
Meet-in-the-Middle and Impossible Differential

Fault Analysis on AES

Patrick Derbez1, Pierre-Alain Fouque1, and Delphine Leresteux2

1 École Normale Supérieure, 45 rue d’Ulm, F-75230 Paris CEDEX 05
2 DGA Information Superiority, BP7, 35998 Rennes Armées

{patrick.derbez,pierre-alain.fouque}@ens.fr,
delphine.leresteux@dga.defense.gouv.fr

Abstract. Since the early work of Piret and Quisquater on fault attacks
against AES at CHES 2003, many works have been devoted to reduce
the number of faults and to improve the time complexity of this attack.
This attack is very efficient as a single fault is injected on the third round
before the end, and then it allows to recover the whole secret key in 232

in time and memory. However, since this attack, it is an open problem
to know if provoking a fault at a former round of the cipher allows to
recover the key. Indeed, since two rounds of AES achieve a full diffusion
and adding protections against fault attack decreases the performance,
some countermeasures propose to protect only the three first and last
rounds. In this paper, we give an answer to this problem by showing two
practical cryptographic attacks on one round earlier of AES-128 and for
all keysize variants. The first attack requires 10 faults and its complexity
is around 240 in time and memory, an improvement allows only 5 faults
and its complexity in memory is reduced to 224 while the second one
requires either 1000 or 45 faults depending on fault model and recovers
the secret key in around 240 in time and memory.

Keywords: AES, Differential Fault Analysis, Fault Attack, Impossible
Differential Attack, Meet-in-the-Middle Attack.

1 Introduction

Fault Analysis was introduced in 1996 by Boneh et al. [8] against RSA-CRT
implementations and soon after Biham and Shamir described differential fault
attack on the DES block cipher [4]. Several techniques are known today to pro-
voke faults during computations such as provoking a spike on the power supply, a
glitch on the clock, or using external methods based on laser, Focused Ion Beam,
or electromagnetic radiations [18]. These techniques usually target hardware or
software components of smartcards, such as memory, register, data or address
bus, assembly commands and so on [1]. After a query phase where the adver-
sary collects pairs of correct and faulty ciphertexts, a cryptographic analysis of
these data allows to reveal the secret key. The knowledge of a small difference
at an inner computational step allows to reduce the analysis to a small number

B. Preneel and T. Takagi (Eds.): CHES 2011, LNCS 6917, pp. 274–291, 2011.
c© International Association for Cryptologic Research 2011

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 275

of rounds of a block cipher for instance. On the AES block cipher, many such
attacks have been proposed [6,14,17,23,27] and the first non trivial and the most
efficient attack has been described by Piret and Quisquater in [27].

Related Works. The embedded software and hardware AES implementations
are particularly vulnerable to side channel analysis [5,7,30]. Considering fault
analysis, it exists actually three different categories of attacks. The first category
is non cryptographic and allows to reduce the number of rounds by provoking a
fault on the round counter [1,11]. In the second category, cryptographic attacks
perform fault in the state during a round [6,14,17,23,27] and in the third category,
the faults are performed during the key schedule [10,17,31].

Several fault models have been considered to attack AES implementations.
The first one and the less common is the random bit fault [6], where a fault
allows to switch a specific bit. The more realistic and widespread fault model is
the random byte fault model used in the Piret-Quisquater attack [27], where a
byte somewhere in the state is modified. These different fault models depend on
the technique used to provoke the faults.

Piret and Quisquater described a general Differential Fault Analysis (DFA),
against Substitution Permutation Network schemes in [27]. Their attack uses a
single random byte fault model injected between the two last MixColumns of
AES-128. They exploited only 2 pairs of correct and faulty ciphertexts. Since
this article was published in 2003, many works have proposed to reduce the
number of faults needed in [24,32], or to apply this attack to AES-192 and to
AES-256 [20].

There exist two kinds of countermeasures to protect AES implementations
against fault attacks. The first category detects fault injection with hardware
sensors for instance. However, they are specifically designed for one precise fault
injection mean and do not protect against all different fault injection techniques.
The second one protects hardware implementation against fault effects. This
kind of countermeasures increases the hardware surface requirement as well as
the number of operations. As a consequence, there is a tradeoff between the
protection and the efficiency and countermeasures essentially only protect from
existing fault attacks by taking into account the known state-of-the-art fault
analysis. Therefore, the first three and the last three rounds used to be pro-
tected [12]. The same kind of countermeasures has been performed on DES
implementation and a rich literature has been devoted to increase the number
of attacked rounds as it is done in [28]. Securing AES implementation consists
in duplicating rounds, verifying operation with inverse operation for non-linear
operations and with complementary property for linear ones, for example. More-
over, another approach computes and associates to each vulnerable intermediate
value a cyclic redundancy checksum or, an error detection or correction code, for
instance fault detection for AES S-Boxes [19] as it has been proposed at CHES
2008. Our attacks could target any operation between MixColumns at the 6th

round and MixColumns at the 7th round. Another countermeasure consists in
preventing from fault attack inside round [29]. However, it is possible to perform
fault injection between rounds.

276 P. Derbez, P.-A. Fouque, and D. Leresteux

Our Results. We show that it is possible to mount realistic attacks between
MixColumns at the 6th round and MixColumns at the 7th round on AES-128.
In particular, we present one new attack and improve a second one at the 7th

round on AES-128. We mount our attacks in two different fault models. The first
attack corresponds of a strong adversary who could choose or know the attacked
byte at the chosen round. The cryptographic analysis relies on a meet-in-the-
middle and its complexity is around 242 in time and memory. It only requires
10 pairs of correct and faulty ciphertexts. Recently, in [9], authors developed
automatic tool that allows us to automatically recover an improved attack with
only 5 pairs and 224 in memory. The second attack describes an adversary that
targets any byte among 16 bytes of the inner state at the targeted round. It uses
ideas similar to impossible differential attack and allows to recover the secret key
using around 240 time. However, this attack requires 1000 pairs. If the position
is fixed, the number of faults is reduced to 45. We have verified this attack
experimentally using glitch fault on the clock on an embedded microprocessor
board which contains an AES software and simulated these two last attacks.
Finally, we extend all the attacks to AES-192 and AES-256.

Table 1. Summary of Differential Fault Analysis presented in this paper

Attack Section Fault model # of faults AES-128 AES-192 &
cost AES-256 cost

Meet-in-the-Middle 3.2 known byte 10 � 240 � 240

Meet-in-the-Middle 3.3 unknown byte 10 � 260 � 260

Meet-in-the-Middle 3.4 fixed unknown byte 5 � 240 � 240

Impossible 4.2 random unknown byte 1000 � 240 � 240

Impossible 4.3 fixed unknown byte 45 � 240 � 240

Organization of the Paper. In Section 2, we recall the backgrounds on AES
and on the Piret-Quisquater attack. Then, we describe our meet-in-the-middle
and our impossible differential attack on the 7th round in Sections 3 and 4 for
AES-128. Finally, in Section 5, we extend these results to the other versions of
AES.

2 Backgrounds and Previous Attacks

In this section, we recall the AES operations and we briefly explain how the
Piret-Quisquater attack works.

2.1 Description of the AES

AES [15] has a 128-bit input block and can be used with three different key-
sizes 128, 192 or 256-bit. It iterates 10 rounds (resp. 12 and 14) for the 128-bit
version (resp. for the 192-bit version and for the 256-bit version). According to

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 277

Fig. 1. SubBytes, ShiftRows and MixColumns operations [15]

the bitlength version, we define n as the number of rounds. In Figure 1, we de-
scribe one round of the AES which is a composition of the SubBytes, ShiftRows,
MixColumns and AddRoundKey operations.

SubBytes (SB). This operation substitutes a value to another one according
to the permutation table S-Box, which associates 256 input toward 256 output
values. Its goal is to mix non-linearly the bits into one byte.

ShiftRows (SR). This operation changes byte order in the state depending on
the row. Each row has its own permutation. The first row changes nothing, the
second row is rotated by one position to the left, the third row is rotated by two
positions to the left, the fourth row is rotated by three positions to the left.

MixColumns (MC). This operation linearly mixes state bytes by columns
and consists in the multiplication of each columns of the state by an MDS
matrix (Maximum Distance Separable) in the finite field GF (28). We will use
the property that, when the input column has one non-null difference in one
byte, all the bytes after this operation have a non-null difference.

AddRoundKey Operation (ARK). This operation is only a XOR between
intermediate state and the subkey generated by the key schedule.

KeySchedule. The key schedule, which derives the symmetric key K, is com-
posed of two operations, RotWord and SubWord. RotWord is a circular per-
mutation of four elements of one column. SubWord operation corresponds to
SubBytes. It is well-known that one subkey of AES-128 allows to retrieve mas-
ter key K and two consecutive subkeys of AES-192 and AES-256 allow to recover
the whole key K. We denote by K10 the last subkey of AES-128 and by K10(0)
the first byte of the last subkey of AES-128.

2.2 Previous Differential Fault Analysis

In [27], Piret and Quisquater assume a fault injection on one byte during the state
computation between the 2 last MixColumns on AES-128 as it is represented
in the Figure 2. This attack allows to recover the last subkey in 240 in time
and 232 in memory. The idea of the attack consists of expressing 4 differential
equation systems at the beginning of the last round state S12. One system is
described for each column like equation system (1), where X denotes a non-null

278 P. Derbez, P.-A. Fouque, and D. Leresteux

Fig. 2. State-of-the-art differential fault analysis on AES-128

byte difference in state S10. After collecting two couples of correct and faulty
ciphertexts, they entirely retrieve the subkey K10.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SB−1(C(0) ⊕ K10(0)) ⊕ SB−1(C̃(0) ⊕ K10(0)) = X

SB−1(C(13) ⊕ K10(13)) ⊕ SB−1(C̃(13) ⊕ K10(13)) = X

SB−1(C(10) ⊕ K10(10)) ⊕ SB−1(C̃(10) ⊕ K10(10)) = 3X

SB−1(C(7) ⊕ K10(7)) ⊕ SB−1(C̃(7) ⊕ K10(7)) = 2X

(1)

The right-hand side of the equation system is described one round earlier in an-
nexe B. With only one couple of right and wrong associated results, these equa-
tions (1) allow to reduce the possible subkeys from (28)4 = 232 to 28 for each
equation system. Indeed, according to system (1), there are (28)4 = 232 possi-
ble quadruplets of the whole K10:{K10(0), K10(13), K10(10), K10(7)}. Moreover,
there are 240 candidates for {X, K10(0), K10(13), K10(10), K10(7)}, and the 4
equations give a 32-bit constraint, and consequently, the number of solution is
240

232 = 28. Then, instead of using another pair of faulty and correct ciphertext
as it is done in [27], an exhaustive search can be performed at the end. In the
following sections, we will present our differential fault analysis.

3 Meet-in-the-Middle Fault Analysis on AES-128

In our attack, we realize a fault injection on one byte between MixColumns
at the 6th round and MixColumns at the 7th round on AES-128. The fault is
totally diffused at the whole 10th round as the Figure 3 shows it. This fault
analysis requires 10 pairs of correct and faulty ciphertexts. If the attacker knows
exactly which byte is faulted, the complexity of the attack is around 240 in
time and memory. The overall attack consists in expressing the fault path from

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 279

Fig. 3. Overall meet-in-the-middle fault attack on AES-128

the ciphertext to the beginning of the 9th round in the backward direction,
and in the forward direction from the fault injection to the beginning of the
9th round. Figure 3 illustrates the error propagation. A classical cryptographic
attack against AES, such as the square attack [13], allows to add two rounds
after the distinguisher by guessing 5 key bytes. However, this allows to recover
one byte of the state. Here, we need to know two bytes of the state, which depend
each on 5 different key bytes. By using a clever meet-in-the-middle attack as in
the attack of Gilbert and Minier in [16], we are able to recover the key using only
240 space and time. In the following of this section, we explain our differential
fault system, our method to retrieve all bytes of the last subkey of AES-128 and
its complexity.

3.1 From Fault Path to Differential Fault Equations

The left-hand side of the equation (2) describes the fault path from the ciphertext
C at the 10th round toward the state S8 at the beginning of the 9th round. We
obtain:

S8 = SB−1
(
SR−1

(
MC−1

(
ARK−1

(
SB−1

(
SR−1

(
ARK−1(C)

))))))
(2)

We consider each equation byte by byte. The notation S8(x) denotes the value
of the byte x at the state 8. We get the following relations (3) and (4) with S8(0)
and the similar one with S̃8(0) as a function of faulty ciphertext C̃, where MC|0
denotes the projection onto the state into the first byte 0.

280 P. Derbez, P.-A. Fouque, and D. Leresteux

S8(0) = SB−1
(
MC−1|0

(
SB−1 (C(0, 7, 10, 13) ⊕ K10(0, 7, 10, 13)) ⊕ K9(0, 1, 2, 3)

))

(3)

If we define U9(0) for
(
MC−1|0 (K9(0, 1, 2, 3))

)
. Consequently, the byte S8(0)

has the simple expression that depends on 5 unknown bytes, which come key
bytes:

S8(0) = SB−1
(
MC−1|0

(
SB−1 (C(0, 7, 10, 13)⊕ K10(0, 7, 10, 13))

) ⊕ U9(0)
)

(4)
We obtain a differential equation from the difference between the correct and
the faulty state at the end of MixColumns of the 8th round, for example, the
first differential equation system (5).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S8(0) ⊕ S̃8(0) = X

S8(1) ⊕ S̃8(1) = X

S8(2) ⊕ S̃8(2) = 3X

S8(3) ⊕ S̃8(3) = 2X

(5)

where X denotes for example the unknown difference of the first column in state
S6 (see Appendix B). We notice that the difference at the end of MixColumns
of the 8th round is equal to the difference at the end of AddRoundKey of the
8th round for AES-128. As we mentioned before each equation depends on 5
unknown bytes. We can eliminate the unknown X by considering the following
equation:

S8(0) ⊕ S̃8(0) = S8(1) ⊕ S̃8(1). (6)

In the next subsection, we will explain how we solve this equation that depend
on 80 key bits in time and memory 240 using 10 pairs of faulty and correct
ciphertexts.

3.2 Recovery K10

We are interesting in solving 4 difference equations like (5). To simplify the
exposition, we will assume that the fault is injected at a known position. Fur-
thermore, the adversary has 10 pairs of correct and faulty ciphertexts and all
faults are introduced between the MixColumns at the 6th round and the Mix-
Columns at the 7th round. The constant U9(0) is invariant for S8(x) or S̃8(x)
where x ∈ {0, 1, 2, 3} whatever the plaintext value is.

One idea to solve the system is the following. We consider equation (6) for the
ten pairs. Then, we can compute the left hand side for the 240 possible key bytes
and store the ten bytes S8(0)⊕ S̃8(0) and the key bytes in a first list. Then, we
do the same with the right hand side and store the ten bytes S8(1)⊕ S̃8(1) and
the key bytes in a second list. We can merge the two lists, sort them and find
collision for the ten bytes. If there is a collision between the two lists, the values
of the key bytes gives a solution for the 80 key bits. This simple technique allows

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 281

to recover the key bytes in time 245 and memory 241. We can reduce the space
complexity by storing and sorting the list and for each value computed for the
second list, we look at if it is also in the first list.

In the following, we present a technique that avoids to increase the time
complexity too much by using a hash table.

1. The differential state S8(0)⊕ S̃8(0) is calculated for the 5 pairs of faulty and
correct ciphertexts and the results are stored in one hash table according to
the values Si

8(0) ⊕ S̃i
8(0)1≤i≤5in the one hand, and for the 5 others in the

other hand for all possible values of {K10(0), K10(7), K10(10), K10(13), U9(0)}.
These two hash tables have for input index 5 values of S8(0)⊕ S̃8(0) and for
output {K10(0), K10(7), K10(10), K10(13),
U9(0)}.

2. Then we calculate α(S8(1) ⊕ S̃8(1)) for all 10 couples of correct and faulty
ciphertexts, for all possible hypotheses of K10(3), K10(6), K10(9), K10(12)
and U9(13). Where U9(13) = MC−1|13 (K9(12, 13, 14, 15)) and α is known
because fault position is known, i.e α = 1. Therefore, we have a relation (7)
between S8(1) and S8(0) such as:

S8(0) ⊕ S̃8(0) = α(S8(1) ⊕ S̃8(1)) (7)

For each guess for {K10(3), K10(6), K10(9), K10(12), U9(13)}, due to the 5
first S8(0) ⊕ S̃8(0) indexes and the 5 first α(S8(1) ⊕ S̃8(1)) calculations, we
retrieve a very few potential number of solutions {K10(0), K10(7), K10(10),
K10(13), U9(0)} closed to 1 for the first hash table. For the second table,
we obtain similar results too. For each table, we make and arrange a linked
list for the results of {K10(0), K10(7), K10(10), K10(13), U9(0)}. Due to these
two arrangements and only for the right values of {K10(0), K10(7), K10(10),
K10(13), U9(0)}, we have only one intersection between the two linked lists;
that is why we only retrieve 8 bytes of K10 and the value of α is confirmed
for each couple of correct and faulty ciphertexts.

3. We similarly compute β(S8(2)⊕S̃8(2)) for the 10 couples of correct and faulty
ciphertexts, and for all potential subkey bytes of K10(2), K10(5), K10(8),
K10(15) and U9(10), where U9(10) = MC−1|10 (K9(8, 9, 10, 11)). As step 3,
β is known for known fault position, i.e β = 1

3 . We obtain the equation (8):

S8(0) ⊕ S̃8(0) = β(S8(2) ⊕ S̃8(2)) (8)

Due to previous step, we have knowledge of the value S8(0) ⊕ S̃8(0) for the
10 pairs of cipher results. We reuse the previous method of two arranged
linked lists. We retrieve K10(2), K10(5), K10(8), K10(15) and U9(10).

4. As S8(2), we compute S8(3)⊕ S̃8(3) for the 10 correct and faulty ciphertexts
for all possible subkey bytes of {K10(1), K10(4), K10(11), K10(14), U9(7)}.
Where U9(7) = MC−1|7 (K9(4, 5, 6, 7)) and γ = 1

2 . We have the equation (9):

S8(0) ⊕ S̃8(0) = γ(S8(3) ⊕ S̃8(3)) (9)

We also retrieve K10(1), K10(4), K10(11), K10(14), U9(7) as step 3.

282 P. Derbez, P.-A. Fouque, and D. Leresteux

3.3 Cost and Complexity

By the birthday paradox, we have two hash tables with 240 values inside. The
complexity of all the system is also 280. However each equation gives 8-bit con-
straints, so with ten equations we obtain 80-bit constraints. Consequently, with
ten ciphertexts, there is only one solution in our system. Our meet-in-the-middle
fault attack requires around 240 in complexity for AES-128: 240 in memory and
3 × 240 in instructions.

Random Byte Fault Model. In equation (7), α takes on the values { 1
3 , 1, 3

2 , 2}
in case of unknown fault position. Several cases could be studied. In the first
one, we know exactly for each faulty ciphertext byte faulty position, we have
knowledge of α for each equation. In the second one, we use the same method
to inject fault at the same time, we suppose that the same byte is faulted. For
consequences, it multiplies by four the computations. In the third case, the worst,
we make no assumptions on the location of the fault for each pair of correct and
incorrect ciphertexts. In fact for each couple of correct and incorrect results, we
need to compute 4 intermediate results. This operation costs 410 values more, it
costs too much, i.e 260.

3.4 Reduction of Memory Requirement

We suppose that an adversary has a sixtuplet of the correct message and five
faulty ciphertexts, with all five faults on the same byte. In this case, the tool
from [9] allows us to find a similar attack but it requires much less memory, 224

instead of 240.
The previous attack can be schematized as follows :

– Build the four lists, the index 0 corresponds to the correct ciphertext :
• L0 =

{(
K10 (0) , K10 (7) , K10 (10) , K10 (13) , S0

9 (0)
)}

• L1 =
{(

K10 (3) , K10 (6) , K10 (9) , K10 (12) , S0
9 (1)

)}

• L2 =
{(

K10 (2) , K10 (5) , K10 (8) , K10 (15) , S0
9 (2)

)}

• L3 =
{(

K10 (1) , K10 (4) , K10 (11) , K10 (14) , S0
9 (3)

)}

– Each element of Li allows to deduce unique values for ΔSj
8 (i) , j = 1, . . . , 5

is the index of jth faulty ciphertext.
– Look for collisions since the vector

(
ΔSj

8 (0) , . . . , ΔSj
8 (3)

)
must be collinear

with a column vector of the matrix of the MixColumn operation.

To reduce memory, we note that we can build each list in beginning with guessing
ΔS1

8 (0) and ΔS2
8 (0). This operation allows us to partially build the lists and

thus save memory.
Building, for example, the list L0 by assuming that these values are known :

– Build the list L′
0 =

{(
K10 (0) , S0

8 (0)
)}

– Each element of L′
0 allows to deduce unique values for :

• ΔSj
10 (0) , j = 1, 2

• ΔSj
11 (0) , j = 1, . . . , 5

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 283

– Guess K10 (7) , K10 (10) , K10 (13)
• Deduce ΔSj

11 (1, 2, 3) , j = 1, . . . , 5
• Look in L′

0 corresponding values for K10 (0) and S0
8 (0) using ΔSj

11 =
MC

(
ΔSj

10

)

• Deduce ΔSj
8 (0) , j = 3, 4, 5

L1, L2 and L3 can be built in the same way.
This improvement makes the attack much more feasible. The implementation
providing by the tool takes a little bit more than 13 days on a Core 2 Duo E8500
and 900MB of ram to test all possibilities but it can be improved by parallelizing
the C code.

4 Impossible Differential Fault Attack on AES-128

In this section, we present a more efficient attack since we do not assume where
the fault is provoked and the time complexity is reduced to 241. However, this
fault attack needs more faulty ciphertexts, less than 1000 or 45 depending on
the fault model. Our attack is based on the fact that it is impossible to have a
zero-difference in state S10 in the 9th round just before MixColumns operation;
as Phan and Yen mentioned this fact in [26] and developed with an example of
the fault injected on the subkey K7 in the key schedule. This fact is illustrated
by the Figure 4. In this section, two principles are associated, the first one
impossible differential, which is first published in [21,22], and the second one
fault analysis, like [2,26]. Our impossible differential fault analysis corresponds to
5-round impossible differential cryptanalysis attack, which is described in [3]. We
firstly present the differential inequation systems, then the retrieval algorithm
and in the last part the comparison between the experimental, simulation and
theoretical results.

4.1 From Impossible Differential to Inequation System

Due to a well-known property of the differential through the MixColumn opera-
tion, all differences between bytes are not null at the internal state S10 in (10).

S10(C) ⊕ S10(C̃) �= 0 (10)

Moreover, we have the following equation (11):

S10(C) = MC−1
(
SB−1

(
SR−1(C ⊕ K10)

) ⊕ K9

)
(11)

We obtain similar equation for S10(C̃). Like the attack below, we have the same
simplification with the subkey K9. The differential equations have the following
form (12):

S10(C)⊕S10(C̃) = MC−1
(

SB−1
(

SR−1(C ⊕ K10)
))

⊕MC−1
(

SB−1
(

SR−1(C̃ ⊕ K10)
))

(12)

We execute the same kind of computations as in the previous attack. We analyze
column per column. We guess 4 key bytes of K10. Due to the 4 inequalities, we

284 P. Derbez, P.-A. Fouque, and D. Leresteux

Fig. 4. Overall impossible differential fault attack on AES-128

can filter bad key byte candidates in a list of possible keys. Using many pairs of
correct and faulty ciphertexts, we can reduce the possible key space. We reuse
four times the no difference computation algorithm for each column of S10. In
this attack, the attacker does not use fault position to retrieve the last subkey
bytes. The algorithm allows to recover all bytes of the subkey K10. In the case
of AES-128, it is enough to retrieve the secret key K.

4.2 Recovery Steps

1. For each pair of correct and incorrect results, we take four guesses for
{K10(0), K10(13), K10(10), K10(7)}. Then we eliminate at each level the key
quadruplets which do not satisfy the system (13). We test at each loop all
not dismissed quadruplets among 232 possible quadruplets at the beginning.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MC−1|0(SB−1(C(0) ⊕ K10(0))) ⊕ MC−1|0(SB−1(C̃(0) ⊕ K10(0))) �= 0

MC−1|1(SB−1(C(13) ⊕ K10(13))) ⊕ MC−1|1(SB−1(C̃(13) ⊕ K10(13))) �= 0

MC−1|2(SB−1(C(10) ⊕ K10(10))) ⊕ MC−1|2(SB−1(C̃(10) ⊕ K10(10))) �= 0

MC−1|3(SB−1(C(7) ⊕ K10(7))) ⊕ MC−1|3(SB−1(C̃(7) ⊕ K10(7))) �= 0

(13)

2. We repeat previous steps and we retrieve the right quadruplets of K10 for
each following column.

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 285

3. This research could be complemented by an exhaustive search, if only less
than 210 possible quadruplets for each column are left. Hence, a global com-
plexity is 240 research operations.

4.3 Property of Recombination

An interesting property of reusing incorrect ciphertexts is described here. The
same plaintext is encrypted while fault injection targeted on the same byte. Only
MixColumns operation generates collision in one byte, whereas the others do not.
Furthermore, if two different inputs of MixColumns only vary on one byte, the
two outputs of MixColumns do not collide. For instance, if two different random
byte faults ε1 and ε2 are injected on state S0.

∃!y ∈ [0, 15], ∀ε1 �= ε2, S0(y) = x ⊕ ε1 S0(y) = x ⊕ ε2 (14)

C̃(1) is the faulty ciphertext obtained where fault ε1 is injected, similarly, C̃(2)

the faulty ciphertext links to fault ε2. We have the two following facts :

S10(C) ⊕ S10(C̃(1)) �= 0 (15)

S10(C) ⊕ S10(C̃(2)) �= 0 (16)

Due to equation (14) and the properties of the MixColumns described below, we
obtain the following inequation:

S10(C̃(1)) ⊕ S10(C̃(2)) �= 0 (17)

On our test platform, we collect with one correct ciphertext, 5 or 6 different
faulty ciphertexts whose faulty bytes are the same.

4.4 Theoretical and Simulation Results

Theoretical Cost and Complexity. The impossible differential algorithm
requires 232 guesses as there are 4 unknown key bytes on each column. The
probability that all 4 inequations are satisfied equals (255

256)4. With one pair of
correct and faulty ciphertexts, we eliminate around 226 subkeys of K10 amongst
232 possible values of K10 for each column: E = 232 × (1 − (255

256)4) � 226. Each
couple could bring the same information about the key than another couple.
The recombination of faulty results introduces collision too. Same quadruplets
of key bytes are eliminated several times. Two couples of correct and incorrect
ciphertexts create an overlap of E2

232 � (226)2

232 = 252

232 = 220. We define Un as the
number of rejected quadruplets with n pairs of correct and faulty ciphertexts
with the following recursive formula, where U0 = 0:

Un+1 = 226 + Un(1 − 2−6). (18)

286 P. Derbez, P.-A. Fouque, and D. Leresteux

In solving recurrence in previous equation 18, we obtain the following equation:

Un = 232 − 232(1 − 2−6)n. (19)

The recovery algorithm of the impossible difference stops where Un ≥ 232 − 210.
That is why, due to equation 19,

n ≥ −22 log(2)/ log(1 − 2−6) ⇔ n ≥ 968. (20)

Simulation Results. We obtain around 226 eliminated quadruplets of bytes
for each pair. We also retrieve the calculated overlap of 220 between two pairs.
Considering the random byte fault model, we need on average around 1000
couples of correct and faulty ciphertexts with performing an exhaustive search
on 240 possible subkeys at the end. In the case of recombination based on the
fixed byte fault model, due to collision results, our attack only requires about 45
faulty ciphertexts with the same plaintext among the 256 possible ciphertexts:(
45+1

2

)
= 45×46

2 = 1035 > 1000. It is also possible to combine classical resolution
with several recombinations.

5 Extension to AES-192 and AES-256

Introducing fault between the MixColumns of the 6th round and the MixColumns
of the 7th round on AES-128 amounts to injecting fault between the MixColumns
of the 8th round and MixColumns of the 9th round on AES-192, and between
the 10th round and the 11th round on AES-256. Because faults are injected one
round before all previous papers, we have access at the same time at subkeys
Kn and Kn−1 with the same differential path.

5.1 Meet-in-the-Middle Fault Analysis on AES-192 and AES-256

We extend the previous concepts for AES-192 and AES-256 without more
faulty ciphertexts than AES-128. We use the meet-in-the-middle algorithm in or-
der to recover: {Kn(4), Kn(1), Kn(14), Kn(11), Un−1(7)}, {Kn(8), Kn(5), Kn(2),
Kn(15), Un−1(10)}, {Kn(0), Kn(7), Kn(10), Kn(13), Un−1(0)} and {Kn(3),
Kn(6), Kn(9), Kn(12), Un−1(13)}. We obtain 2 tables which contain S8(0)⊕S̃8(0)
for 5 couples of correct and incorrect results. We compute S8(1)⊕ S̃8(1), S8(2)⊕
S̃8(2) and S8(3) ⊕ S̃8(3). By hypothesis, we know fault position for each faulty
ciphertext, it means that α, β and γ are known for all equations. Due to these
computations, we retrieve all bytes of the subkey Kn. We write the differential
equations S8(5), S8(10) and S8(15) as a function of the same 4 bytes of Kn−1.
Then we also write system of S8(6), S8(11) and S8(12) as a function of the same
4 bytes of Kn−1, S8(7), S8(8) and S8(13) as a function of 4 bytes of Kn−1 and
S8(4), S8(9) and S8(14) as a function of 4 bytes of Kn−1. We inject the 16 com-
puted bytes of Kn in the previous equations like (5). We recognize the form of

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 287

Piret and Quisquater equations in our ones (21), that is why we apply Piret and
Quisquater resolution in our recovery method.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SB−1 (A ⊕ Un−1(4)) ⊕ SB−1(Ã ⊕ Un−1(4)) = Y

SB−1 (B ⊕ Un−1(1)) ⊕ SB−1(B̃ ⊕ Un−1(1)) = 3Y

SB−1 (C ⊕ Un−1(14)) ⊕ SB−1(C̃ ⊕ Un−1(14)) = 2Y

SB−1 (D ⊕ Un−1(11)) ⊕ SB−1(D̃ ⊕ Un−1(11)) = Y

(21)

The values {A, B, C, D} are known values at this stage and only depend on the
correct ciphertext and Kn. The values {Ã, B̃, C̃, D̃} are known values too and
only depend on the faulty ciphertext and Kn. Using 3 generalizations of Piret
and Quisquater equation systems allow to recover the subkey Un−1, because we
have already retrieved {Un−1(0), Un−1(13), Un−1(10), Un−1(7)}. Then we resolve
4 systems of 4 equations in using the Gauss’ method. Each equation describes
MixColumns inverse operation with unknown outputs, in order to recover all
bytes of Kn−1. This scenario costs around 240 in complexity for AES-192 or
AES-256 divided in 240 for memory and 3×240 for operation code like AES-128,
plus 240 for Piret and Quisquater resolution.

5.2 Impossible Differential Fault Analysis on AES-192 and AES-256

In the cases of AES-192 and AES-256, we do not need more fault than AES-
128 if no exhaustive search is realized. However, we have to collect couples until
all bytes of the subkey Kn are retrieved. We reuse the equation systems (5) of
the first attack, because both attacks consider fault injection between the same
MixColumns. Now, we obtain as the previous subsection the systems (21), thanks
to which we know all bytes of Kn. In order to retrieve all bytes of the subkey
Kn−1, we use 4 Piret and Quisquater generalization. This fault attack is achieved
with a complexity around 242, because Piret and Quisquater generalization has
the same cost as Piret and Quisquater attack [27] described in the second part
of this paper.

6 Conclusion

We have presented two different attacks on the n − 3th round of AES as it is
shown in Table 1. The first attack implies random fault byte on known or fixed
position for AES-128, AES-192 or AES-256. The second attack involves ran-
dom fault byte too with less complexity for AES-128. The first one costs around
242 and requires 10 pairs of correct and faulty ciphertexts, its improvement 5
pairs and costs 240 whereas the second one around 240 deals with 1000 couples.
Moreover, we can associate the first analysis to solve the second subpart of the
second analysis. In this case, a differential fault analysis could be performed
on AES-128, AES-192 and AES-256 with a random fault injected between the
n − 4th and the n − 3th MixColumns. Current state-of-the-art countermeasure

288 P. Derbez, P.-A. Fouque, and D. Leresteux

consists on protecting the three first rounds and the three last rounds of AES.
All operations inside round need to be protected and state between rounds too.
In order to defeat our fault analysis, all AES-128 rounds need to be protected
against fault attacks. Considering AES-192 and AES-256, at least the last 5
rounds and the first 5 rounds need to be protected against fault analysis.

Acknowledgments. We would like to thank Nicolas Guillermin and the anony-
mous reviewers for their helpful and valuable comments and discussions.

References

1. Anderson, R.J., Kuhn, M.G.: Low Cost Attacks on Tamper Resistant Devices. In:
Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp.
125–136. Springer, Heidelberg (1998)

2. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible fault analysis of RC4 and
differential fault analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005)

3. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael. In: 3rd AES
Conference, New York, USA (2000)

4. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

5. Biryukov, A., Khovratovich, D.: Two New Techniques of Side-Channel Cryptanal-
ysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
195–208. Springer, Heidelberg (2007)

6. Bloemer, J., Seifert, J.-P.: Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003)

7. Bogdanov, A.: Improved Side-Channel Collision Attacks on AES. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Hei-
delberg (2007)

8. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

9. Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic Search of Attacks on Round-
Reduced AES and Applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 169–187. Springer, Heidelberg (2011)

10. Chen, C.-N., Yen, S.-M.: Differential Fault Analysis on AES Key Schedule and
Some Countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, pp. 118–129. Springer, Heidelberg (2003)

11. Choukri, H., Tunstall, M.: Round Reduction Using Faults. In: Proceedings of the
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2005, pp.
13–24 (2005)

12. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M.: Passive and Active Combined
Attacks on AES Combining Fault Attacks and Side Channel Analysis. In: FDTC,
pp. 10–19 (2010)

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 289

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

14. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on A.E.S. In:
Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306.
Springer, Heidelberg (2003)

15. FIPS. Advanced Encryption Standard (AES). pub-NIST (November 2001)
16. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: AES

Candidate Conference. LNCS, pp. 230–241. Springer, Heidelberg (2000)
17. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES

2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)
18. Hamid, H.B.-E., Choukri, H., Tunstall, D.N.M., Whelan, C.: The Sorcerer’s Ap-

prentice Guide to Fault Attacks (2004), http://eprint.iacr.org/2004/100.pdf
19. Kermani, M.M., Reyhani-Masoleh, A.: A Lightweight Concurrent Fault Detection

Scheme for the AES S-Boxes Using Normal Basis. In: Oswald and Rohatgi [25],
pp. 113–129

20. Kim, C.H.: Differential Fault Analysis against AES-192 and AES-256 with Minimal
Faults. In: Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 3–9
(2010)

21. Knudsen, L.R.: DEAL - a 128 bit block cipher. In: Technical report 151, Departe-
ment of Informatics, University of Bergen, Norway (1998)

22. Knudsen, L.R.: DEAL - a 128 bit block cipher. In: AES Round 1 Technical Eval-
uation, NIST (1998)

23. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Differ-
ential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

24. Mukhopadhyay, D.: An Improved Fault Based Attack of the Advanced Encryption
Standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009)

25. Oswald, E., Rohatgi, P. (eds.): CHES 2008. LNCS, vol. 5154. Springer, Heidelberg
(2008)

26. Phan, R.C.-W., Yen, S.-M.: Amplifying Side-Channel Attacks with Techniques
from Block Cipher Cryptanalysis. In: Domingo-Ferrer, J., Posegga, J., Schreckling,
D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 135–150. Springer, Heidelberg (2006)

27. Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

28. Rivain, M.: Differential Fault Analysis on DES Middle Rounds. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 457–469. Springer, Heidelberg
(2009)

29. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-Performance Concurrent Er-
ror Detection Scheme for AES Hardware. In: Oswald and Rohatgi [25], pp. 100–112

30. Schramm, K., Leander, G., Felke, P., Paar, C.: A Collision-Attack on AES: Com-
bining Side Channel- and Differential-Attack. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

31. Takahashi, J., Fukunaga, T., Yamakoshi, K.: DFA Mechanism on the AES Key
Schedule. In: FDTC 2007: Proceedings of the Workshop on Fault Diagnosis and Tol-
erance in Cryptography, pp. 62–74. IEEE Computer Society, Los Alamitos (2007)

32. Tunstall, M., Mukhopadhyay, D.: Differential Fault Analysis of the Advanced
Encryption Standard using a Single Fault. Cryptology ePrint Archive, Report
2009/575 (2009), http://eprint.iacr.org/

http://eprint.iacr.org/2004/100.pdf
http://eprint.iacr.org/

290 P. Derbez, P.-A. Fouque, and D. Leresteux

A Difference Path from the 10th to the 9th Round for
AES-128

Due to fault path from the ciphertext to the beginning of the 9th round, we
give the following relations between bytes at different steps for the Meet-in-the-
Middle attack. We obtain the following system of 4 equations, where U9(a, b, c, d)
= MC−1 (K9(a, b, c, d)), for AES-128 from the 10th to the 9th round, for AES-
192 from the 12th to the 11th and for AES-256 from the 14th to the 13th:

S8(0, 5, 10, 15) = SB−1
(

MC−1
(

SB−1 (C(0, 7, 10, 13) ⊕ K10(0, 7, 10, 13))
)
⊕ U9(0, 1, 2, 3)

)
(22)

S8(1, 6, 11, 12) = SB
−1

(
MC

−1
(

SB
−1

(C(3, 6, 9, 12) ⊕ K10(3, 6, 9, 12))
)
⊕ U9(12, 13, 14, 15)

)

(23)

S8(2, 7, 8, 13) = SB−1
(

MC−1
(

SB−1 (C(2, 5, 8, 15) ⊕ K10(2, 5, 8, 15))
)
⊕ U9(8, 9, 10, 11)

)
(24)

S8(3, 4, 9, 14) = SB
−1

(
MC

−1
(

SB
−1

(C(1, 4, 11, 14) ⊕ K10(1, 4, 11, 14))
)
⊕ U9(4, 5, 6, 7)

)
(25)

B Difference Path from the 7th towards the 8th Round on
AES-128

Fault on one byte among bytes {0, 5, 10, 15} at the 7th round on AES-128
produces case 1, fault on one byte among {3, 4, 9, 14} produces case 2, fault
on one byte among {2, 7, 8, 13} produces case 3 and fault on one byte among
{1, 6, 11, 12} produces case 4. All different cases are presented in Figure 5. We
obtain same behavior with fault injected at the 9th round of AES-192 and at the
11th round of AES-256.

Meet-in-the-Middle and Impossible Differential Fault Analysis on AES 291

Fig. 5. Difference path during the 8th round for the four different AES-128 cases

	Meet-in-the-Middle and Impossible Differential Fault Analysis on AES
	Introduction
	Backgrounds and Previous Attacks
	Description of the AES
	Previous Differential Fault Analysis

	Meet-in-the-Middle Fault Analysis on AES-128
	From Fault Path to Differential Fault Equations
	Recovery K10
	Cost and Complexity
	Reduction of Memory Requirement

	Impossible Differential Fault Attack on AES-128
	From Impossible Differential to Inequation System
	Recovery Steps
	Property of Recombination
	Theoretical and Simulation Results

	Extension to AES-192 and AES-256
	Meet-in-the-Middle Fault Analysis on AES-192 and AES-256
	Impossible Differential Fault Analysis on AES-192 and AES-256

	Conclusion
	Difference Path from the 10th to the 9th Round for AES-128
	Difference Path from the 7th towards the 8th Round on AES-128

