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Abstract. In this paper, an improvement for integral attacks against
Feistel ciphers is discussed. The new technique can reduce the complex-
ity of the key recovery phase. This possibly leads to an extension of the
number of attacked rounds. In the integral attack, an attacker guesses a
part of round keys and performs the partial decryption. The correctness
of the guess is judged by examining whether the XOR sum of the results
becomes 0 or not. In this paper, it is shown that the computation of the
XOR sum of the partial decryptions can be divided into two indepen-
dent parts if the analysis target adopts the Feistel network or its variant.
Then, correct key candidates are efficiently obtained with the meet-in-
the-middle approach. The effect of our technique is demonstrated for
several Feistel ciphers. Improvements on integral attacks against LBlock,
HIGHT, and CLEFIA are presented. Particularly, the number of at-
tacked rounds with integral analysis is extended for LBlock.

Keywords: Integral attack, Meet-in-the-middle, Feistel, Partial-sum,
LBlock, HIGHT, CLEFIA.

1 Introduction

The integral attack is a cryptanalytic technique for symmetric-key primitives,
which was firstly proposed by Daemen et al. to evaluate the security of Square
cipher [1], and was later unified as integral attack by Knudsen and Wagner
[2]. The crucial part is a construction of an integral distinguisher : an attacker
prepares a set of plaintexts which contains all possible values for some bytes and
has a constant value for the other bytes. All plaintexts in the set are passed to
the encryption oracle. Then, the corresponding state after a few rounds has a
certain property, e.g. the XOR of all texts in the set becomes 0 with probability
1. Throughout the paper, this property is called balanced.

A key recovery attack can be constructed by using this property. An attacker
appends a few rounds to the end of the distinguisher. After she obtains a set
of the ciphertexts, she guesses a part of round keys and performs the partial
decryption up to the balanced state. If the guess is correct, the XOR sum of the
results always becomes 0. Hence, the key space can be reduced.

L.R. Knudsen and H. Wu (Eds.): SAC 2012, LNCS 7707, pp. 234–251, 2013.
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Fig. 1. Left: previous approach, Right: our approach

The application of the integral attack to AES [3, 4] and AES based ciphers is
widely known. Moreover, for AES, Ferguson et al. proposed an improved tech-
nique called partial-sum [5], which utilizes the property of an MDS multiplication
e.g. the MixColumns (MC) operation in AES. It observes that each output byte
of the MC operation is a linear combination of four input bytes, (x0, x1, x2, x3).
Therefore the sum of the output value

⊕
MC(x0, x1, x2, x3) can be computed in

byte-wise independently, i.e.
⊕

(a0 · x0)⊕
⊕

(a1 · x1)⊕
⊕

(a2 · x2)⊕
⊕

(a3 · x3),
where a0, a1, a2, a3 are some coefficients.

Another popular block-cipher construction is the Feistel network, which sep-
arates the state Xi to the left half XL

i and the right half XR
i . It updates the

state by XR
i+1 ← XL

i and XL
i+1 ← XR

i ⊕ F (XL
i ,Ki), where F is called a round

function and Ki is a round key for updating i-th round. Variants of the Feistel
network, e.g., generalized or modified Feistel network are also popular designs.

Several papers have already applied the integral attack to ciphers with the
Feistel network or its variant. In this paper, we call such ciphers Feistel ciphers.
Examples are the attacks on Twofish [6], Camellia [7–10], CLEFIA [11, 12],
SMS4 [13], Zodiac [14], HIGHT [15], and LBlock [16].

Our Contributions

In this paper, an improvement for integral attacks against Feistel ciphers is dis-
cussed. The new technique can reduce the complexity of the key recovery phase.
This possibly leads to an extension of the number of attacked rounds. The ob-
servation is described in the right-hand side of Fig. 1, which is very simple, but
can improve many of previous integral attacks. Assume that the balanced state
appears on the state XR

i , thus an attacker examines if
⊕

(XR
i ) = 0 or not. Due

to the linearity of the computation, this can be transformed as
⊕

Zi =
⊕

XL
i+1,

where Zi is the state after the round function is applied. Finally, we can compute
the left-hand side and right-hand side of this equation independently, and the
key candidates that result in the balanced state of XR

i are identified by checking
the matches between two values. The match can be done with the meet-in-the-
middle technique [17–19]. Therefore, the efficiency of the attack can be improved.
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Table 1. Comparison of attack results

Target Key size Approach #Rounds Data Time Memory (bytes) Reference

LBlock 80 bits Imp. Diff. 21 262.5 273.7 255.5 [21]
RK Imp. Diff. 23 240 270 − [22]
Integral 18 262 236 220 [16]
Integral 18 262 212 216 This paper
Integral 20 263.6 239.6 235 This paper

HIGHT 128 bits Imp. Diff. 27 258 2126.6 2120 [23]
RK Diff. 32 257.84 2123.17 − [24]
Integral 18 262 236 220 [16]
Integral 22 262 2118.71 264 [15]
Integral 22 262 2102.35 264 This paper

CLEFIA 128 bits Improb. Diff. 13 2126.83 2126.83 2105.32 [25]
(-128) Imp. Diff. 13 2117.8 2121.2 − [26]

Integral 12 2115.7 2116.7 2100 [11]
Integral 12 2115.7 2103.1 275.2 This paper

The complexity for the integral attacks is only for recovering partial key bits and does
not include the one for processing the data, while the complexity for the impossi-
ble/improbable differential attacks is for the full key recovery.
18-round attacks on LBlock recovers only 16 bits, and the exhaustive search on remain-
ing 64 bits takes 264 computations. However, we can avoid it by iterating the attack
for other balanced bytes and recover more key bits.

Moreover, our technique can be combined with the partial-sum technique, which
exploits another aspect of the independence in some computation1.

We demonstrate the effect of our technique by applying it to several Feistel
ciphers. The results are summarized in Table 1. The complexities for recovering
partial key bits are compared for the integral attacks because this paper mainly
focuses on the improvement of the key recovery phase inside the integral attack
and does not pay attentions to the trivial additional exhaustive search of remain-
ing key bits. The first application is a block-cipher LBlock [16]. We first show an
improvement of the 18-round attack by [16]. [16] claimed that the attack could
be extended up to 20 rounds. However, we show that the attack is flawed. Then,
we construct a first successful integral attack against 20-round LBlock by us-
ing our technique. Moreover, we further reduce the complexity by applying the
partial-sum technique. The second application is a block-cipher HIGHT [15]. We
first show that the previous 22-round attack can be trivially improved, and then,
the complexity is further reduced by using our technique. The last application
is a block-cipher CLEFIA [12], which uses the generalized Feistel network, and
its round function takes the SP function. We combine the partial-sum technique
with our approach, and improve 12-round attack on CLEFIA-128.

1 The same strategy is used in the dedicated attack on TWINE [20].
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Note that for Feistel ciphers, an impossible/improbable differential attack is
often the best analysis in the single-key setting. In fact, our approach only works
for fewer rounds than those attacks. Nevertheless, we believe that presenting a
new approach for improving integral attacks is useful, because integral attacks
have already been established as a basic tool of the cryptanalysis. In Table 1, we
also list the complexity of the current best related-key attack for comparison.

Paper Outline

The organization of this paper is as follows. Section 2 gives preliminaries. Sec-
tion 3 explains our basic idea to improve the integral analysis for Feistel ciphers.
Section 4 applies our technique to LBlock, HIGHT, and CLEFIA-128. Finally,
we conclude this paper in Section 5.

2 Preliminaries

2.1 Notations for Integral Attack

The integral attack is a cryptanalytic technique for symmetric-key primitives,
which was firstly proposed by Daemen et al. to evaluate the security of the
Square cipher [1]. Its brief description has already given in Section 1. To discuss
integral distinguishers, the following notations are used in this paper.

“A (Active)” : all values appear exactly the same number in the set of texts.
“B (Balanced)” : the XOR of all texts in the set is 0.
“C (Constant)” : the value is fixed to a constant for all texts in the set.

2.2 Partial-Sum Technique

The partial-sum technique was introduced by Ferguson et al. [5] in order to
improve the complexity of the key recovery phase in the integral attack. The
original attack target was AES. In the key recovery phase of the AES, the partial
decryption involves 5 bytes of the key and 4 bytes of the ciphertext. Suppose
that the number of data to be analyzed, n, is 232 and the byte position b of each
ciphertext is denoted by Cb,n. Then, the equation can be described as follows.

232⊕

n=1

[
S4

(
S0(c0,n⊕ k0)⊕S1(c1,n⊕ k1)⊕S2(c2,n⊕ k2)⊕S3(c3,n⊕ k3)⊕ k4

)]
. (1)

With a straightforward method, the analysis takes 232+40 = 272 partial decryp-
tions, while the partial-sum technique can perform this computation only with
248 partial decryptions. The idea is partially computing the sum by guessing
each key byte one after another.

The analysis starts from 232 texts (c0,n, c1,n, c2,n, c3,n). First, two key bytes
k0 and k1 are guessed, and S0(c0,n ⊕ k0) ⊕ S1(c1,n ⊕ k1) is computed for each
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guess. Let xi,n be
⊕i

p=0(Sp(cp,n⊕ kp))
2. Then, S0(c0,n⊕ k0)⊕S1(c1,n⊕ k1) can

be represented by x1,n, and Eq. (1) becomes

232⊕

n=1

[
S4

(
x1,n ⊕ S2(c2,n ⊕ k2)⊕ S3(c3,n ⊕ k3)⊕ k4

)]
.

The original set includes 232 texts, but now only 3-byte information (x1, c2, c3)
is needed. Hence, by counting how many times each of 3-byte values (x1, c2, c3)
appears and by only picking the values that appear odd times, the size of the
data set is compressed into 3 bytes. For the second step, a single key byte k2 is
guessed, and the size of the data set becomes 2 bytes (x2, c3). For the third step,
a single key byte k3 is guessed, and the size of the data set becomes 1 byte (x3).
Finally, a single byte k4 is guessed and Eq. (1) is computed for each guess.

The complexity for the guess of k0, k1 is 216× 232 = 248, for the guess of k2 is
216 × 28 × 224 = 248. Similarly, the complexity is preserved to be 248 until the
last computation.

2.3 Previous Integral Attack for Feistel Ciphers

Assume that the right half of the state in round i, denoted by XR
i , has the bal-

anced property. To recover the key, many of previous attacks use all information
that relates to XR

i . This is illustrated in the left-hand side of Fig. 1. Let #K(X)
be the number of key bits that need to be guessed to obtain the value of X by
the partial decryption. Similarly, let #C(X) be the number of ciphertext bits
that are used to obtain X by the partial decryption. Many of previous attacks

spend 2#K(XR
i )+#C(XR

i ) computations to obtain
⊕

(XR
i ).

3 Meet-in-the-Middle Technique for Integral Attacks

In this section, we explain our idea that improves the time complexity and the
amount of memory to be used in the key recovery phase. The observation is very
simple, but can improve many of previous integral attacks on Feistel ciphers.

Let n be the number of texts.
⊕

n(X
R
i,n) can be described as

⊕
n(Zi,n ⊕

XL
i+1,n), where Zi is the state after the round function is applied. We only use

the notation n to show that the sum of the value is later computed. The struc-
ture is illustrated in the right-hand side of Fig. 1. Due to the linear computa-
tion, the sum of each term can be computed independently. Hence, the equation⊕

n(X
R
i,n) = 0, can be written as

⊕

n

Zi,n =
⊕

n

XL
i+1,n. (2)

Then, we compute
⊕

n Zi,n for all guesses of #K(Zi) and store the result in a
table, and independently compute

⊕
n X

L
i+1,n for all guesses of #K(XL

i+1) and

2 Notation xi,n is somehow confusing. xi,n represents the sum of i S-box outputs.



Meet-in-the-Middle Technique for Integral Attacks against Feistel Ciphers 239

store the result in a table. Finally, the key values that result in the balanced
state can be identified with the same manner as the meet-in-the-middle attack
i.e. by checking the matches between two tables. The time complexity of the
attack can be reduced into

max{2#K(Zi)+#C(Zi), 2#K(XL
i+1)+#C(XL

i+1)}. (3)

Note that if the key bits to compute Zi and XL
i+1 have some overlap, we can

apply the three subset meet-in-the-middle attack [17] i.e., the shared bits are
firstly guessed, and for each guess, the other bits are independently computed.
Let Ks be a set of bits for the shared key, and |Ks| is the bit number of Ks.
Then, the memory complexity of the attack can be reduced into

max{2#K(Zi)+#C(Zi)−|Ks|, 2#K(XL
i+1)+#C(XL

i+1)−|Ks|}. (4)

Due to the structure of the Feistel network, the first item is always bigger than
the second item. Thus, the time and memory complexity is simply written as

(Time,Memory) =
(
2#K(Zi)+#C(Zi), 2#K(Zi)+#C(Zi)−|Ks|). (5)

4 Applications of Our Technique

In this section, we demonstrate several applications of our technique by improv-
ing previous integral attacks against several ciphers. The goal of this section is
to show that our technique can be applied to a wide range of Feistel ciphers.
Therefore, we do not optimize each attack by looking inside of the key schedule.
We omit its description, and assume that each round key is independent.

4.1 LBlock

LBlock is a light-weight block-cipher proposed at ACNS 2011 by Wu and Zhang
[16]. The block size is 64-bits and the key size is 80 bits. It adopts a modified
Feistel structure with 32 rounds, and its round function consists of the key
addition, an S-box layer, and a permutation of the byte positions. The plaintext
is loaded into an internal state XL

0 ‖XR
0 . The state XL

i ‖XR
i is updated by using

a round key Ki and the round function described in Fig. 2. We denote the j-th
byte (1 byte is 4 bits for LBlock) of a 32-bit word X by X [j], where 0-th byte is
the right most byte in the figure.

Previous 18-Round Attack. The designers showed a 15-round integral distin-
guisher. For a set of 260 plaintexts with the form of (AAAC AAAAAAAAAAAA),
the state after 15 rounds, (XL

15‖XR
15), has the form of (???? ???? ?B?B ?B?B). By

using this property, the designers showedan 18-roundkey recovery attack. The key
recovery phase is illustrated in Fig. 3. The attacker guesses a part of round keys,
and decrypts the ciphertexts up to the fourth byte of XR

15 and checks if its sum is
0 or not. As shown in Fig. 3, five bytes of the ciphertext (XL

18[0, 6] andXR
18[1, 4, 6])
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and four bytes of keys (K17[1, 4],K16[4], and K15[4]) relate to the partial decryp-
tion for XR

15[4]. The attacker first counts how many times each of 5-byte values
XL

18[0, 6], X
R
18[1, 4, 6] appears and only picks values that appear odd times. Hence,

at most 24∗5 = 220 values are stored in a memory. Then, for each guess of four key
bytes, she computes the correspondingXR

15[4] and computes the sum. The attack
complexity is 220 × 216 = 236 partial decryptions.

Improved 18-Round Attack. The attack complexity can be improved by
applying our technique. The condition

⊕
XR

15[4] = 0 can be written as

⊕
Z15[6] =

⊕
XL

16[6]. (6)

As shown in Fig. 3, the computation of Z15[6] involves three bytes of the cipher-
text (XL

18[6] and XR
18[4, 6]) and three bytes of round keys (K17[4],K16[4], and

K15[4]), which are denoted by numbers in red square brackets. Similarly, the
computation of XL

16[6] involves two bytes of the ciphertext (XL
18[0] and XR

18[1])
and a single byte of a round key (K17[1]), which are denoted by numbers in blue
round brackets. The attack procedure is as follows.

1. Query 260 plaintexts which has the form of (AAAC AAAA AAAA AAAA).
2. Prepare the memory which stores how many times each three-byte value

XL
18[6], X

R
18[4, 6] appears, and pick the values which appear odd times. Do

the same for two-byte values XL
18[0], X

R
18[1].

3. For all three-byte keys K17[4],K16[4], and K15[4], compute Z15[6] for all
three-byte values XL

18[6], X
R
18[4, 6] and store its sum in a list LZ15 .

4. For all values of a single-byte key K17[1], compute XL
16[6] for all two-byte

values XL
18[0], X

R
18[1] stored in the memory and store its sum in a list LXL

16
.

5. Check the matches between LZ15 and LXL
16
. If the matches are found, output

the corresponding 4-byte keys as correct key candidates.

Step 2 requires a memory to store 212 3-byte values. Step 3 requires a complexity
of 212 × 212 = 224 partial decryptions and a memory to store 212 sums. Step 4
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requires a complexity of 24×28 = 212 partial decryptions and a memory to store
24 sums. Step 5 is performed with 212 table look-ups, and 216×2−4 = 212 values
are output as correct key candidates.

By iterating the above steps 3 times, a single key candidate is obtained, which
requires 224 18-round LBlock computations and the memory to store 212 LBlock
state. This is faster than the previous 18-round attack. The data complexity is
the same as the previous attack, which is 4× 260 = 262 chosen plaintexts.

Further Improvement with the Partial-Sum Technique. The attack com-
plexity can be further improved with the partial-sum technique. the computation
of

⊕
Z15[6] can be written as follows:

⊕
S
[
S
(
S(XR

18[4]⊕K17[4])⊕XL
18[6]⊕K16[4]

)
⊕XR

18[6]⊕K15[4]
]
. (7)

In the previous section, this was computed with 224 computations, but we can
compute it only with 216 computations with the partial-sum technique. The
analysis starts from 3-byte tuple (XL

18[6], X
R
18[4], X

R
18[6]) with 212 data. Firstly a

single key byte K17[4] is guessed, and S(XR
18[4] ⊕K17[4])⊕XL

18[6] is computed
for each guess. Let y1 be the result. Then, the data can be compressed into 2-
byte tuple (y1, X

R
18[6]). Secondly, K16[4] is guessed and S(y1⊕K16[4])⊕XR

18[6] is
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computed for each guess. Let y2 be the result. Then, the data can be compressed
into 1-byte y2. Finally, for each guess of K15[4],

⊕
Z15[6] is computed by S(y2⊕

K15[4]).
The guess of K17[4] requires 2

4 · 212 = 216 computations. The guess of K16[4]
requires 24 · 24 · 28 = 216 computations. Finally, the guess of K15[4] requires
24 · 24 · 24 · 24 = 216 computations. In summary, the time complexity of the
attack is reduced into 216.

Remarks. The 18-round attack only recovers 16 bits of subkeys. Hence, the
exhaustive search on the remaining 64 bits costs 264, which is much more ex-
pensive. This can be avoided by performing the above procedure on the other
balanced bytes. We stress that the queried data can be shared among the anal-
ysis for different balanced bytes. Hence, the data complexity keeps unchanged
and only the time and memory complexity increases linearly.

Extension to 20-Round Attack. Wu and Zhang [16] claimed that the attack
could be extended up to 20 rounds because only 12 key bytes relate to the
partial decryption for XR

15[4]. However, we show that this attack is flawed. It is
true that 12 key bytes relate to XR

15[4], i.e., #K(XR
15[4]) = 48. However, they

did not consider the increase of the number of bytes in the ciphertext that relate
to XR

15[4]. The analysis is given in Fig. 4. It shows that #C(XR
15[4]) is 48 (12

bytes). Hence, their attack requires 248+48 = 296 partial decryptions, which is
more expensive than the brute force attack.

In our approach, as shown in Fig. 4, both of #K(Z15[6]) and #C(Z15[6])
are 32 (8 bytes). Hence, the complexity to analyze a single set is reduced to
232+32 = 264, which is faster than the brute force attack. For each analysis,
the key space becomes 2−4. Hence, by repeating the analysis 12 times, 12 bytes
of the key space is reduced to 1. Moreover, similarly to the 18-round attack,
the partial-sum technique can be applied to compute

⊕
Z15[6]. The details are

omitted due to the limited space. For each guess of a single-key byte, the data
is compressed by 1 byte. Hence, the final complexity becomes 24 · 232 = 236.

Note that, the attack outputs 11 bytes of the key candidates (244) as a result
of the first analysis. To store these candidates, more memory than for storing
#C(Z15[6]) is necessary. This can be avoided by analyzing 4 sets of plaintexts
simultaneously, and thus the effect of the matching part with the meet-in-the-
middle approach becomes 4 times. As a result, the key space after the result of
the first analysis becomes 8 bytes, which is the same size as #C(Z15[6]).

In summary, our attack is the first successful integral attack against 20-round
LBlock with approximately 12 ∗ 236 ≈ 239.6 LBlock computations, 8 ∗ 232 bytes
of memory, and 12∗260 ≈ 263.6 chosen plaintexts. The previous attack evaluated
that 13 sets of plaintexts are necessary to recover the key with a high success
probability. Under the same philosophy, our attack also requires 13 ∗ 236 ≈ 239.7

LBlock computations, and 263.7 chosen plaintexts.
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Table 2. Key schedule for the keys that relate to the key recovery phase

SK0
69 SK73 SK0

76 SK77 SK80 SK81 SK84 SK85 SK0
87 WK5 WK6 WK7

MK0
1 MK13 MK0

8 MK9 MK3 MK4 MK7 MK0 MK0
2 MK1 MK2 MK3

F0 F1 F0

[SK69
0]

F1

F0 F1 F0
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F1

F0 F1

(SK76
0)

F0
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F0 F1
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Fig. 5. Key recovery phase for 22-round HIGHT

4.2 HIGHT

HIGHT is a light-weight block-cipher proposed at CHES 2006 by Hong et al.
[27]. The block size is 64 bits and the key size is 128 bits. It adopts the gen-
eralized Feistel structure with 8 branches and 32 rounds. The round function
consists of the ARX structure. The plaintext is loaded into an internal state
X0,7‖X0,6‖ · · · ‖X0,0. The state Xi,7‖Xi,6‖ · · · ‖Xi,0 is updated by using round
keys SK4i, SK4i+1, SK4i+2, SK4i+3 and the round function. We denote the k-th
bit of a byte Xi,j by Xk

i,j . Note that each round key is a copy of a part of the
original secret key K, and which part is used is defined in the specification. Be-
cause the previous attack by Zheng et al. [15] has already exploited the relation
of subkeys, we need to consider it to improve the attack.

Previous 22-Round Attack. Zheng et al. showed a 17-round integral distin-
guisher. For a set of 256 plaintexts with the form of (A,A,A,A,A,A,A,C),
the state after 17 rounds, (X17,7‖X17,6‖ · · · ‖X17,0), has the form of
(?, ?, ?, ?, B0, ?, ?, ?), where B0 stands for the balanced state with respect to the



244 Y. Sasaki and L. Wang

0-th bit. By using this property, Zheng et al. showed a 22-round key recovery
attack. The key recovery phase for the 22-round attack is illustrated in Fig. 5.

The attacker prepares a set of 256 plaintexts that satisfies the above
form. As shown in Fig. 5, 48 bits of the ciphertext (C7, C6, C5, C4, C3, C2)
and 75 bits of round keys (SK0

69, SK73, SK
0
76, SK77, SK80, SK81, SK84,

SK85, SK
0
87,WK5,WK6,WK7) relate to the partial decryption for X0

17,3. The
related 75 bits of the round keys have some overlap with respect to the original
secret key. The key schedule for these keys is given in Table 2. Here, MK stands
for “Master Key”, which is the original secret key.

By considering Table 2, the number of bits that need to be guessed is 65.
Zheng et al. guessed all 65 key bits, and applied the partial decryption for all
ciphertexts. Therefore, they concluded that the attack complexity to analyze
one set was 256 × 265 = 2121 partial decryptions. As a result of analyzing one
set, the key space can be reduced by 1 bit. Hence, the attack is repeated for
65 sets. Zheng et al. showed that the complexity for 65 iterations was 256(265 +
264+ · · ·+21) ≈ 2122 partial decryptions, which is equivalent to 2118.71 22-round
HIGHT encryptions.

Simple Improvement of the Previous Attack. We show that the attack
by Zheng et al. can be improved very simply. Because the partial decryption
involves only 48 bits of the ciphertext, the data to be analyzed can be reduced
into 248 ciphertexts. This is done by counting how many times each of 48-bit
values appears, and only picking values which appear odd times.

Moreover, for the 7th byte of the ciphertext, C7, only the least significant
bit, C0

7 , is needed to compute X0
17,3. Therefore, the data to be analyzed can be

further reduced into 241 ciphertexts.
In summary, the attack complexity becomes 241(265 + 264 + · · ·+ 21) ≈ 2107

partial decryptions, which is equivalent to 2103.71 22-round HIGHT encryptions.

Application of Our Technique. By using our technique, the complexity can
be further improved. The condition for

⊕
X0

17,3 = 0 is written as
⊕

X0
18,4 =⊕

Z0
17,3. The partial decryption for Z0

17,3 involves 73 bits of round keys and 40
bits of ciphertexts. The partial decryption for X0

18,4 involves 34 bits of round
keys and 25 bits of ciphertexts. If the key schedule is considered, #K(Z0

17,3)
is 64 and #K(X0

18,4) is 26 respectively, while 24 key bits are overlapped. The
dominant complexity is the computations for

⊕
Z0
17,3. According to Eq. (5), the

time complexity is 240+64 = 2104 partial decryptions to analyze a single set.
To reduce the key space into 1, the attack is iterated 65 times. However,

the attack complexity cannot be evaluated as 240(264 + 263 + · · · + 21) with
the meet-in-the-middle approach. This is because the discarded key candidates
are uniformly distributed in the key space. Hence, our strategy is applying the
meet-in-the-middle approach 2 times to reduce the key space from 265 to 263, and
then perform the previous attack method to further reduce the key space into 1.
Finally, the attack complexity is 2104 + 2104 + 241 · (263 + 262 + · · ·+ 21) ≈ 2106

partial decryptions.
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Fig. 6. Round function of CLEFIA

The previous work compared the complexity for one partial decryption and
one HIGHT encryption by counting the number of F functions to be calculated.
7 F0/F1 functions are involved in the partial decryption and 22 ∗ 4 = 88 F0/F1

functions are involved in the 22-round HIGHT encryptions. Hence, 2106 partial
decryptions are equivalent to 2106×7/88 ≈ 2102.35 22-round HIGHT encryptions.
Note that 264 key candidates are output as a result of the first analysis. To store
these values, the memory to store 264 keys is necessary.

In summary, the attack complexity becomes 2102.35 22-round HIGHT encryp-
tions, the memory to store 264 keys, and 65 ∗ 256 ≈ 262 chosen plaintexts.

4.3 CLEFIA

CLEFIA is a block-cipher proposed at FSE 2007 by Shirai et al. [12]. The block
size is 128 bits and the key size can be chosen from 128 bits, 192 bits, or 256 bits.
It adopts the generalized Feistel structure with 4 branches and 18 rounds for a
128-bit key. The round function consists of the key addition, S-box application,
and multiplication by an MDS matrix. The plaintext is loaded into an internal
state X0,0‖X0,1‖ · · · ‖X0,15. The state Xi,0‖Xi,1‖ · · · ‖Xi,15 is updated by using
round keys RK2i, RK2i+1 and the round function described in Fig. 6.

Li et al. showed a 9-round integral distinguisher for CLEFIA [11]. A set of 2112

plaintexts should have the form of (AAAA AAAA A′
0A

′
1A

′
2A

′
3 AAAA), where A

′
0

is v⊕w, A′
1 is 2v⊕ 8w, A′

2 is 4v⊕ 2w, A′
3 is 6v⊕aw, and v and w are two active

bytes. Then, the state after 9 rounds, (X9,0‖X9,1‖ · · · ‖X9,15), has the form of
(???? BBBB ???? ????). By using this property, Li et al. showed a 11-round
basic attack and a 12-round extended attack.

Previous 11-Round Attack. The key recovery phase is described in Fig. 7. An
equivalent transformation is applied to the 10th round.M−1

0 (X9,4, X9,5, X9,6, X9,7)
is still a balanced state becauseM0 is a linear operation (anMDSmatrixmultiplica-
tion). The attacker guesses roundkeys and aims to detect if the sum of the 0-th byte
ofM−1

0 (X9,4, X9,5, X9,6, X9,7) is 0 or not. The equation that the attacker computes
can be written as follows:
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Fig. 7. Key recovery phase for 11-round CLEFIA

⊕[
S0

(
S1(C8 ⊕RK21,0)⊕ 08 · S0(C9 ⊕RK21,1)⊕

02 · S1(C10 ⊕RK21,2)⊕ 0a · S0(C11 ⊕RK21,3)⊕ C12 ⊕RK ′
18,0

)]

=
⊕

C′, (8)

where RK ′
18,0 = WK3,0⊕RK18,0 and C′ is the 0-th byte ofM−1

0 (C0, C1, C2, C3),
i.e., C′ = C0⊕02 ·C1⊕04 ·C2⊕06 ·C3. The simple method requires 240+40 = 280

partial decryptions, while Li et al. compute it only with 256 partial decryptions
by using the partial-sum technique.

For 2112 chosen-plaintexts, the attacker only picks 5-byte values (C8, C9, C10,
C11, C12) and 4-byte values (C0, C1, C2, C3) that appear odd times. Then, the
right-hand side of Eq. (8) can be computed with at most 232 M−1

0 computations.
The computation for the left-hand side of Eq. (8) starts from 240 texts of 5-byte
values (C8, C9, C10, C11, C12). For simplicity, let t0, t1, . . . , tl and r0, r1, . . . , rl be

the ciphertext bytes and the corresponding key bytes. Then, let xi be
⊕i

p=0 S(tp⊕
rp). Firstly, the attacker guesses two key bytes r0 and r1 and computes x1. Then,
the size of the data to be analyzed can be reduced to 4 bytes (x1, C10, C11, C12).
Secondly, the attacker guesses a single key byte r2, and computes x2. Then, the
size of the data can be reduced to 3 bytes (x2, C11, C12). Similarly, the attacker
guesses r3 and picks 2-byte data (x3, C12), then guesses r4 and computes the
final sum. The complexity for computing x1 is 216 · 240 = 256, for computing x2

is 216 · 28 · 232 = 256, and similarly the complexity of 256 is preserved until the
final sum is obtained. With the analysis for one data set, the key space becomes
2−8 times. Li et al. analyzed 6 data sets to uniquely determine the key. The final
complexity was estimated as 254 11-round CLEFIA encryptions.
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Improving the Previous 11-Round Attack. We show that the partial-sum
technique in the 11-round attack by Li et al. can be improved without using our
meet-in-the-middle technique. To compute the left-hand side of Eq. (8), Li et
al. guessed two key bytes r0 and r1 to obtain x1. This procedure seems to come
from the original partial-sum application by Ferguson et al. [5], which guessed
two key bytes at the first step. However, in the analysis for Feistel ciphers, the
equation to compute the sum (the left-hand side of Eq. (8) for CLEFIA) has
already included a term that only consists of a ciphertext byte (without a key
byte). This is actually different from Eq. (1) for AES. Therefore, guessing only
a single byte r0 is enough to compress the data from 240 to 232.

In details, we firstly guess a single byte RK21,0 and compute S1(C8⊕RK21,0)⊕
C12 for 240 texts. Let x′

0 be the result of this computation. We then focus on a 4-
byte tuple x′

0, C9, C10, C11, and compress the data size to 232 by only picking the
values that appear odd times. For the second step, we guess a single byte RK21,1

and compute 08 ·S0(C9⊕RK21,1)⊕x′
0 for 232 texts. Let x′

1 be the result. Then,
the data size can be reduced to 224 by focusing on 3-byte tuple x′

1, C10, C11. We
continue the similar procedure until the final sum is obtained. The complexity
for computing x′

0 is 28 · 240 = 248, for computing x′
1 is 28 · 28 · 232 = 248, and

similarly the complexity of 248 is preserved until the final sum is obtained.
In summary, the attack complexity can be reduced by a factor of 28, and the

total complexity is reduced to approximately 246 11-round CLEFIA encryptions.

Previous 12-Round Attack. Based on our understandings, we explain the
12-round attack by Li et al. The key recovery phase is described in Fig. 8.
Several equivalent transformations are applied. An important property is that
the whitening key WK3 only affects the balanced state linearly. Therefore, after
taking the sum of 2112 texts, the impact of WK3 disappears. Hereafter, WK3 is
ignored. The equation that the attacker computes can be written as follows:

⊕[
S0

(
S1(b0 ⊕RK′

21,0)⊕ 08 · S0(b1 ⊕RK′
21,1)⊕ 02 · S1(b2 ⊕RK′

21,2)⊕

0a · S0(b3 ⊕RK′
21,3)⊕ C8 ⊕RK18,0

)
⊕

(
y1 · S1(C8 ⊕RK23,0)⊕

y2 · S0(C9 ⊕RK23,1)⊕ y3 · S1(C10 ⊕RK23,2)⊕ y4 · S0(C11 ⊕RK23,3)
)]

=
⊕

C′, (9)

where (b0, b1, b2, b3) is a 4-byte word for (X10,8, X10,9, X10,10, X10,11), y0, y1, y2,
y3 are coefficients derived from M1 and M−1

0 , C′ is the 0-th byte of
M−1

0 (C12, C13, C14, C15), and RK ′
21 is RK21⊕WK2. The computation of

⊕
C′

is done with at most 232 computations. The attacker firstly guesses 4 key bytes
RK22,0, . . . , RK22,3 and computes (b0, b1, b2, b3) for all texts. Then, the left-hand
side of Eq. (9) is computed with the partial-sum technique. We omit the detailed
procedure. Li et al. concluded that the complexity to analyze one set is 2120 par-
tial decryptions.
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Fig. 8. Key recovery phase for 12-round CLEFIA

Improved 12-Round Attack. The attack by Li et al. can be improved by
introducing the meet-in-the-middle approach. Eq. (9) is transformed as follows;

⊕
S0

(
S1(b0 ⊕RK ′

21,0)⊕ 08 · S0(b1 ⊕RK ′
21,1)⊕ 02 · S1(b2 ⊕RK ′

21,2)⊕

0a · S0(b3 ⊕RK ′
21,3)⊕ C8 ⊕RK18,0

)

=
⊕(

y1 · S1(C8 ⊕RK23,0)⊕ y2 · S0(C9 ⊕RK23,1)⊕ y3 · S1(C10 ⊕RK23,2)⊕

y4 · S0(C11 ⊕RK23,3)
)
⊕
⊕

C′. (10)

The attack procedure for each set of 2112 texts is as follows.

1. With processing 2112 plaintexts, we count how many times each value of
9-byte tuple (C0, C1, . . . , C8), each value of 4-byte tuple (C8, C9, C10, C11),
and each value of 4-byte tuple (C12, C13, C14, C15) appears.

2. We compute the second term of the right-hand side of Eq. (10), i.e.,
⊕

C′.
3. We compute the first term of the right-hand side of Eq. (10) for the exhaus-

tive guess of RK23, and compute XOR with
⊕

C′. The result, which is the
right-hand side of Eq. (10) for each guess of RK23, is stored in a list LX10,0 .

4. For each guess of RK22 (in total 232 iterations), we do as follows.
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(a) For 272 texts (C0, C1, . . . , C8), we compute (b0, b1, b2, b3) and count how
many times each of 5-byte tuple (b0, b1, b2, b3, C8) appears. Therefore,
the data size is compressed into 240, and the equation becomes exactly
the same as the left-hand side of Eq. (10).

(b) We compute the left-hand side of Eq. (10) by guessing five key bytes
RK ′

21, RK18,0 with the same method as our improved 11-round attack.
The result is stored in a list Lz9,0 .

5. Finally, we identify right-key candidates by searching for matches between
two lists LX10,0 and Lz9,0 .

Step 2 requires at most 232 computations. Step 3 requires at most 264 computa-
tions with the straightforward method, which is already enough small. This can
be further reduced into 248 computations with the partial-sum technique. After
Step 3, we obtain a list LX10,0 with 232 entries. Step 4(a) requires 232 ·272 = 2104

partial decryptions. Because our 11-round attack requires 248 partial decryp-
tions, Step 4(b) requires 232 · 248 = 280 partial decryptions. As a result of Step
5, we expect to obtain 232+72−8 = 296 matches, because the key space is reduced
by a factor of 28 with the analysis of a single set.

By iterating the analysis with 13 different sets, we expect to obtain a unique
solution of 13 key bytes. Note that, by analyzing 4 or more sets simultaneously,
the efficiency of the match becomes 4 times or more, and the number of right-key
candidates becomes 232+72−(4∗8) = 272 or less. This can avoid using 296 memory
after the analysis of the first set.

In summary, the bottle-neck of the complexity is Step 4(a), which requires 2104

0.5-round computations. This is equivalent to 2104/24 ≈ 299.4 12-round CLEFIA
encryptions. After iterating the procedure for 13 sets, the complexity becomes 13·
299.4 ≈ 2103.1 12-round CLEFIA computations. The bottle-neck of the memory is
for counting how many times each value of 9-byte tuple (C0, C1, . . . , C8) appears
for 2112 ciphertexts, which requires 272 9-byte information. This is equivalent
to 275.2 bytes or 271.2 CLEFIA state. The data complexity is the same as the
previous work, which is 13 · 2112 ≈ 2115.7 chosen plaintexts.

5 Concluding Remarks

In this paper, we showed an improvement for the integral analysis against Feistel
ciphers, which recovers the key by using the meet-in-the-middle approach. We
focus on the independence of two computations in the partial decryption for
Feistel ciphers, and it reduces the time and memory for the key-recovery phase.
Our technique can be combined with the partial-sum technique. We applied
our technique for several Feistel ciphers, and showed that the previous integral
attacks on LBlock, HIGHT, and CLEFIA-128 could be improved. Particularly,
the number of attacked rounds with integral analysis was extended for LBlock.

One possible future work is deriving the limitation of the integral attack, i.e.,
how many rounds can be potentially attacked by combining currently known
techniques such as the meet-in-the-middle and partial-sum techniques. As was
done in this paper, the integral attack seems to have more room to be improved.
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Then, presenting new techniques is an interesting topic, e.g., application of the
partial-sum technique for HIGHT. Because HIGHT adopts two non-commutative
operations, XOR and modular addition, the application of the partial-sum is not
obvious. We leave it as an open problem.

Acknowledgments. We would like to thank the anonymous reviewers for many
helpful comments, especially for the potential application of the partial-sum
technique to LBlock.
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