
Received February 15, 2021, accepted March 5, 2021, date of publication March 29, 2021, date of current version April 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3069223

MeetGo: A Trusted Execution Environment
for Remote Applications on FPGA

HYUNYOUNG OH 1,2, KEVIN NAM 1,2, SEONGIL JEON 1,2, YEONGPIL CHO 3,
AND YUNHEUNG PAEK 1,2, (Member, IEEE)
1Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
2Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Republic of Korea
3Department of Computer Science, Hanyang University, Seoul 04763, Republic of Korea

Corresponding authors: Yeongpil Cho (ypcho@hanyang.ac.kr) and Yunheung Paek (ypaek@snu.ac.kr)

This work was supported in part by the Institute of Information & Communications Technology Planning & Evaluation (IITP)

Grant funded by the Korean Government (MSIT) under Grant 2018-0-00230 (Development on Autonomous Trust Enhancement

Technology of IoT Device and Study on Adaptive IoT Security Open Architecture based on Global Standardization [TrusThingz Project])

and Grant 2020-0-00325 (Traceability Assurance Technology Development for Full Lifecycle Data Safety of Cloud Edge) and Grant

2020-0-01840 (Analysis on Technique of Accessing and Acquiring User Data in Smartphone), in part by the National Research Foundation

of Korea (NRF) Grant funded by the Korean Government (MSIT) under Grant NRF-2020R1A2B5B03095204, in part by the BK21

FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University, in 2021, and in part by the

research fund of Hanyang University under Grant HY-2020. The EDA tool was supported by the IC Design Education Center (IDEC),

South Korea.

ABSTRACT Remote computing has emerged as a trendy computing model that enables users to process

an immense number of computations efficiently on the remote server where the necessary data and

high-performance computing power are provisioned. Unfortunately, despite such an advantage, this com-

puting model suffers from insider threats that are committed by adversarial administrators of remote servers

who attempt to steal or corrupt users’ private data. These security threats are somewhat innate to remote

computing in that there is no means to control administrators’ unlimited data access. In this paper, we present

our novel hardware-centric solution, called MeetGo, to address the intrinsic threats to remote computing.

MeetGo is a field-programmable gate array (FPGA)-based trusted execution environment (TEE) that aims

to operate independently of the host system architecture. To exhibit the ability and effectiveness ofMeetGo as

a TEE ensuring secure remote computing, we have built two concrete applications: cryptocurrencywallet and

GPGPU.MeetGo provides a trust anchor for these applications that enable their users to trade cryptocurrency

or to run a GPGPU program server on a remote server while staying safe from threats by insiders. Our

experimental results clearly demonstrate that MeetGo incurs only a negligible performance overhead to the

applications.

INDEX TERMS Field-programmable gate array (FPGA), remote computing, remote attestation, secure

communication channel, trusted execution environment (TEE).

I. INTRODUCTION

In remote computing, users transmit their own data to a

remote application and receive its result. The significant

benefit that users expect from remote computing is that they

can perform a broad spectrum of computations—from small

to large scale—directly on the remote site at lower costs

and with better performance than on their own facilities.

Cloud technology is one good example that serves this benefit

The associate editor coordinating the review of this manuscript and

approving it for publication was Alex Noel Joseph Raj .

from remote computing to cloud users. For example, users

can entrust the cloud with personal information management

(e.g., google-cloud), customer relation management (e.g.,

Salesforce), or a big data analysis based on machine learning

(e.g., AWS-AI and Azure-AI).

With the growing popularity of remote computing services,

security is becoming an ever-increasingly important issue for

service providers and users. For instance, in one type of cloud,

Software as a Service, everything, including applications and

remote user data, is managed by the cloud server. It is known

that data security compliance issues are somewhat intrinsic

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 51313

https://orcid.org/0000-0001-5123-4921
https://orcid.org/0000-0002-4621-2434
https://orcid.org/0000-0001-5719-4545
https://orcid.org/0000-0001-7842-1719
https://orcid.org/0000-0002-6412-2926
https://orcid.org/0000-0003-1505-3159

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

to these types of cloud or remote computing mainly because

the privacy and integrity of user data are built on the trust in

the remote server. To be specific, as the server (or its admin-

istrator) normally has to manage all computing resources in

the system, it is entrusted with the full privilege of controlling

access to private data belonging to users. Unfortunately, any

server dealing with private data entrusted by remote own-

ers innately entails a security risk, called an insider threat,

which comes from a privileged insider (i.e., administrator)

of a server who turns into an adversary trying to steal or

tamper with clients’ data. According to [1], about a third

of cyberattacks are suspected of being the result of insider

threats.

A well-known solution to thwart such threats by insid-

ers is building a trusted execution environment (TEE) [2]

within a server for remote users. The TEE aims to ensure

the privacy and integrity of user code and data loaded on the

server. Applications loaded in the TEE are guaranteed to run

and process data in an isolated environment securely from the

rest of the host system, namely the rich execution environment

(REE), administered by privileged insiders. Private user data

are stored in secure storage shielded from the REE, and sensi-

tive functions are executed inside a TEE without interference

from the REE. Therefore, even if malicious insiders have full

control over the REE, in principle, they cannot corrupt or leak

remote user data processed inside a TEE.

Intel SGX provides a readily available TEE, called an

enclave, that is isolated from all software entities including

the kernel and the hypervisor. An enclaves is built up on top

of an enclave page cache (EPC), encrypted memory regions

so that any arbitrary accesses from outside are impossible.

Therefore, SGX enclaves can provide remote users with reli-

able protection against insider threats. However, using SGX

for remote computing poses a severe challenge in terms of

scalability because the EPC is statically sized as 128 MB,

which is too limited to execute data-intensive computations.

Enclaves spending memory exceeding the size of the EPC

bring about frequent memory swapping between the EPC

and non-EPC, which results in considerable performance

degradation. In addition, CPU where SGX enclaves are

implemented is not optimized inherently for highly parallel

workloads such as a machine learning based big data anal-

ysis. As such, SGX enclaves are somewhat unattractive to

be leveraged on remote computing for a broad spectrum of

workloads.

In this paper, hereby, we aim to realize another TEE that is

solid in terms of both security and scalability, enabling remote

computation that is robust against insider threats and efficient

even on various performance requirements. Our approach

to achieve the goal is to leverage an emerging architecture,

called a CPU/FPGA hybrid architecture [3]–[5]. More specif-

ically, we have built a TEE specialized for remote computing,

calledMeetGo, on a field-programmable gate array (FPGA).

The foremost reason why FPGA is suitable for this purpose

is that it is physically isolation from the would-be malicious

CPU. Therefore, FPGA can serve as a TEE as long as proper

control mechanisms are implemented to regulate arbitrary

access to the inside of it. In fact, a recent study [6] has shown

that FPGA can securely run a security-oriented application

such as secure storage using this isolation feature. Another

important reason is that FPGA is versatile because its internal

hardware logic can be programmed dynamically. By deploy-

ing customized acceleration modules, FPGA can efficiently

run a wide spectrum of applications such as data analytics,

media processing, artificial intelligence, network security,

finance, and genomics, as demonstrated in practice [7]–[12].

Even better, optimized logic design allows FPGA to achieve a

higher power-efficiency than other computing hardware such

as the CPU and the GPU.

To realize MeetGo on FPGA which is originally employed

as a workhorse for the CPU in a CPU/FPGA hybrid archi-

tecture, we have implemented security mechanisms that are

necessary for trustworthy remote computing. To be specific,

we first have devised a remote attestation mechanism that

can verify the integrity of the applications that exist as the

form of hardware logic. We have also implemented an isola-

tion mechanism to block unauthorized access to the applica-

tions from the malicious CPU. Lastly, we have developed a

secure communication mechanism to allow secure transmis-

sions of sensitive data between the installed applications and

remote users. All of these are backed by a robust hardware

trust anchor rather than relying on software implementations,

as described in section III. One thing to note about MeetGo

is that it can collaborate with other TEEs on the CPU side

to improve their performance reliably. For example, an SGX

enaclave can be connected to MeetGo as a remote user,

and then it can entrust burdensome computations to MeetGo

equipped with accelerator logics to process them more

efficiently.

The purpose of this paper is to exhibit the ability and

effectiveness of MeetGo as a TEE that ensures secure remote

computing. For empirical demonstrations, we have built two

trusted applications onMeetGo. One is a cryptocurrency wal-

let application described in section IV. The security of cryp-

tocurrency trading depends on the protection of the private

key of a cryptocurrency owner, which is the personal secret

representing the ownership of and right to trade cryptocur-

rency, from unauthorized use by adversaries. Unfortunately,

this security requirement has been violated in the common

practices of owners that entrust their private keys to a remote

server such as a cryptocurrency exchange for ease of use.

Accordingly, our wallet application ensures that private keys

are always stored and processed within MeetGo, thereby

enabling secure cryptocurrency trading on a remote server

without the worry of insider threats [13]. The other exem-

plar application we built on MeetGo is GPGPU, explained

in section V. To preserve privacy and process big data effi-

ciently, several attempts [14], [15] have been made to incor-

porate a GPU having massive computational power into a

TEE. However, applying these attempts in practice is difficult

due to their inevitable hardware modifications to the GPU

itself and the associated interfaces. On the other hand, without

51314 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

any further hardware changes, MeetGo can offer a trusted

GPGPU computing environment by loading a GPU module

implemented in the bitstream. Overall, MeetGo capitalizes

on the programmability of FPGAs to enable users to build

their own TEE on an untrusted remote server at their disposal

simply by loading the corresponding hardware module in

bitstreams.

In our implementation, MeetGo along with the two afore-

mentioned applications is built on a commodity FPGA board,

Xilinx VCU118, coupled with Intel x86 CPUs via the PCIe

interface. According to our experiments, the core com-

ponents of MeetGo are implemented with 21,393 lookup

tables (LUTs), which only occupy 1.8 % of the FPGA LUT

resources. It is worth noting that, MeetGo rarely affects the

performance of the applications. By adopting a pipelined

design, it increases the communication latency of an

individual application a mere 0.72 µs. In addition, the cryp-

tocurrency wallet is fast enough to handle 300 transactions

per second, and when implementing a CNN-based image

classifier, the GPGPU handles the MNIST test database

in 109.11 seconds, which are both virtually zero-overhead

compared to without MeetGo.

II. THREAT MODEL AND ASSUMPTIONS

Users are eager to protect the integrity and confidentiality

of their code and data that are loaded on remote computing

servers. For this purpose, users will employ our FPGA-based

TEE to securely run their own applications and deal with

security-critical data in an isolated environment.We postulate

that the built-in modules of MeetGo are trustworthy, but

applications dynamically installed in our TEE may contain

security vulnerabilities. In this work, we consider strong

adversaries (e.g., malicious insiders in charge of administra-

tion) who have full control over the host system that comes

with our TEE. That is, they have no limitations in execut-

ing code, accessing data, or controlling system components,

including the CPU cores and peripherals. However, note

that they are completely prevented from directly reaching

the inside of our TEE, which is built on top of an FPGA

physically isolated from the host system. In addition, since

we trust themanufacturing process of FPGAs, we assume that

they have no hardware backdoors or Trojans. For this reason,

the only possible attacks from adversaries are as follows.

First, adversaries may attempt to undermine the isolation

property of our TEE by deceiving its authentication process or

by installing malicious modules inside the FPGA. They may

also try to leak users’ secrets by eavesdropping or interfering

with communications between remote users and our TEE

through varied physical and side-channel attacks. We are

convinced that all the aforementioned attacks are thwarted

by adopting the conventional protection mechanisms that are

orthogonal to MeetGo. The details will be discussed through

the security evaluation in subsection VI-C.

III. MeetGo ARCHITECTURE

In this section, we explain the architecture of MeetGo,

the TEE built on an FPGA. The first step to build our TEE

FIGURE 1. Key management for securing MeetGo.

is constructing inside the FPGA a trust anchor, which must

be completely isolated from the outside. As this ultimate

trust, a private key, called the master private key (MKpriv),

is embedded in the FPGA. Since the chain of trust in MeetGo

starts from this root of trust, we have designed our security

mechanism carefully so that MKpriv can be tamper-proof.

Along with MKpriv, we install a dedicated module, called

the security agent (SA), which plays the pivotal role in our

TEE. The SA, with exclusive access to MKpriv for various

cryptographic functions, provides core security functions:

(1) remote attestation that enables remote users to assess

the authenticity and integrity of their applications running in

the FPGA, (2) isolation to prevent unauthorized access from

untrusted hosts and between applications runningwith private

states, and (3) secure connection between a remote user and

the FPGA. In the following subsections, we will explain how

all these mechanisms are designed for building a TEE in the

FPGA.

A. INSTALLING MASTER KEY

As depicted in 1© of Figure 1, MKpriv is the FPGA’s built-in

private key from the well-known private-public asymmetric

key algorithm [16], [17]. MeetGo’s prerequisite is that each

FPGA holds a unique private key MKpriv, which is essential

to keep the integrity and confidentiality of our TEE built

on an FPGA. It allows the FPGA to be identified through

the matching public key MKpub, which can be distributed to

VOLUME 9, 2021 51315

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

remote users securely by certificate authorities (CAs) (1©-c).

We hereby posit that FPGA manufacturers who are trustwor-

thy in our threat model in section II generate MKpriv/MKpub

pairs (1©-a) and then map each pair to individual FPGAs by

baking a different MKpriv to each FPGA during the manu-

facturing process. The installation of MKpriv (1©-b) can be

fulfilled by one of the following two methods, which are

equally secure.

1) STORING MKpriv IN SA

In this method, the MKpriv is stored in the SA. More specif-

ically, FPGA manufacturers implant the generated MKpriv

inside the code of the SA (i.e., bitstream). As will be

explained in subsection III-B, the SA bitstream is distributed

and installed in encrypted form by a secure bitstream load-

ing mechanism so that the MKpriv embedded in the SA bit-

streams is securely protected against any reverse engineering

attempts. In this way, however, MeetGo’s essential prereq-

uisite that each FPGA must have its own unique MKpriv

may be unmet when identical SA bitstreams having the same

MKpriv are loaded in multiple FPGAs. To prevent this prob-

lem, we need to strongly bind FPGAs and SA bitstreams

possessing each MKpriv, one-to-one. This binding can be

constructed by FPGA manufacturers’ allocating each pair of

FPGA and SA bitstream a different cryptographic key used

in the secure bitstream loading mechanism.

2) STORING MKpriv IN NON-VOLATILE MEMORY

In this method MKpriv is stored in non-volatile memory such

as eFUSE or PROM of FPGA rather than in SA bitstreams.

However, as such internal non-volatile memory is already

implemented in the current commodity FPGAs but originally

intended to store the cryptographic keys used in the secure

bitstream loading mechanism, FPGA manufacturers block

applications from accessing the internal memory for security.

Therefore, to permit the SA to reach the MKpriv, the FPGA

hardware needs to be modified to relax this access restriction

for the internal memory, but it could allow unauthorized

applications to access the MKpriv as well. Therefore, to grant

the SA exclusive access to the MKpriv, we can store the

MKpriv in the internal memory in encrypted form and put the

corresponding decryption key only in the SA bitstream. The

SA bitstream is tamper-proof thanks to the secure bitstream

loading mechanism; thereby, the decryption key and MKpriv

are kept secure.

In a comparison of the two aforementioned methods,

the former one shows a clear advantage in that it can be imple-

mented on commodity FPGAs. On the other hand, the latter

one has a drawback of requiring a slight modification on

FPGAhardware. However, once themodification is done, this

method has an obvious merit in terms of ease of deployment,

because a single SA bitstream can be used for all FPGAs,

unlike the former method that necessitates as many different

SA bitstreams as the number of FPGAs. In our prototyping of

MeetGo, we used the former method because we carried out

the implementation on a commodity FPGA in section VI.

B. LOADING SECURITY AGENT

Based on the exclusive privilege to accessMKpriv, the SA per-

forms the core TEE functions such as secure application load-

ing, remote attestation, and secure channel establishment. To

prevent any interference with the loading procedure of the

SA on the FPGA, the SA bitstream is designed to be loaded

at boot time (see 1©-d in Figure 1). It can be achieved by the

secure bitstream loading mechanism provided on a commod-

ity FPGA. This mechanism supports the automatic loading

of a bitstream encrypted and stored inside a storage medium,

such as NAND or SD card, after power-on. As briefly men-

tioned earlier, the decryption key is stored within non-volatile

memory in the FPGA, such as eFUSE or PROM. The exclu-

sive access to the decryption key is restricted to the built-in

module of the FPGA, called the infrastructure hardware,

so that even arbitrarily installedmalicious applications cannot

leak the key. Only the infrastructure hardware can use the

key to decrypt and install the encrypted bitstream when the

FPGA is booted. The SA loading process by this mechanism

is logically secure, but an insider who can physically access

the FPGA devicemay interfere with this process by switching

the mode selection jumper on the FPGA board to disable

this mechanism. Even so, such interference can never break

the security of the SA, and it may only disturb the loading

of the SA to deactivate our TEE on the FPGA. MeetGo

allows remote users to check whether the TEE is activated

and applications are running through a remote attestation

mechanism described in subsection III-D.

C. LOADING APPLICATIONS

To load and run applications dynamically on the FPGA,

we utilize the partial reconfiguration feature [18] that allows

a subset of the FPGA to be modified by a partial bitstream

downloaded while the FPGA is operating. In our design,

the SA is loaded to the static area, which is programmable

only at boot time, but applications can be loaded, whenever

necessary, as partial bitstreams into the dynamic area that

allows reprogramming at runtime. The dynamic area is again

partitioned into several regions in each of which an individual

application is installed. The partition is organized at boot

time according to the configuration (i.e., number and size of

regions) that is predefined in the SA bitstream. The partition

is fixed after being configured once, and the exclusive access

authority for the regions is only given to the SA, so that

subsequent processes of loading applications are performed

under the full control of the SA.

To be specific, the user may remotely transmit the appli-

cation bitstream or request to load the bitstream stored in the

server memory. In either case, to protect its contents, a bit-

stream is encrypted by using the asymmetric encryption algo-

rithm using the public and private key pair, MKpub/MKpriv,

which is already associated with the FPGA, as described

in subsection III-A (2©-a). Note that no FPGAs have the same

MKpub/MKpriv. This implies that when the server is equipped

with multiple FPGAs, a remote user may choose a specific

FPGA, which the desired bitstream is targeted to run on,

51316 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

simply by encrypting the bitstream with the key associated

with the target FPGA. When the target FPGA receives a

bitstream encrypted with MKpub as input (2©-b), the SA first

verifies its signature to ensure that the application has been

certified by a trusted third party (e.g., well-known app store)

and has not been illegally modified (2©-c). The SA then

decrypts it with MKpriv and installs the bitstream on a region

of its dynamic area (2©-c). After successfully loading the

application, the SA sends amessage notifying the remote user

of the application ID, together with the signature representing

the integrity and authenticity of the message (2©-e). As the

application ID, the index of the region where the bitstream is

placed within the dynamic area is used. Since, in our partial

reconfigurationmechanism, the number and size of regions in

the dynamic area are fixed after being configured statically

at boot time and only the SA has access to the regions,

an adversary cannot arbitrarily corrupt the loaded application

or remap the allocated application ID to a malicious applica-

tion in the operating FPGA.

The loaded application does not share any resources, such

as caches and buffers, with other applications to avert the

unavoidable security issues that arise under resource sharing,

as stated in section I. Each application uses only the resources

of its allocated region and communicates only with the SA.

The SA encrypts the application response and transmits it to

the remote user using a session key. It is worth noting that any

entity other than the remote user sharing the session key with

the SA cannot leak or tamper with the information within the

encrypted message. The procedure used to securely share the

session key will be described in subsection III-C.

In our design, the SA and the loaded applications are

connected in accordance with the standard AXI bus pro-

tocol [19], which is one of the most popular bus protocol

standards between IPs in SoC design. MeetGo hereby can

incorporate various (conventional) IPs by loading them as

applications, which are readily fulfilled with no interface

change or a slight interface change of adding AXI bridge,

which translates the original signals into AXI transactions.

In this way, MeetGo can provide a GPGPU-enabled TEE,

whose details are described in section V.

D. REMOTE ATTESTATION

MeetGo allows remote users to verify the authenticity and

integrity of applications that are running on the FPGA at

any time. The SA carries out a proof whenever there is

a request for remote attestation. For this, the SA employs

a static measurement scheme. Whenever the SA loads an

application into a region in the dynamic area, it measures

(computes the hash of) the bitstream (2©-d) and stores it in

a table along with the application ID (i.e., region index).

Such static measurement is trustworthy, because in the design

of our TEE, the SA is the only entity that is authorized to

access the dynamic area where applications are installed.

The attestation protocol runs as follows. The remote user

can send an attestation request message for an application.

The message should contain the target application’s ID and

an unpredictable nonce for preventing a replay attack [20]

(3©-a). Upon receipt, the SA responds with themeasured hash

value of the target application and the received nonce, after

signing with the MKpriv (3©-b). Now, the remote user can

verify the attestation (3©-c) by (1) checking the correctness

of the nonce, (2) comparing the delivered hash value with

the known value associated with the target application, and

(3) authenticating the signature through the MKpub.

E. ESTABLISHING SECURE COMMUNICATION CHANNEL

The SA allows the remote user to securely communicate

with an application running in the FPGA. All the messages

transferred between the user and the application are encrypted

with a symmetric session key. To securely share this key with

the FPGA, the user initiates the key exchange algorithm in the

following steps: (1) The user generates a session key (Sk) and

then encrypts it with the MKpub of the FPGAwhere the target

application is running. A random nonce and the application

ID are also included and encrypted together (4©-a). (2) When

the SA receives the encrypted message, SA decrypts it with

the MKpriv to obtain the Sk. (3) Then, the SA tries to prevent

multiple users from accessing the same application at one

time by managing a one-to-one mapping table between the

Sk and the application ID. (4) It then returns the acknowl-

edgement, which comprises the sent nonce and the signature

generated using the MKpriv (4©-b). (5) Finally, the remote

user can be sure that a session has been opened and the associ-

ated Sk has been securely shared with the SA by verifying the

signature using the MKpub (4©-c). It is noteworthy that unless

they know the MKpriv, adversaries cannot launch a man-in-

the-middle attack through the key exchange algorithm pro-

posed above. We adopt AES (with Galois/Counter Mode) as

our symmetric key algorithm to keep the integrity and fresh-

ness as well as the confidentiality during the communication

session. When encrypted messages arrive from remote users,

the SA decrypts the messages with the Sk, verifies that it is

legitimate access by referring to the mapping table between

the Sk and the application ID, and delivers the messages to

the application running in the FPGA. In addition, the SA

encrypts the response messages sent from the application

with the Sk and then requests the host system to deliver the

encryptedmessages to the remote user. The SA performs both

encryption and decryption in a pipelined manner to minimize

the latency in secure communications to a little initial delays

(i.e., pipeline startup delay). The Sk shared between the user

and SA is valid until the user closes the established session

afterward or a predefined session timeout is expired.

F. IMPLEMENTING SA

The SA consists of several internal modules each for inde-

pendent operations, as illustrated in Figure 2. First, the two

modules for elliptic curve cryptography (ECC) and AES are

involved in the encryption and decryption processes using

MKpriv and Sk, respectively. Next, the elliptic curve digital

signature algorithm (ECDSA) module generates and verifies

the signature using MKpriv. Then the ICAP module loads

VOLUME 9, 2021 51317

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

FIGURE 2. Organization of cryptocurrency wallet and GPGPU built on MeetGo.

partial bitstreams on the FPGA cooperating with the cryp-

tographic modules. These application bistreams are verified

in ECDSA, decrypted in the ECC, and configured on the

FPGAby ICAP. Lastly, the two followingmodules are used in

terms of communication: The PCIe interface module is used

to communicate with the host, and the AXI interface module

plays a role of connecting the SA and the applications within

the FPGA.

IV. CRYPTOCURRENCY WALLET BUILT ON MeetGo

In this section, we explain our cryptocurrency wallet real-

ized by using MeetGo. Our wallet enables users to securely

carry out cryptocurrency transactions by processing their

cryptocurrency keys (e.g., Bitcoin keys) in a TEE provided

by MeetGo on a remote server. We implement our wallet to

generate transactions compatible with two major currencies:

Bitcoin and Ethereum.

A. WALLET IMPLEMENTATION

Figure 2 depicts the overall organization of our cryp-

tocurrency wallet implemented on MeetGo. A cryptocur-

rency wallet is a program that generates and stores a

pair of cryptocurrency private/public keys, denoted here as

Cryptopriv and Cryptopub. It also executes various functions to

trade cryptocurrencies. Among them, we have implemented

three important functions: generating Cryptopriv, generating

Cryptopub, and signing transactions. Officially, our wallet

is composed of two sub-wallets. One is the signing-only

wallet, which performs these three functions defined in [21].

The other is the networked wallet, which performs the other

functions, such as monitoring the spending, generating the

unsigned transactions, and broadcasting the signed transac-

tions. The signing-only wallet needs to execute functions

processing Cryptopriv, the security-sensitive data that should

be protected with the highest priority, whereas the networked

wallet does not. Thus, in our implementation, only the former

is loaded into MeetGo, and the latter is realized as software

to run on the CPU. As the wallet needs to transfer data

frequently to/from remote users and the signing-only wallet,

we have made minor modifications to the wallet software for

such communication.When a remote user wants to talk to our

signing-only wallet, all the messages pass through the CPU

in encrypted form via a secure channel.

In our wallet implementation, the signing-only wallet mod-

ule contains the key for its user, Cryptopriv, along with three

wallet functions: PrivKeyGen, PubKeyGen and TxSign. We

have classified the above components as either common or

user-specific components. The three functions for key and

signature generation are classified as common ones, as they

are performed commonly by all users. In contrast, the gener-

ated keys are classified as user-specific ones, as storage for a

key must be separately assigned to each user. To efficiently

utilize the FPGA resources, we generate a common module,

called the wallet agent (WA), which performs the common

signing-only wallet functions for key generation and signing.

We construct a user-specific module, called the user wallet

(UW), which contains only storage for the associated user’s

private key Cryptopriv. The UW associated with each remote

user stores Cryptopriv and communicates with the WA to

process transaction requests. The wallet bitstreams, i.e., the

WA and UW bitstreams, are verified in ECDSA, decrypted in

the ECC, and configured on the FPGA by ICAP, as illustrated

in Figure 2. To prevent attacks from other loaded UWs,

we do not allow oneUW to access another UW’s interconnec-

tion with the WA. In addition, the cryptographic operations

requested from UWs in the WA are performed sequentially,

and all the internal buffers are flushed after handling each

request.

B. OPERATING PROCEDURES OF IMPLEMENTED WALLET

After a remote user securely shares a session key with the

SA, as stated in subsection III-E, the user communicates with

our wallet for trading cryptocurrency using the following

procedures. First, the remote user sends a request for gen-

erating Cryptopriv and a mnemonic phrase (a seed phrase to

represent the wallet) to our wallet. The mnemonic phrase

should be encrypted with the shared Sk and delivered securely

to the WA in the FPGA. Then the PrivKeyGen module in the

51318 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

FPGA creates Cryptopriv from the mnemonic sent from the

user, according to the BIP-0039 standard [22]. The generated

Cryptopriv is stored in the UW. To keep Cryptopriv safe,

it never moves to the CPU or persistent storage. Therefore,

the user needs to send the encrypted mnemonic to generate

Cryptopriv every time the procedure starts. Second, the Pub-

KeyGen module derives the pair Cryptopub from Cryptopriv,

and delivers Cryptopub to the user and the networked wallet.

Cryptopub is used later to check the cryptocurrency account

or verify the signed transaction. Third, the remote user sends

a trading request to the networked wallet to generate an

unsigned transaction. Then, the networked wallet checks the

validity of the request (e.g., whether the balance is equal to or

greater than the amount to be transferred). If the verification

is successful, the TxSign module generates a signature of the

transaction using the user’s Cryptopriv. Finally, the SA sends

the signed transaction to the networked wallet to broadcast it

on the blockchain network.

V. SECURE GPGPU BUILT ON MeetGo

A noticeable advantage of MeetGo in contrast with con-

ventional TEEs is that it can provide any hardware support

desired by trusted applications for more effective execu-

tion. GPGPU is a representative type of hardware support

that is considered a near necessity with the rise of machine

learning and big data. However, it is not straightforward

for the conventional TEEs to exploit GPGPU, since they

are able to connect to this computing unit only through

untrusted interfaces. For this reason, attempts have been

made to harden the interfaces through hardware-level mod-

ifications [14], [15], which have a drawback in feasibility.

On the other hand, the high level of programmability of the

FPGA allows MeetGo to embed hardware support includ-

ing GPGPU in the TEE itself; thereby, remote users can

run data/computation-intensive trusted applications such as

privacy-preserving neural network inferences [23], [24] in

the GPGPU-enabled environment. In this section, we explain

howMeetGo providesGPGPU to users and their applications.

Figure 2 depicts the overall architecture of our

GPGPU implemented on MeetGo. We employed an

open-core GPGPU MIAOW [25], which is available in the

register-transfer level (RTL) form and prototyped in the

FPGA. As explained earlier, since the SA adopts the AXI

bus protocol to connect with applications, MIAOW, which is

already designed for AXI, can be plugged intact intoMeetGo.

MIAOW is compatible with a subset of AMD’s Southern

Islands ISA, and it supports the OpenCL programmingmodel

widely used for general heterogeneous parallel computing.

MIAOW RTL code is synthesized and implemented into the

bitstream that fits into a dynamic region so that MeetGo can

install it as an application upon a user’s request.

Once MIAOW hardware is loaded on MeetGo, as illus-

trated in Figure 2, multiple compute units are instantiated as

a parallel processing engine, and buffers named local data

share (LDS) and global data share (GDS) are included for

storing data. As mentioned earlier, since MIAOW does not

TABLE 1. Synthesized results of applications on MeetGo.

need to be modified to be equipped in MeetGo, the remote

user can execute the original GPU code targeted at MIAOW

without tailoring it to MeetGo. The remote user transfers the

code/data to the SA within the FPGA and then transmits

a trigger signal to run the user’s GPU code on MIAOW.

Note that as explained in subsection III-E, the communi-

cation channel between the user and MIAOW is protected

securely by the SA, so MeetGo can overcome the main

security concern (protecting the privacy of the user’s data)

in a GPGPU-based service such as Machine Learning as a

Service (MLaaS) [23].

VI. EVALUATION

To evaluate MeetGo, we have implemented its prototype on

the Xilinx Virtex UltraScale+ VCU118 FPGA board. This

development board equips the PCIe interface that transfers

data from/to the host CPU at a speed of 8.0 GT/s. The 8-

GB DDR4 SDRAM is available to store data in the FPGA

memory.

All our FPGA modules, the two applications (cryptocur-

rency wallet, GPGPU), and the SA module are developed

by Verilog-HDL. In our wallet application, the WA module

that performs cryptographic functions for cryptocurrencies

is developed from the open-source C files ([22], [26]).

Those C sources are converted to HDL codes by the Xilinx

Vivado HLS tool and mapped onto the FPGA as a partial

bitstream. We also generated the GPGPU bitstream from the

open-source MIAOW RTL, but we have slightly changed

the original architecture by adding four more compute units

(from 1 to 5) to improve the performance. Mainly due to

the speed limit of the FPGA, the cryptocurrency wallet and

SA modules are configured to operate at 25 MHz, while our

GPGPU is set to be operated at 50 MHz. We have ensured

that the implemented modules on the FPGA board satisfy

timing constraints when a clock frequency is set to 25 MHz

and 50 MHz, respectively.

A. SYNTHESIS RESULTS

Based on the parameters mentioned above, we synthesized

our MeetGo design onto the FPGA, loaded our two MeetGo

applications, and quantified the logics necessary for MeetGo

and the applications in terms of LUTs, flip-flops (FFs), DSPs

and block RAMs (BRAMs). The synthesis results are shown

in Table 1. The SA occupies 1.8% (21,393/1,182,240) of

the total LUTs, 0.5% (12,922/2,364,480) of the total FFs,

2.7% (188/6,840) of the total DSPs, and 1.4% (30/2,160) of

VOLUME 9, 2021 51319

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

the total BRAMs. As shown from the above results, the SA

module, essential in MeetGo, occupies only a small fraction

of FPGA resources (e.g., 1.8% LUTs); thereby, most of the

FPGA resources are still available to the applications.

The cryptocurrency wallet application module comprising

the WA and UW accounts for 10.8% of the total LUTs, 2.3%

of the total FFs, 2.6% of the total DSPs, and 15.3% of the

total BRAMs. We deem that this size is acceptable, but we

have found that if we carefully adjust the various options of

the HLS tool, we can get a smaller WA module. Otherwise,

experts on the RTL and cryptographic algorithm may be

recruited to design those modules from scratch to attain the

best area and performance. It is worth noting that these kinds

of hardware updates can be applied even after it is released

the the market, because FPGAs are reprogrammable.

Our GPGPU application utilizes 77.3% of the total LUTs,

23.3% of the total FFs, 45.8% of the total DSPs and 56.2% of

the total BRAMs. In our current implementation, the number

of compute units for parallel processing is configured to five,

which is enough to provide great performance for remote

users, resulting in this high ratio in FPGA utilization. When

we tried to add more compute units, the timing constraint

was not satisfied due to the severe routing congestion when

running the place and route phase in logic synthesis. Thus,

the number of compute units of GPGPU needs to be adjusted

considering the FPGA chip specification and the performance

requirement. Remote users should have a choice of the appro-

priate version of GPGPU bitstream that includes as many

compute units as necessary.

B. PERFORMANCE ANALYSIS

To show the feasibility, we evaluated MeetGo in terms of per-

formance. Experiments were performed on Intel(R) Xeon(R)

CPU E5-2630 v4@ 2.20GHz (with 25 MB cache) with 64 GB

RAM, running Ubuntu 16.04 with Linux 4.4.0.164 (64-bit).

To obtain experimental results, each of the experiments was

repeated at least 100 times. The power-saving mode was

turned off and the CPU frequency was set to the maximum

value in Linux to minimize variation between experiments.

We first measured the execution time of primitive oper-

ations of bitstream loading and data transfer between the

host and MeetGo. As a result, we observed that it takes

10.31 and 61.78 minutes on average to load cryptocurrency

wallet bitstream of size 43.88 MB and GPGPU bitstream of

size 263.06 MB, respectively. According to our analysis, such

a long loading time is attributed to the bitstream decryp-

tion process based on asymmetric key cryptography, specif-

ically ECIES, which is one of the most robust algorithms.

MeetGo by default accepts encrypted bitstreams to protect

their confidentiality. This strong policy is only needed for

some applications whose bitstreams statically contain secret

information (e.g., cryptographic key and password). Thus, for

most applications including our two examples, we can accept

raw bitstreams, reducing the loading time by over 99 percent.

In this case, the adversaries in the middle would be able to

compromise the integrity of the bitstreams, but they will be

TABLE 2. Data transfer delay comparison.

TABLE 3. Processing delay comparison.

easily detected by the remote attestation mechanism provided

by MeetGo.

Similar to the bitstream loading, some delays are added

in transferring data to applications and receiving results,

because the SA in the middle protects all the data being

transferred with encryption based on a symmetric key algo-

rithm. Fortunately, the overhead is minimized thanks to the

pipelining scheme, as mentioned in subsection III-E. Table 2

demonstrates that the data transfer delay of MeetGo is rea-

sonably acceptable.

For further evaluation, we investigated the processing time

of the two implemented applications when they are run-

ning on the FPGA without and with MeetGo. We devel-

oped host-side applications to give tasks and get results to

the cryptographic wallet and GPGPU running on MeetGo.

In particular, in regards to GPGPU, we also developed an

image classification program for the MNIST database using

OpenCL. This program employed the CNN model defined

in [24] that we trained using Tensorflow, and executed the

CNN-based inference in GPGPU built in MeetGo. Resul-

tantly, in both applications, MeetGo incurs negligible per-

formance overhead as clarified in Table 3. This is because

MeetGo is designed not to affect the execution performance

of the applications except the initial delay in secure communi-

cations. We also observed in each application that the timing

variations of the PCI interface between the host and the FPGA

exerts more influence on the performance thanMeetGo itself.

We have also compared the performance of the two appli-

cations implemented based on MeetGo with those imple-

mented differently in prior works: SW-only wallet [22] and

GPU-based image classification [24] We note that both

implementations in prior works are untrusted for the follow-

ing reasons: First, privileged administrators are allowed to

arbitrarily read or write the memory used by applications,

as we discussed in section I, since the SW-only wallet runs

within the REE. Second, the authors in [24] did not fully

51320 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

TABLE 4. Performance comparison with untrusted prior work.

figure out how to secure homomorphic encryption against

side-channel attacks on a commodity GPU, even though

their image classification operates on encrypted data for data

privacy. By comparison, MeetGo provides a more robust

environment for side-channel issues (see in subsection VI-C).

As shown in Table 4, when operating a wallet function

that signs a cryptocurrency transaction, our wallet running

on MeetGo is on average 37 times slower than the SW-only

wallet. This performance degradation is mainly attributed to

the significant clock speed difference in between the CPU

(2.2GHz) and the FPGA (25MHz). The reason why our

MeetGo-based wallet operates with such a low clock fre-

quency is that we produced its Verilog HDL code from C

sources using the HLS tool that is still unmature to fully draw

the computing power of modern FPGA boards.1 Therefore,

we believe that the operating clock will be increased if the

HLS tool is improved or the wallet bitstream is developed

from scratch by using Verilog HDL.

When it comes to image classification, MeetGo-based

application out-performed about 473 times than the untrusted

one for a single image as shown in Table 4. The authors in [24]

tried to accelerate multi-image classification by enabling a

batch mode where they encoded 8192 images in a form that

can be processed at once. In this case, MeetGo-based classi-

fication was 17 times slower. However, since MeetGo-based

one operates based on GPGPU, the batch approach would be

easily applied to our implementation to enhance the perfor-

mance, which is left for the future work.

C. SECURITY ANALYSIS

Although MeetGo introduces a new hardware component,

the FPGA, to the system, we assert that MeetGo never widen

the attack surface of the system. In the following paragraphs,

we elaborate on details of potential attacks against MeetGo

along with how they are tackled.

Systematically, attacks to MeetGo can be classified into

those on the interface with remote users and those on

MeetGo’s FPGA component. First, adversaries may attempt

to launch man-in-the-middle attacks to eavesdrop or corrupt

themessages exchangedwith remote users, but these attempts

are thwarted completely because all the messages are trans-

mitted encrypted and their freshness are easily guaranteed by

adding a timestamp. Therefore, even privileged adversaries

residing in the host system are prevented from disclosing or

compromising the messages, and the only types of attacks

1A modern FPGA board usually provides much higher clock frequency
than our prototype, e.g., Xilinx VCU118 FPGA supports up to 810MHz
clock frequency and Intel Stratix 10 supports 1GHz.

they can launch are denial-of-service attacks (which are

beyond the scope of our work). As for adversaries, the only

way to succeed in attacks on the interface is to obtain a Sk that

is used to encrypt the contents of a secure session. However,

according to the key exchange algorithm in subsection III-E,

the Sk is delivered from users to SA as a ciphertext that is

encrypted by MKpub, and MKpriv never leaves FPGA; thus

adversaries cannot extract the Sk. Adversaries may try to

pretend to be benign users and establish a secure channel with

their own Sk. However, as the validity of the Sk is confined

by the SA to each session, adversaries cannot exploit their Sk
to meddle with other sessions (of different users/applications)

already established on the interface.

Adversaries may also be able to initiate some attacks

on MeetGo’s FPGA component. Remember that since we

assume that the SA has no security defects in our threat

model, adversaries cannot manipulate this module directly.

Therefore, alternatively, adversaries may try to replace the

SA with a fake one that aims at performing some malicious

actions such as extracting theMKpriv and Sk. Fortunately, this

attempt is prevented thanks to the secure bitstream loading

mechanism explained in subsection III-B. After power-on,

this mechanism automatically loads a SA bitstream that is

encrypted and authorized by FPGA manufacturers so that

a fake SA cannot substitute for the genuine SA. Once it is

loaded, the SA controls all access to the dynamic area where

applications are loaded. Thus, adversaries are prevented from

modifying already-loaded applications. Instead, they could

try to load a malicious application to MeetGo, but it cannot

adversely affect other applications, because all applications

are isolated from each other and do not share resources such

as wire, logic, or memory. Rather than tampering with bit-

streams themselves, adversaries may also conduct fault injec-

tion attacks on the FPGA to maliciously alter the functioning

of loaded modules (e.g., bypassing some security checks

of the SA within the FPGA). They may induce physical

faults by causing the power supply variations, clock glitches,

electromagnetic disturbances, and so on. These fault injection

attacks can bemitigated by shielding the FPGA device to pro-

tect against such physical injections. Alternatively, MeetGo

can adopt the currently known mitigating techniques, includ-

ing algorithmic change [27], fault detection [28], and random-

ization [29] techniques.

Adversaries, who are unable to directly compromise the

modules in the FPGA, may try to launch side-channel attacks

on MeetGo. For example, they can perform conventional

side-channel attacks through shared hardware resources, such

as page tables, cache units, and branch prediction-units,

but MeetGo is physically isolated from these resources so

that it is robust against these attacks. Besides, adversaries

also can execute FPGA-specific side-channel attacks that

exploit power, thermal, and co-located FPGA modules as an

attack vector; however, fortunately, we can cope with them

through the existing solutions [30], [31] that are orthogonal

to MeetGo. Adversaries can even conduct different types

of side-channel attacks by observing the timing informa-

VOLUME 9, 2021 51321

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

tion (e.g., interval and execution time) of the operations of

MeetGo or the length of the messages that come from/to

MeetGo. However, such timing information and message

lengths that can be observed outside of the FPGA are too

coarse-grained to infer meaningful information. For exam-

ple, to the best of our knowledge, no attack has been

found that exploits the interval, execution time, or mes-

sage length only to deduce secrets from a cryptocurrency

wallet. Lastly, against timing side-channel attacks, MeetGo

can easily employ well-known mechanisms that eliminate

timing information by regularly generating heartbeat-style

packets [32].

VII. DISCUSSION

A. SUPPORT FOR VARIOUS ARCHITECTURES

In addition to GPGPU, MeetGo can fully utilize the pro-

grammability of the FPGA to provide remote users with a

TEE based on different types of architecture. For example,

open-source CPUs like RISC-V [33] and ARM Cortex-M

series [34] can be readily converted to bitstreams that are

loadable byMeetGo. Therefore, by installing these bitstreams

onto MeetGo, remote users can execute trusted applica-

tions compiled with the ISA of RISC-V or ARM Cortex-M.

It would be particularly beneficial, for example, for a remote

user with Cortex-M based IoT devices wanting to migrate

their sensitive code to MeetGo to run it securely in the server

side containing the necessary data.

B. EASE OF APPLICATION DEVELOPMENT

With the advance of the high-level synthesis (HLS) tech-

nique, it is not necessary to use a low-level language like

Verilog-HDL to develop applications ofMeetGo. HLS allows

developers to work at a higher abstraction level. HLS has

been studied in-depth for the past decade, and the commercial

HLS tool has also recently achieved convincing levels in

terms of area, power, and performance [35]. Moreover, major

FPGA vendors, Xilinx [36] and Intel [37] are officially sup-

porting OpenCL, the standard heterogeneous programming

language, making it easier for developers to exploit the highly

parallel nature of FPGAs. To sum up, the entry barriers for the

development of FPGA applications have been lowering.

C. FEASIBILITY ON MOBILE DEVICES

Since MeetGo is designed to operate independently to CPU

architecture or OS, it can provide the same TEE environ-

ment to the mobile platform in the same way as the server

system. The only requirement to apply MeetGo to mobile

platforms is that the FPGA should be mounted. For this

purpose, a one-chip or two-chip solution that packs the CPU

and FPGA in the same die or that mounts the CPU and FPGA

on separate dies is possible. Here, the spec of the FPGA chip

to be incorporated into the mobile platform can be selected

flexibly according to the targeted power/area constraint.

VIII. RELATED WORK

To protect trusted applications from the REE under the con-

trol of system administrators, various hardware-based TEEs

have been developed by extending existing CPU architec-

tures. Among them, probably the closest TEE model to

MeetGo would be Intel SGX [38], which has been integrated

into commodity desktop CPUs since Intel Skylake in 2015.

LikeMeetGo, SGX can be used to create and support a secure

runtime environment, called the enclave, for the remote appli-

cation of any user who wants to run a program remotely on

the server equipped with SGX-enabled CPUs. Each enclave

is isolated by the underlying hardware from any entities in the

server, including the OS and hypervisor, such that all private

user data inside the enclave can be protected against any

theft and tampering attempts. Also likeMeetGo, SGX enables

remote users to attest their applications inside enclaves by

offering attestation key infrastructures. In academia, there

have been similar efforts to incorporate SGX-like TEEs into

the RISC-V open-source CPU [39], [40].

One notable difference betweenMeetGo and all these CPU

extensions for TEE is that their implementations are only

available in certain CPU platforms while ours is applica-

ble to any platform based on the CPU/FPGA hybrid archi-

tecture [3]–[5]. Another difference is that as their TEEs

are built in the host CPU hardware, applications running

inside the TEEs share many computing resources with the

untrusted host system. For instance, an SGX enclave uses

page tables, caches, and branch prediction units that are

all accessible or shared by untrusted entities like the OS

or other enclaves. The potential problem of such resource

sharing is that it increases the chances of user secrets inside

the enclave being leaked by side-channel attacks [41], [42].

In the development of MeetGo, therefore, we endeavored to

avoid the resource sharing problem by capitalizing on the

reconfigurability of the FPGA in that we implemented into

MeetGo all hardware modules necessary to perform sensi-

tive cryptocurrency transactions and execute security-critical

GPGPU programs, as described in section IV and section V.

Furthermore, to avert attacks from other applications, in the

implementation, we ensured that no resources were shared

among MeetGo applications.

Aside from this one, several studies have been performed

noting the FPGA’s value as a TEE isolated at the hardware

level. However, most of them [43]–[45] have focused on

building a TEE for local users, unlike MeetGo, which is

specialized for remote users. For example, a state-of-the-art

work [45] proposed a FPGA-based TEE whose trustworthi-

ness is ensured on the basis of its self-provisioned master

key. However, this work is less appropriate than MeetGo for

remote users at far distances because it requires the the users

to sign their applications through a reliable channel (e.g.,

physical access to the FPGA) prior to installing them to the

FPGA.

IX. CONCLUSION

MeetGo is an ordinary FPGA on a modern computer

armed with a security mechanism for remote computing.

Our security mechanism employs cryptographic algorithms

based on the master key prudently managed in the FPGA.

51322 VOLUME 9, 2021

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

These algorithms are used not only to construct a TEE for

remote users, but also to establish a secure communica-

tion channel between the remote users and their applica-

tions running inside the TEE. In the actual implementation,

MeetGo has been used to (1) create cryptocurrency wallets

that enable the owners to trade their currencies remotely on

a server without any server-side intervention and (2) provide

GPGPU, which securely accelerates data-intensive computa-

tions without reliance on the legacy GPU. Experimentally,

MeetGo showed a low FPGA resource utilization ratio and

incurred negligible performance overhead on those applica-

tions. We also analyzed potential attacks targeting MeetGo

and explained why MeetGo is safe from these attacks.

REFERENCES

[1] R. F. Trzeciak. (2017). Sei Cyber Minute: Insider Threats. Accessed:

May 26, 2020. [Online]. Available: https://resources.sei.cmu.edu/library/

asset-view.cfm?assetid=496626

[2] M. Sabt, M. Achemlal, and A. Bouabdallah, ‘‘Trusted execution envi-

ronment: What it is, and what it is not,’’ in Proc. IEEE Trust-

com/BigDataSE/ISPA, Aug. 2015, pp. 57–64.

[3] Intel. (2018). Intel Xeon Gold 6138 Processor. Accessed: May 26, 2020.

[Online]. Available: https://en.wikichip.org/wiki/intel/xeon_gold/6138p

[4] Amazon. (2018). Aws Ec2 FPGA Development Kit. Accessed:

May 26, 2020. [Online]. Available: https://github.com/aws/aws-fpga

[5] Intel. (2018). Intel Programmable Acceleration Card With Intel Arria

10 Gx FPGA Datasheet. Accessed: May 26, 2020. [Online]. Avail-

able: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literatur%e/ds/ds-pac-a10.pdf

[6] H. Oh, A. Ahmad, S. Park, B. Lee, and Y. Paek, ‘‘TRUSTORE: Side-

channel resistant storage for SGX using intel hybrid CPU-FPGA,’’ in Proc.

ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020, pp. 1903–1918,

doi: 10.1145/3372297.3417265.

[7] K. Neshatpour, M. Malik, M. A. Ghodrat, and H. Homayoun, ‘‘Accelerat-

ing big data analytics using FPGAs,’’ in Proc. IEEE 23rd Annu. Int. Symp.

Field-Program. Custom Comput. Mach., May 2015, p. 164.

[8] R. Dhanabal, S. K. Sahoo, V. Bharathi, K. Dowluri, B. S. R. P. Varma,

and V. Sasiraju, ‘‘FPGA based image processing unit usage in coin detec-

tion and counting,’’ in Proc. Int. Conf. Circuits, Power Comput. Technol.

[ICCPCT], Mar. 2015, pp. 1–5.

[9] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, ‘‘A survey of FPGA-based

neural network accelerator,’’ 2017, arXiv:1712.08934. [Online]. Available:

http://arxiv.org/abs/1712.08934

[10] B. Nagy, P. Orosz, and P. Varga, ‘‘Low-reaction time FPGA-based DDoS

detector,’’ in Proc. IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS),

Apr. 2018, pp. 1–2.

[11] A. Boutros, B. Grady, M. Abbas, and P. Chow, ‘‘Build fast, trade fast:

FPGA-based high-frequency trading using high-level synthesis,’’ in Proc.

Int. Conf. ReConFigurable Comput. FPGAs (ReConFig), Dec. 2017,

pp. 1–6.

[12] A. Surendar, ‘‘Fpga based parallel computation techniques for bioinfor-

matics applications,’’ Int. J. Res. Pharmaceutical Sci., vol. 8, pp. 124–128,

01 2017.

[13] T. Dvorin. (2019). Crypto Hacks: The Rise of the Rogue Insider. Accessed:

May 26, 2020. [Online]. Available: https://www.unboundtech.com/crypto-

hacks-the-rise-of-the-rogue-insider

[14] S. Volos, K. Vaswani, and R. Bruno, ‘‘Graviton: Trusted execution envi-

ronments on GPUs,’’ in Proc. 12th USENIX Conf. Operating Syst. Design

Implement. (OSDI), Berkeley, CA, USA: USENIX Association, 2018,

pp. 681–696.

[15] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, ‘‘Heterogeneous

isolated execution for commodity GPUs,’’ in Proc. 24th Int. Conf. Archi-

tectural Support Program. Lang. Operating Syst., Apr. 2019, pp. 455–468,

doi: 10.1145/3297858.3304021.

[16] Digital Signature Standard (DSS), National Institute of Standards and

Technology, FIPS Publication, Gaithersburg, MD, USA, May 1994.

[17] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital

signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,

pp. 120–126, Feb. 1978.

[18] Xilinx. (2020). Vivado Design Suite User Guide. Accessed: May 26, 2020.

[Online]. Available: https://www.xilinx.com/support/documentation/

sw_manuals/xilinx2019_2/ug%901-vivado-synthesis.pdf

[19] ARM. (2011). Amba(R) Axi and Ace Protocol Specification. Accessed:

Aug. 22, 2019. [Online]. Available: http://www.gstitt.ece.ufl.edu/courses/

fall15/eel4720_5721/labs/refs/AXI%4_specification.pdf

[20] P. Syverson, ‘‘A taxonomy of replay attacks [cryptographic protocols],’’ in

Proc. Comput. Secur. Found. Workshop VII, Jun. 1994, pp. 187–191.

[21] B. Project. (2019). Wallets. Accessed: May 28, 2020. [Online]. Available:

https://developer.bitcoin.org/devguide/wallets

[22] Libbitcoin. (2019). Bip-0039 Standard. Accessed: May 28, 2020.

[Online]. Available: https://github.com/libbitcoin/libbitcoin-system/blob/

master/src/wallet

[23] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, ‘‘Privacy-

preserving machine learning as a service,’’ Proc. Privacy Enhancing

Technol., vol. 2018, no. 3, pp. 123–142, Jun. 2018. [Online]. Available:

https://content.sciendo.com/view/journals/popets/2018/3/article-

p123.xm%l

[24] A. Al Badawi, J. Chao, J. Lin, C. F. Mun, J. J. Sim, B. H. M. Tan,

X. Nan, K. M. M. Aung, and V. Ramaseshan Chandrasekhar, ‘‘Towards

the AlexNet moment for homomorphic encryption: HCNN, theFirst homo-

morphic CNN on encrypted data with GPUs,’’ 2018, arXiv:1811.00778.

[Online]. Available: http://arxiv.org/abs/1811.00778

[25] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph,

J. Menon, M. P. Drumond, R. Paul, S. Prasad, P. Valathol, and

K. Sankaralingam, ‘‘Enabling GPGPU low-level hardware explorations

with MIAOW: An open-source RTL implementation of a GPGPU,’’ ACM

Trans. Archit. Code Optim., vol. 12, no. 2, pp. 1–21, Jul. 2015, doi:

10.1145/2764908.

[26] B. Core. (2019). secp256k1. Accessed: May 28, 2020. [Online]. Available:

https://github.com/bitcoin/bitcoin/tree/master/src/secp256k1

[27] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin, ‘‘Algo-

rithmic tamper-proof (ATP) security: Theoretical foundations for security

against hardware tampering,’’ in Theory Cryptography, M. Naor, Ed.

Berlin, Germany: Springer, 2004, pp. 258–277.

[28] H. Mestiri, N. Benhadjyoussef, M. Machhout, and R. Tourki, ‘‘An FPGA

implementation of the AES with fault detection countermeasure,’’ in Proc.

Int. Conf. Control, Decis. Inf. Technol. (CoDIT), May 2013, pp. 264–270.

[29] A. Shamir, ‘‘Method and apparatus for protecting public key schemes from

timing and fault attacks,’’ U.S. Patent 5 991 415 A, Nov. 23, 1999.

[30] J. Wu, Y. Shi, and M. Choi, ‘‘FPGA-based measurement and evaluation of

power analysis attack resistant asynchronous S-box,’’ in Proc. IEEE Int.

Instrum. Meas. Technol. Conf., May 2011, pp. 1–6.

[31] J. Knechtel and O. Sinanoglu, ‘‘On mitigation of side-channel attacks in

3D ICs: Decorrelating thermal patterns from power and activity,’’ in Proc.

54th Annu. Design Autom. Conf., Jun. 2017, pp. 1–6.

[32] S. Aga and S. Narayanasamy, ‘‘InvisiMem: Smart memory defenses for

memory bus side channel,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit.,

Jun. 2017, pp. 94–106.

[33] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,

H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, and S. Karandikar, ‘‘The

rocket chip generator,’’ EECS Dept. Univ. California Berkeley, Berkeley,

CA, USA, Tech. Rep. UCB/EECS-2016-17, 2016.

[34] ARM. (2020). Easy access to cortex-m processors on FPGA. Accessed:

May 26, 2020. [Online]. Available: https://www.arm.com/resources/

designstart/designstart-fpga

[35] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,

H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, ‘‘A survey

and evaluation of FPGA high-level synthesis tools,’’ IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp. 1591–1604,

Oct. 2016.

[36] Xilinx. (2019). Sdaccel Environment Userguide. Accessed: May 26, 2020.

[Online]. Available: https://www.xilinx.com/support/documentation/

sw_manuals/xilinx2019_1/ug%1023-sdaccel-user-guide.pdf

[37] Intel. (2019). Intel(R) FPGA Sdk for Opencl(TM) Pro Edition. Accessed:

May 26, 2019. [Online]. Available: https://www.intel.com/content/

dam/www/programmable/us/en/pdfs/literatur%e/hb/opencl-

sdk/aocl_getting_started.pdf

[38] V. Costan and S. Devadas, ‘‘Intel SGX explained,’’ IACR Cryptol. ePrint

Arch., Tech. Rep. 2016/086, 2016.

[39] V. Costan, I. Lebedev, and S. Devadas, ‘‘Sanctum: Minimal hardware

extensions for strong software isolation,’’ in Proc. 25th USENIX Secur.

Symp. (USENIX Secur.), 2016, pp. 857–874.

VOLUME 9, 2021 51323

http://dx.doi.org/10.1145/3372297.3417265
http://dx.doi.org/10.1145/3297858.3304021
http://dx.doi.org/10.1145/2764908

H. Oh et al.: MeetGo: A Trusted Execution Environment for Remote Applications on FPGA

[40] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanovic, ‘‘Keystone:

A framework for architecting tees,’’ 2019, arXiv:1907.10119. [Online].

Available: https://arxiv.org/abs/1907.10119

[41] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and

A.-R. Sadeghi, ‘‘Software grand exposure: SGX cache attacks are practi-

cal,’’ in Proc. 11th USENIX Workshop Offensive Technol. (WOOT), 2017,

p. 11.

[42] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, ‘‘Inferring

fine-grained control flow inside SGX enclaves with branch shadowing,’’

in Proc. 26th USENIX Secur. Symp. (USENIX Secur., 2017, pp. 557–574.

[43] O. Gelbart, P. Ott, B. Narahari, R. Simha, A. Choudhary, and J. Zambreno,

‘‘Codesseal: Compiler/FPGA approach to secure applications,’’ in Intel-

ligence and Security Informatics, P. Kantor, G. Muresan, F. Roberts,

D. D. Zeng, F.-Y.Wang, H. Chen, and R. C.Merkle, Eds. Berlin, Germany:

Springer, 2005, pp. 530–535.

[44] E. M. Benhani, L. Bossuet, and A. Aubert, ‘‘The security of ARM

TrustZone in a FPGA-based SoC,’’ IEEE Trans. Comput., vol. 68, no. 8,

pp. 1238–1248, Aug. 2019.

[45] A. Coughlin, G. Cusack, J.Wampler, E. Keller, and E.Wustrow, ‘‘Breaking

the trust dependence on third party processes for reconfigurable secure

hardware,’’ in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays,

Feb. 2019, pp. 282–291, doi: 10.1145/3289602.3293895.

HYUNYOUNG OH received the B.S. and M.S.

degrees in electrical and electronic engineering

from Yonsei University, South Korea, in 2005 and

2007, respectively. He is currently pursuing the

Ph.D. degree in electrical and computing engi-

neering with Seoul National University, South

Korea. He worked as a SoC Designer with Sam-

sung Electronics Company Ltd., South Korea,

from 2007 to 2017. His research interest includes

hardware-backed system security against various

types of threats.

KEVIN NAM received the B.S. degree in electrical

and computer engineering from Seoul National

University, South Korea, in 2020, where he is

currently pursuing the Ph.D. degree in electrical

and computing engineering. His research interest

includes hardware-backed system security against

various types of threats.

SEONGIL JEON received the B.S. degree from the

School of Electronic Engineering, Soongsil Uni-

versity, South Korea, in 2017, and the M.S. degree

in electrical and computing engineering from

Seoul National University, South Korea, in 2020.

His research interest includes hardware-backed

system security against various types of threats.

YEONGPIL CHO received the B.S. degree in elec-

trical engineering from POSTECH, South Korea,

in 2010, and the Ph.D. degree in electrical and

computer engineering from Seoul National Uni-

versity, South Korea, in 2018. He is currently a

Professor with the Department of Computer Sci-

ence, Hanyang University. His research interest

includes system security against various types of

threats.

YUNHEUNG PAEK (Member, IEEE) received

the B.S. and M.S. degrees in computer engineer-

ing from Seoul National University, South Korea,

in 1988 and 1990, respectively, and the Ph.D.

degree in computer science from the University

of Illinois at Urbana-Champaign, in 1997. He is

currently a Professor with the Department of Elec-

trical and Computer Engineering, Seoul National

University. His research interests include system

security with hardware, secure processor design

against various types of threats, and machine learning based security

solution.

51324 VOLUME 9, 2021

http://dx.doi.org/10.1145/3289602.3293895

