinion on the

occasion of interaction because they are not certain about

the worthiness of a choice. They engage in interaction only

with those agents which opinion does not differ too much

from their own opinion in proportion of their own uncer-

tainty. If we interpret the threshold for exchange as the

agent uncertainty, we might suppose with some rationale

that his subjective uncertainty decreases with the number of

opinion exchanges.

Taking opinions from other agents can be interpreted, at

least by the agent himself, as sampling a distribution of

opinions. As a result of this sampling, agents should update

their new opinion by averaging over their previous opinion

and the sampled external opinion and update the variance

of the opinion distribution accordingly.

Within this interpretation, a “rational procedure” (in the

sense of Herbert Simon) for the agent is to simultaneously

update his opinion and his subjective uncertainty. Let us

write opinion updating as weighting one’s previous opinion

x(t � 1) by � and the other agent’s opinion x�(t � 1) by 1 �

�, with 0 < � < 1. � is a “confidence” parameter weighting

how much the agent trust his own opinion with respect to

those of others. � can be rewritten � = 1 � (1/n), where n

expresses a characteristic number of opinions taken into

account in the averaging process. n � 1 is then a relative

weight of the agent previous opinion as compared to the

newly sampled opinion weighted 1. Within this interpreta-

tion, updates of both opinion x and variance v should be

written:

x �t� = � � x �t − 1� + �1 − �� � x��t − 1� (3)

v �t� = � � v �t − 1� + � � �1 − �� � �x �t − 1� − x��t − 1��
2. (4)

FIGURE 6

Time chart of opinions (N = 200). Red + represent narrow-minded

opinions (192 agents with threshold 0.2), green × represent open-

minded opinions (8 agents with threshold 0.4).
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The second equation simply represents the change in

variance when the number of samples increases from n � 1

at time t � 1 to n at time t. It is directly obtained from

the definition of variance as a weighted sum of squared

deviations.

As previously, updating occurs when the difference in

opinion is lesser than a threshold, but this threshold is now

related to the variance of the distribution of opinions

sampled by the agent. A simple choice is to relate the

threshold to the standard deviation �(t) according to:

d�t� = ���t�, (5)

where � is a constant parameter often taken equal to 1 in the

simulations.

When an agent equally values collected opinions inde-

pendently of how old they are, he should also update his

confidence parameter � in connection with n(t) � 1 the

number of previously collected opinions (This expression is

also used in the literature about “consensus” building to

describe “hardening” of agents’ opinions as in Chatterjee

and Seneta [14] and Cohen et al. in 1986 [15].):

��t� =
n�t� − 1

n�t�
� ��t − 1�. (6)

Another possible updating choice is to maintain � con-

stant, which corresponds to taking a moving average on

opinions and giving more importance to the n later col-

lected opinions. Such a “bounded” memory would make

sense in the case when the agent believes that there exists

some slow shift in the distribution of opinions, whatever its

cause, and that older opinions should be discarded.

Both algorithms were tried in the simulations and give

qualitatively similar results in terms of the number of at-

tractors, provided that one starts from an initial number of

supposed trials n(0) corresponding to the same �. The only

difference concerns the dynamics of convergence:

● In the case of constant confidence �, convergence is ex-

ponential: thresholds, variances, and distances to attrac-

tors decay exponentially versus the number of updates

experienced by the agents.

● In the case of adjustable confidence �, convergence is

hyperbolic: variances and distances to attractors decay as

the inverse number of updates (thresholds vary as the

inverse square root of this number).

These scaling are predicted using simple approximations

and verified by simulation.

5.2. SIMULATION RESULTS
When compared with constant threshold dynamics, de-

creasing thresholds results in a larger variety of final opin-

ions. For initial thresholds values, which would have ended

in opinion consensus, one observes a number of final clus-

ters, which decreases with � (and thus with n).

Observing the chart of final opinions versus initial opin-

ions on Figure 7, one sees that most opinions converge to-

ward two clusters (at x = 0.60 and x = 0.42), which are closer

than those one would obtain with constant thresholds (typi-

cally around x = 0.66 and x = 0.33): initial convergence gath-

ered opinions which would have aggregated at the initial

threshold values (0.5), but which later segregated because of

the decrease in thresholds. Many outliers are apparent on

the plot.

Large values of �, close to one, e.g., n > 7, correspond to

averaging on many interactions. The interpretation of large

� and n is that the agent has more confidence in his own

opinion than in the opinion of the other agent with whom

he is interacting, in proportion with n � 1. For constant

values of �, the observed dynamics is not very different from

what we obtained with constant thresholds (Figure 8).

A more complicated dynamics is observed for lower val-

ues of n and � which correspond to a fast decrease of the

thresholds, thus preventing the aggregation of all opinions

into large clusters. Apart from the main clusters, one also

observes smaller clusters plus outliers (already present on

Figure 7).

For d (0) = 0.5 (which would yield consensus with only

one cluster if kept constant) and � = 0.5 (corresponding to n

= 2, i.e., agents giving equal weight to their own opinion and

FIGURE 7

Each point on this chart represents the final opinion of one agent

versus its initial opinion (for constant � = 0.7 � = 1.0 N = 1000,

initial threshold 0.5).
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to the external opinion), more than 10 clusters unequal in

size are observed plus isolated outliers. One way to charac-

terize the dispersion of opinions with varying � is to com-

pute y the relative value of the squared cluster sizes with

respect to the squared number of opinions.

y =

�
i=1

n

si
2

��
i=1

n

si�2

(7)

For m clusters of equal size, one would have y = 1/m. The

smaller y, the more important is the dispersion in opinions.

Figure 8 shows the increase of the dispersion index y with

n (n � 1 is the initial “subjective” weight of agent’s own

opinion).

The time pattern of thresholds appearing as green bands

on Figure 9 gives us some insight on these effects. Because

opinion exchange decays variance by an approximately

constant factor close to �, each individual green band cor-

responds to a given number of opinion exchanges experi-

enced by the agents: the upper band corresponds to the

variance after one exchange, the second upper to two ex-

changes, and so on. The horizontal width of a band corre-

sponds to the fact that different agents are experiencing the

same number of updates at different times: rough evalua-

tions made on Figure 9 show that most agents have their

first exchange between time 0 and 4000, and their fifth ex-

change between 1000 and 12,000.

When the decrease of threshold and the clustering of

opinions is fast, those agents that are not sampled early

enough and/or not paired with close enough agents can be

left over from the clustering process. When they are

sampled later, they might be too far from the other agents to

get involved into opinion adjustment. The effect gets im-

portant when convergence is fast, i.e., when n and � are

small.

Let us note that these agents in the minority have larger

uncertainty and are more “open to discussion” than those

in the mainstream, in contrast with the common view that

eccentrics are opinionated!

The results of the dynamics are even more dispersed for

lower values of �. In this regime, corresponding to “insecure

agents” who do not value their own opinion more than

those of other agents, we observe more clusters which im-

portance and localization depend on the random sampling

of interacting agents and are thus harder to predict than in

the other regime with a small number of big clusters.

Using a physical metaphor, clustering in the small � re-

gime resembles fast quenching to a frozen configuration,

thus maintaining many “defects” (e.g., here the outliers),

whereas in the opposite large � regime it resembles slow

annealing (with suppression of defects).

6. VECTOR OPINIONS

6.1. The Model
Another subject for investigation is vectors of opinions.

Usually people have opinions on different subjects, which

can be represented by vectors of opinions. In accordance

with our previous hypotheses, we suppose that one agent

interacts concerning different subjects with another agent

according to some distance with the other agent’s vector of

opinions. In order to simplify the model, we revert to binary

opinions. An agent is characterized by a vector of m binary

FIGURE 8

Variation of the dispersion index y with n, the initial “subjective”

number of collected opinions (� = 1 − 1/n, d (0) = 0.5 � = 1.0 N

= 1000). Small values of y correspond to several attractors, larger

values close to one to a single attractor. The initial threshold value

of 0.5 if kept constant would yield consensus with only one cluster.

FIGURE 9

Time chart of opinions and thresholds (for constant � = 0.7 d (0)

= 0.4 � = 0.5 N = 1000). Red + represent opinions and green ×

represent thresholds.
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opinions about the complete set of m subjects, shared by all

agents. We use the notion of Hamming distance between

binary opinion vectors (the Hamming distance between two

binary opinion vectors is the number of different bits be-

tween the two vectors). Here, we only treat the case of com-

plete mixing; any pair of agents might interact and adjust

opinions according to how many opinions they share. (The

bit string model shares some resemblance with Axelrod’s

model of disseminating culture [23] based on adjustment of

cultures as sets of vectors of integer variables characterising

agents on a square lattice.) The adjustment process occurs

when agents agree on at least m � d subjects (i.e., they

disagree on d � 1 or fewer subjects). The rules for adjust-

ment are as follows: when opinions on a subject differ, one

agent (randomly selected from the pair) is convinced by the

other agent with probability �. Obviously this model has

connections with population genetics in the presence of

sexual recombination when reproduction only occurs if ge-

nome distance is smaller than a given threshold. Such a

dynamics results in the emergence of species (see Higgs and

Derrida [28]). We are again interested in the clustering of

opinion vectors. In fact clusters of opinions here play the

same role as biological species in evolution.

6.2. RESULTS
We observed once again that � and N only modify conver-

gence times toward equilibrium; the most influential factors

are threshold d and m the number of subjects under dis-

cussion. Most simulations were done for m = 13. For N =

1000, convergence times are of the order of 10 million pair

iterations. For m = 13:

● When d > 3, convergence toward a single opinion (con-

sensus) is observed (with the exception of one or two

outliers for the lower values of d).

● For d = 3, one observes from 2 to 7 significant peaks (with

a population larger than 1%) plus some isolated opinions.

● For d = 2 a large number (around 500) of small clusters is

observed.

The same kind of results are obtained with other values

of m: two regimes, uniformity of opinions for larger d values

and extreme diversity for smaller d values, are separated by

one dc value for which a small number of clusters is ob-

served (e.g., for m = 21, dc = 5. dc seems to scale in propor-

tion with m).

Figure 10 represents these populations of the different

clusters at equilibrium (iteration time was 12,000,000) in a

log-log plot according to their rank-order of size. No scaling

law is obvious from these plots, but we observe the strong

qualitative difference in decay rates for various thresholds d.

7. CONCLUSION
The main lesson from this set of simulations is that opinion

exchanges restricted by a small proximity threshold result

into clustering of opinions as opposed to consensus in the

absence of threshold or for large thresholds.

When one gets more specific, some differences appear

between the case of continuous opinions and binary strings:

● Binary strings display an abrupt phase transition from

consensus to a large multiplicity of clusters when d de-

creases.

● By contrast, for continuous opinions, the change in the

number of attractors as a function of threshold is graded.

The 1/2d rule predicts the outcome of the dynamics in

the simplest cases, but it also provides some qualitative

insight for the case of threshold dynamics.

When we introduced dynamics on thresholds on the ba-

sis that agents interpret opinion exchange as sampling a

distribution of opinions, a surprising result was that the

nature of opinion and threshold updating only changes the

scaling law for the time of convergence; rather, the impor-

tant parameter which determines the distribution of attrac-

tors is � the initial self-confidence of the agents.

On the other hand, what we have shown here is that

clustering of opinions does not automatically imply as a

cause conflicting interests or more simply a diversity of in-

terests and opportunities. In other words, clustering of

opinions might result from the history of agents without any

structural diversity.

The formal model was introduced to represent continu-

ous opinion dynamics among groups of farmers facing un-

certainties concerning the economic and/or social value of

a choice; its possible range of application goes far beyond

technological change issues. Obviously what we said about

opinions sometimes applies to beliefs. The binary string dy-

namics, e.g., is an interesting approach to political debates.

FIGURE 10

Log-log plot of average populations of clusters of opinions ar-

ranged by decreasing order for N = 1000 agents (µ = 1).
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The continuous opinion dynamics can also bring some in-

sight on the emergence of discrete coding of continuous

variables, e.g., the emergence of lexicon (how big is big?).
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