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Abstract

Reliable, predictable engineering of cellular behavior is one of the key goals of syn-

thetic biology. As the field matures, biological engineers will become increasingly reliant

on computer models that allow for the rapid exploration of design space prior to the

more costly construction and characterization of candidate designs. The efficacy of such

models, however, depends on the accuracy of their predictions, the precision of the mea-

surements used to parameterize the models, and the tolerance of biological devices for

imperfections in modeling and measurement. To better understand this relationship,

we have derived an Engineering Error Inequality that provides a quantitative mathe-

matical bound on the relationship between predictability of results, model accuracy,

measurement precision, and device characteristics. We apply this relation to estimate
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measurement precision requirements for engineering genetic regulatory networks given

current model and device characteristics, recommending a target standard deviation of

1.5-fold. We then compare these requirements with the results of an interlaboratory

study to validate that these requirements can be met via flow cytometry with matched

instrument channels and an independent calibrant. Based on these results, we recom-

mend a set of best practices for quality control of flow cytometry data and discuss

how these might be extended to other measurement modalities and applied to support

further development of genetic regulatory network engineering.

Keywords: flow cytometry, unit calibration, precision

Introduction

In mature fields of engineering, most design work is carried out “virtually” using quantitative

numerical models to efficiently explore design space. Physical prototypes, on the other hand,

are primarily used to validate models and designs and to refine predictions, rather than

as a part of the search for some viable design. Once the goals of an engineering project

reach even a moderate degree of complexity, the modeling and simulation of a proposed

design is much faster and cheaper than the construction of a physical prototype, but such

models are only useful if they are sufficiently accurate to reliably predict whether the physical

instantiation is likely to satisfy the engineering goals. For a synthetic biology project, the

number of potentially viable designs rapidly exceeds the number of combinations that can be

readily brute-forced with high-throughput screening methods1. Moreover, high-throughput

screening methods are still effectively out of reach of all but the most well-financed labs,

meaning that most synthetic biology practitioners are only able to build and test a small

number of constructs in each iteration of their engineering cycle.

Quantitative predictive modeling should allow practitioners to more efficiently explore

design space, increase the likelihood that a physical prototype meets design goals, and thus
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decrease the barriers to entry for synthetic biology engineering. The efficacy of such predic-

tions involves three components: accurate biological models, precise measurements providing

parameters for the models, and biological devices with some degree of tolerance for imper-

fection in modeling and measurements. Recent years have seen much improvement in all

three of these areas, including models that provide good accuracy in predicting certain com-

positional behaviors of engineered genetic constructs (e.g.,2–10), protocols for reproducibly

precise measurement of genetic construct behavior11–13, and families of biological regulatory

devices with improved performance (e.g.,6,8,10,14–20). Despite all of these advances, however,

effective predictive engineering with genetic constructs remains extremely difficult and is

only currently done under specific narrow circumstances.

This difficulty likely stems at least partly from persistent shortcomings in measurement

reproducibility and precision. But just how reproducible do measurements actually need to

be? Moreover, can we achieve a sufficient level of precision with available methods, and what

best practices can help to ensure data actually attains the desired precision? To shed light

on these questions, we derive a mathematical bound, which we call the Engineering Error

Inequality, that quantifies the relationship between predictability of results, model accuracy,

measurement precision, and device characteristics. We then apply this bound to estimate

requirements for precision for measurements used to engineer genetic regulatory networks.

Finally, we use data from an interlaboratory study to validate that these requirements can

be met via flow cytometry with the aid of matched instrument channels and an independent

calibrant. Based on these results, we recommend a set of best practices for quality control of

flow cytometry data and discuss how these results might support more effective engineering

of genetic networks.
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Table 1: Definitions of key mathematical symbols used in this paper.

Name Definition
v a property value for a design
r the range [r−, , r+] of specification-satisfying values for v

v̂ estimated value of v
r̂ predicted range of r
µ geometric standard deviation of measurement error (fold)
m geometric standard deviation of model error (fold)
perr probability a design instantiation fails to satisfy its specification
ps probability a design instantiation succeeds in satisfying its specification

Results

The Engineering Error Inequality

We propose that a conservative approximation of the difficulty of engineering a genetic

construct can be made by considering a simple “atomic” act of engineering decision-making:

checking whether a property value v of a proposed system falls into a range of viable values

r = [r−, r+]. Practically every choice in genetic construct design can be interpreted in terms

of one or more such evaluations, for example:

• Will a given promoter drive production of an enzyme to a high enough level to support

the intended reaction to generate a desired product? Here, v is promoter activity and

r is the range of activity levels that will result in the intended production rate.

• Is the high signal supplied to a genetic inverter sufficient to suppress its output below

a desired level of expression? Here, v is the input signal level and r is the range of

input levels that will produce outputs below the threshold.

• Will a given chemical sensor detectably vary its output when exposed to the chemical

at various concentration levels of interest? Here, v is the minimum difference in outputs

produced by the target concentrations and r is the range of output differences that can

be detected.
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The full details of any such engineering process will typically be much more complex. Most

systems will involve more than one decision and it may be difficult to actually achieve a

value in the viable range. The basic ability to check whether a value falls in a desired range,

however, is a necessary precondition for any such more sophisticated decision-making. This

implies an inequality relation (per details in the derivation given in the Methods), such that

any metric quantifying the difficulty of evaluating a single value check is also a lower bound

on the difficulty of evaluating any other design decision.

If we know the actual values of v and r, then making such a check is trivial. In practice,

however, uncertainty enters the decision-making process because we cannot directly access

the true values of either v or r. Instead, we must work with estimated values. Experimental

characterization produces an estimated value v̂ that varies from the unknown true value v.

Applying predictive models produces an estimated range r̂ that varies from the unknown

true value r. In the context of the engineering of genetic regulatory networks, gene ex-

pression distributions are typically log-normal21 (or a close approximation22 thereto). As a

consequence, the errors of measurements and model predictions are typically well-described

in terms of ratios, rather than differences. In this case, we can thus describe the error of

measuring v (i.e., for which precision gives a lower bound) as the geometric standard devia-

tion µ of values of v̂. Likewise, model accuracy may be described as the geometric standard

deviation m of predictions of the magnitude or bounds of r̂. Figure 1(a) provides a diagram

illustrating this relationship.

For example, consider the case given above of selecting a constitutive promoter to drive

production of an enzyme to an expression level v within a range r of expression levels that will

support the intended reaction. Here, the measured expression level v̂ might be an average

protein expression level of 3.5e4 molecules/cell to a precision µ of 2.5-fold standard deviation

(i.e., 95% chance of falling within a range of 5.6e3 to 2.2e5 molecules/cell). Likewise, the

estimate of viable range r̂ might be made with a model that predicts good enzymatic function

at expression levels within a range of 2e3 to 5e4 molecules/cell, with an empirical accuracy m
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of 3-fold standard deviation on either bound (i.e., 95% chance that the true range of viability

has a lower bound between 6.7e2 and 6.0e3 and an upper bound between 1.7e4 and 1.5e5,

assuming that m and µ are themselves well known). In this case, the promoter would produce

good enzymatic function if the true values turn out to be close to the estimated value but

fail if they are farther away. For example, the system will fail if the measurement produced

an underestimate, with the true expression level v being 8.0e4 molecules/cell and the model

produced an overestimate, with the true upper bound of r being 3.0e4 molecules/cell.

The probability of success ps of an engineered design can then be conservatively bounded

as being no greater than the probability that a system that has been estimated to have a

value in the viable range actually does in fact have that value in the viable range:

ps ≤ P (v ∈ r|v̂ ∈ r̂) (1)

If we evaluate Equation 1 in this context, then by following the derivation provided in the

Methods we may compute a conservative bound on the probability of success ps, which we

term the Engineering Error Inequality:

ps ≤ erf

(

|r̂log|
2
√
2
√

µ2 +m2

)

(2)

where µ and m are the geometric standard deviation (log fold) of measurement and model

error distributions, respectively, |r̂log| is the magnitude of r̂ on the log scale (i.e., log r̂+

r̂
−

), and

erf is the standard error function. The Engineering Error Inequality thus provides a bound

on the probability that an instantiation of a design satisfies its specification, establishing

a four-way relationship between the predictive accuracy m of a model, the precision µ of

property value measurements, the estimated range r̂ over which a property value will fulfill

its specification, and the probability ps that a particular implementation will actually fulfill

said specification.
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Figure 1: (a) Minimum requirements for effective engineering can be estimated by considering
the effect of errors on an “atomic” engineering decision: checking whether an estimated
property value v̂ (red) lies within the estimated range r̂ (blue) that can correctly realize an
engineering specification, given a measurement error distribution of magnitude µ (light red)
estimating the property value and a model error distribution of magnitude m (light blue) in
predicting the acceptable range. The relationship of these values determines the probability
that the true value v (orange) actually falls within the true range r (purple); in the illustrated
case, they do not, and the design will fail. (b) Minimum probability of failure with respect
to target range and total error (combining both measurement error and model error); red
line highlights the typical heuristic significance cutoff perr = 0.05. (c, d, e) Examples of the
measurement precision required to hit a target range with no more than given a probability
of failure, given a model geometric standard deviation of 1.2-fold (c), 1.5-fold (d) or 2-fold
(e). Black cross highlights the example of a 10-fold range and 5% chance of failure, which
requires approximately 1.7-fold measurement precision with 1.2-fold model error, 1.5-fold
precision with 1.5-fold model error, and is not possible with 2-fold model error.
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Estimating Measurement Precision Requirements

Figure 1(b) illustrates how the Engineering Error Inequality may be thought of with respect

to a total “budget” for error in both modeling and measurement. For example, consider a

potential definition of “significant” chance of failure (perr = 1 − ps = 0.05). The transition

around this range is fairly sharp: small changes in total measurement and model errors result

in large changes in the likelihood that the system operates as intended. A perr = 0.05 cutoff

is approximately equivalent to two geometric standard deviations under the assumptions

of Equation 2, so avoiding a significant chance of failure requires the geometric standard

deviation of total error be less than the fourth root of the target range (i.e., the range being

two geometric standard deviations up and two down from its geometric center). In current

engineering of genetic regulator networks, the estimated range of values |r̂log| that satisfy a

design specification typically spans one or two orders of magnitude (e.g., the range of gene

expression levels for a repressor that are high enough to fully repress the promoter it targets,

but not too high for the cell to sustain). At these levels, selecting a design that places a value

within a 10-fold range requires that error (
√

µ2 +m2) be less than 1.78-fold while doing the

same for a 100-fold range requires that error be less than 3.16-fold.

So far, we have discussed the combined error of both model and measurement. Equation 2

tells us that our ability to engineer effectively will be limited by the larger of the two errors.

Improvements in the smaller error can improve the situation by a ratio of up to 1√
2

(i.e.,

about a third). Thus, improving one of the two errors can make a significant difference, but

the situation rapidly becomes one of diminishing returns.

Of the two, model uncertainty m is generally the more difficult to quantify and control in

novel contexts, given its relationship to fundamental unknowns about biology. For example, a

prediction regarding transcriptional activity may be thrown off by an unexpected contextual

sequence interaction out of scope of the model that is being applied. The precision of

measurements µ, on the other hand, can be estimated through interlaboratory studies. Even

though our understanding of the implications of a measurement is imperfect, we can at
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least determine how precisely that measurement can be reproduced. Focusing specifically

on the question of requirements for measurement precision µ, Figure 1(c-e) illustrates this

relationship by evaluating Equation 2 to determine the minimum measurement error µ for

which a desired probability of failure perr can be achieved given a specified target range size

|r̂| and model error standard deviation m. In particular, Figure 1(c) shows a range of |r̂|

and perr given a model error with standard deviation m = 1.2-fold, Figure 1(d) shows the

same for m = 1.5-fold, and Figure 1(e) for m = 2.0-fold. This range of values is typical

for the observed levels of accuracy demonstrated by current predictive models for various

aspects of gene expression networks2–8. In order to achieve a 5% chance of failure on a

10-fold target range in the first case, with m = 1.2, measurement precision needs only to be

approximately 1.7-fold, while with m = 1.5 the required precision tightens to approximately

1.5-fold, and with m = 2.0 the desired chance of failure cannot be achieved even with perfect

measurements (µ = 0).

Complementarily, more tolerant system designs and better-performing devices can relax

demands for both measurement precision µ and model accuracy m by providing a larger

acceptable range of values to target. For example, with m = 1.5-fold model accuracy,

changing from a 10-fold target |r̂| to a 30-fold or 100-fold target |r̂| decreases the required

measurement precision µ to 2.16-fold and 3.01-fold, respectively.

These analyses are conservative, meaning that in practice the de facto requirements for

effective engineering may be significantly more stringent. However, these estimates can at

least be used to determine minimum requirements for use of a measurement technique in

engineering biological organisms. Thus, given the typical prediction power of current models

and the typical operating ranges of current biological devices6,8,10,14–20, we may set a nominal

1.5-fold standard deviation target for measurement precision µ as an approximate mid-point

in the range where 5% change of failure is achieved with 1.2-fold to 2.0-fold m models and

10-fold to 100-fold |r̂| devices, per Figure 1(c-e). Further improvements will bring additional

marginal gains, with rapidly diminishing returns for anything tighter than approximately

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.460840doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.10.460840
http://creativecommons.org/licenses/by/4.0/


1.2-fold. On the other hand, measurement precision worse than approximately 2.0-fold is

effectively unusable for predicting the behavior of anything but the most tolerant systems

and highest performance devices.

Given the landscape defined by evaluating Equation 2 against the current state of the art

in modeling and available devices, we suggest that these numbers provide a reasonable set of

first approximation targets against which to evaluate modalities of measurement. This, then,

is the first key result of this work: in order for a measurement to support effective engineering

of genetic regulatory networks given current model precision and device characteristics, we

recommend a target precision µ of 1.5-fold standard deviation, with a maximum allowable

value of 2.0-fold and no significant improvement expected for µ less than 1.2-fold.

Precision of Gene Expression Quantification with Flow Cytometry

We now apply these results to ask whether flow cytometry can satisfy the requirements for

measurement precision. Flow cytometry is one of the most frequently used methods for

quantifying gene expression, e.g., by co-expressing a fluorescent protein with a gene of inter-

est or by using dye-tagged antibodies that attach to membrane proteins. These instruments

produce data in arbitrary units whose values depend on the specific instrument and its con-

figuration, but these data can be mapped to reproducible units by measuring a calibrant

of known fluorescence and scaling the unknown data accordingly. These units are given as

Molecules of Equivalent Soluble Fluorophores (MESF) or MEx where x is a particular flu-

orophore, e.g., MEFL for Molecules of Equivalent Fluorescein. Flow cytometry is also the

only currently widely accessible assay modality that can collect expression data from large

numbers of single cells, which can make flow cytometry particularly valuable for modeling

and prediction. Indeed, flow cytometry has been the primary assay used in a number of re-

cent studies demonstrating effective prediction of multi-element genetic expression systems

from models of their constituent components4–6,8–10. Alternatives either gather population

data (e.g., plate reader, RNAseq, proteomics) or single cell data from relatively small num-
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bers of cells (e.g., microscopy) or are not yet widely accessible (e.g., droplet microfluidic

sequencing23, various single-cell transcriptomic methods24).

Prior results with calibrated flow cytometry suggest that this method is indeed likely to

be able to achieve the required degree of precision. A study by the International Society for

Advancement of Cytometry (ISAC) and the US National Institute of Standards and Technol-

ogy (NIST) demonstrated that currently available fluorescence calibration beads achieve no

better than approximately 1.2-fold variation25, a number consistent with prior studies on the

variation of dye-based quantification of fluorescence (e.g.,26). This provides an anticipated

lower bound on measurement error, since measurements that are calibrated using fluorescent

beads cannot be more precise that the measurement of the calibrant. Additionally, two in-

terlaboratory studies organized by iGEM11,12 suggest a likely upper bound. In these studies,

each laboratory independently transformed several genetic constructs into cells, then cultured

the cells and measured their fluorescence using plate readers and/or flow cytometry. The

flow cytometry measurements in these two studies, with units determined using SpheroTech

calibration beads27, produced values with geometric standard deviations of 1.7-fold11 and

2.3-fold12, but they include possible error introduced by independent transformation and

culturing methods. To the best of our knowledge, no prior study has specifically examined

the precision of measurements quantifying fluorescent protein expression via bead-calibrated

flow cytometry.

Figure 2: Interlaboratory study design: samples prepared in one lab were split and shipped
to all participant labs. Once received at each lab, samples were measured first to determine
instrument settings, then to acquire study data, which was uploaded for unified analysis.
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Study Design and Instruments

To address this question, we organized an interlaboratory study to measure the same cells

on different instruments. Figure 2 shows the overall design of this study. First, five strains

of E. coli were transformed and cultured in a single laboratory, each strain with a different

plasmid: a blank plasmid expressing no fluorescent protein, two plasmids for constitutive

expression of GFP at different expression levels, and two plasmids for constitutive expression

of mCherry at different expression levels (full details are provided in S1: Interlab Plasmid

Designs). All participating laboratories were sent frozen aliquots of each of the samples,

along with SpheroTech RCP-30-5A rainbow calibration beads27, such that all measurements

were made with aliquots from the same biological material and the same set of calibration

beads. The laboratories performed flow cytometry measurements in two stages, first using

one set of samples to determine appropriate instrument settings, then measuring three sets

of samples to acquire study data. For instruments with variable channel gain, each sample

was measured at three different gain levels. Three technical replicates of measurement were

requested for each sample in every measurement condition. All data was then uploaded for

a unified analysis process. Full details are provided in Methods, S2: Protocol, and S4: Flow

Cytometry Data Processing.

In total, measurements and configuration information were collected from 23 flow cytome-

ters at 15 institutions. We deliberately did not attempt to select for identical instruments,

but instead gathered as much information as was available about each instrument in order

to allow our study to consider both identical and non-identical channels and instruments.

The full list of instruments and channels is provided in S3: Participating Instruments and

Channels. In total, the study comprised 12 different models of flow cytometer from three

manufacturers. The overall variety of available channels is quite wide. For subsequent anal-

ysis, we selected channels that best matched the excitation and emission spectra of GFP

and mCherry, as shown in Figure 3 (details given in S4: Flow Cytometry Data Processing).

For GFP, the 488nm excitation, 530nm/30nm emission filter channel is widespread (16 of
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Figure 3: Comparison of best match channels for calibration of GFP to MEFL and and
mCherry to MEPE using SpheroTech RCP-30-5A beads (sorted first by laser then by emission
filter center). Relative spectra for GFP and mCherry are plotted in the background for
comparison (source: fpbase.org). For GFP, most channels are quite similar, while for
mCherry there is a high degree of heterogeneity. Note: for the 473 nm excitation instrument
at bottom, emission filter information was not available and is thus not shown. Full channel
details information is provided in S3: Participating Instruments and Channels.

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2021. ; https://doi.org/10.1101/2021.10.10.460840doi: bioRxiv preprint 

fpbase.org)
https://doi.org/10.1101/2021.10.10.460840
http://creativecommons.org/licenses/by/4.0/


23 instruments), with all but two others closely similar. For mCherry, channels were more

heterogeneous, with the most frequent being the 561nm excitation, 610nm/20nm emission

filter channel (9 of 23 instruments).

In principle, every set of channels with identical excitation and emission filters should

produce identical results. For non-matched channels, the degree of disparity should depend

on the relative difference between the spectral properties of the calibration beads versus the

spectral properties of the fluorescent proteins. In principle, such spectral information might

be used to adjust unit to be equivalent across unmatched channels. For the present, however,

we will ask only the empirical question of how much variability is observed for both matched

and unmatched channels.

Furthermore, in all cases, we cannot truly say that the calibration is to the designated

units of the manufacturer (molecules of equivalent fluorescein, MEFL and molecules of equiv-

alent phycoerythrin, MEPE), since no channel precisely matches the channels for which the

calibrant manufacturer has provided values. As the target of our study is not absolute units

but variation in measurement, however, this is not a limitation. We will use the designation

nonetheless as a shorthand for beads calibrated using the values provided for MEFL and

MEPE in the closest matching available channel. Note that this lack does indicate a need

for coordination between calibration bead manufacturers and flow cytometry providers on

standard channels and/or more complete spectral information to be made available about

calibration beads.

Study Results

Of the 23 participating instruments, 19 had adjustable gain settings (enabling measurement

at 3 sensitivities) and 4 had fixed gain, meaning that overall 61 data sets were collected. Each

should have 10 technical replicate groups (5 strains measured on 2 fluorescence channels) for

a total of 610 anticipated technical replicate groups, with three replicates per group. Data

was analyzed following the process in S4: Flow Cytometry Data Processing, with geometric
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statistics computed for the cell-like events of each sample (geometric statistics are used in all

cases due to the expected log-normal distribution of strong gene expression21). Instrument

and sample errors, however, meant that not all groups had three replicates and not all

technical replicate groups could used for analysis. On one instrument, only one replicate was

able to be collected and on another the selected red channel was found to be inoperative,

invalidating 40 technical replicate groups. Another 86 replicate groups were deemed invalid

due to insufficient data, having fewer than two technical replicates with at least 100 cell-like

events per replicate. This left a total of 484 replicate groups accepted for analysis.
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Figure 4: (a) Distribution of geometric standard deviation of means over replicates, across a
total of 484 replicate groups. The dashed line shows a cut-off threshold of 1.2-fold. (b) Dis-
tribution of geometric standard deviation of replicate group geometric means for fluorescent
samples measured at different voltages on the same instrument, across a total of 58 sets of
voltage-varying replicate groups. The dashed line shows the geometric mean of geometric
standard deviations, which is 1.086-fold.

Variation between technical replicates can provide an empirical baseline for evaluating

instrument precision. At the same time, once a baseline has been established, deviations

from that baseline are likely to indicate issues in protocol execution that are cause for data

exclusion. Figure 4(a) shows the distribution of standard deviations of means across the

replicate groups. Overall, technical replicates show a consistently high level of precision,

with more than half of all replicate groups having a standard deviation of less than 1.04-

fold and 84.3% having a standard deviation of less than 1.2-fold. Above approximately
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1.2-fold, however, standard deviations increase sharply. Both the low-event samples and the

high-variation replicate groups are distributed across instruments and intermixed with other

conditions that had no issues, indicating problems are likely due to issues with particular

samples or executions rather than systematic in nature. We thus exclude all high-variation

technical replicate sets from the remaining comparisons across voltage levels and instruments,

using a threshold of 1.2-fold standard deviation, due to the likelihood that these samples

would distort results with error unrelated to the subject of study. Hereafter, we will use

accepted replicate group to refer to technical replicate groups that are both valid and have

less than 1.2-fold standard deviation.

We then turned our attention to comparisons of the values obtained from different con-

figurations of a single instrument or from different instruments. On an individual instru-

ment, calibration beads should map data obtained with different channel voltage settings

to identical units as long as the measurements are not saturated at the high or low end of

the quantifiable scale. We thus compared the green fluorescence measurements for GFP-

expressing strains and red fluorescence measurements for mCherry-expressing strains, omit-

ting the non-fluorescent strain and channels. For these conditions, we considered all sets

of accepted replicate groups in where there are multiple groups identical except for channel

voltage settings (i.e., same sample, same channel, and same machine). There are a total

of 58 such sets, and Figure 4(b) shows the geometric standard deviation of the replicate

group geometric means for each of these sets. Overall, we confirm the expected result, that

calibration beads generally allow close comparison across voltage levels, with the geometric

mean of geometric standard deviations equal to 1.086-fold and even the maximum observed

geometric standard deviation equal to only 1.31-fold.

To compare fluorescent sample measurements between instruments, we restricted the

comparison to one gain level for each fluorescent sample and selected the technical replicate

group with the lowest standard deviation. In theory, channels with identical excitation and

emission parameters should produce identical values once calibrated, even though they are on
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Figure 5: Comparability of fluorescence measurements across instruments with equivalent
channels. Bars show the geometric standard deviation of the lowest standard deviation
technical replicate group of fluorescent samples per instrument for groups of instruments
with channels having identical excitation and emission filter values, along with the standard
error for this estimate. Bar color indicates GFP or mCherry, with the high expression
construct on the left and medium expression construct on the right of each pair of bars. The
geometric mean of geometric standard deviations is 1.52-fold.

different instruments. Figure 5 shows the geometric standard deviation for each fluorescent

sample for each cluster of instruments with matching channels. Overall, the differences are

notably higher than for different voltages on a single instrument. The geometric mean of

these geometric standard deviations is still only 1.52-fold. Notably the only two channels

shared by high numbers of instruments (488 ex, 530/30em for GFP; 561 ex, 610/20 em for

mCherry) have values very close to this for both the high and medium constructs. These

results indicate that flow cytometry with bead-based calibration can meet the 1.5-fold target

precision estimated above.

Finally, we consider the relationship of calibrated values as measured by instruments with

different channels. Figure 6 shows these values for each of the four fluorescent constructs.

For GFP, three channels (488 ex, 530/30 em; 488 ex, 525/50 em; 488 ex, 533/30 em) produce

values for which the variation between channels is less than the variation within channels

(though one of the 525/50 instruments provides a potentially concerning outlier). The 488
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Figure 6: Comparison of calibrated values measured by instruments with different channels
for each of the four fluorescent constructs. Dots show the geometric means of the lowest
standard deviation technical replicate group for each instrument, bars show the geometric
mean and standard deviation over groups. For channels shared by more than one instrument,
the vertical bar shows the geometric standard deviation. Overall, channels with similar
emission filters appear to produce sufficiently comparable results, despite not being optically
matched.
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ex 510/21em channel, appears marginal (though this is uncertain given there is only a single

data point) and the 473 ex channel with unknown emission filter is clearly registering outside

the range of any other channel. For mCherry, there are also three channels with lower

variation between channels than within channels (561 ex, 610/20 em; 561 ex, 620/15 em;

594 ex, 630/22 em). The others are all distinct from this set of three, but there are too few

instruments with these channels to determine whether 488 ex, 695/40em matches 561 ex,

650LP em or whether 488 ex, 585/40 em matches any of the three other channels with which

its range of values overlaps.

Overall, this indicates that it is possible for channels with similar emission filters to

produce results that are sufficiently comparable for effective engineering, despite an imperfect

optical match. In particular, this is supported by the similarity of distributions observed

for the 488 ex, 530/30 em and 488 ex, 525/50 em channels for GFP and for the 561 ex,

610/20 em and 561 ex, 620/15 em channels for mCherry. Channels with a higher degree

of difference, however, clearly produce different values, as demonstrated, for example, by

the comparison of the 561 ex, 610/20 em and 488 ex 575/26 channels for mCherry. More

investigation is needed, however, to determine the bounds of tolerable variation between

channels, the degree to which other requirements can also be relaxed (e.g., using calibrants

from different lots or different manufacturers), and the degree to which more sophisticated

unit computation can compensate for differences between channels.

Discussion

The results that we have presented establish an error budget for engineering genetic regula-

tory networks, with the Engineering Error Inequality quantifying the tension between device

characteristics, error in measurement and modeling, and the difficulty of engineering. Once

established, this relationship can be used to derive requirements for any one of these proper-

ties based on the available capabilities for the others. In particular, with the current state of
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the art in genetic regulatory network engineering, we have estimated a target precision for

measurements of µ = 1.5-fold geometric standard deviation, with approximate upper and

lower bounds of 2.0-fold and 1.2-fold.

By measuring a uniform set of cell samples on a heterogeneous collection of flow cytome-

ters, we determined that bead-calibrated flow cytometry can indeed meet this error budget,

with a geometric mean value of 1.52-fold geometric standard deviation across matched chan-

nels. At this level of precision, we should expect that flow cytometry can be effectively used

for engineering with reasonably good models (m ≤ 2.0-fold), using biological devices with

strongly differentiated outputs (|r̂| at least 10-fold to 100-fold, depending on µ and m), col-

lectively meeting a sufficiently tight bound on predictability. Flow cytometry measurements

do not, however, appear to be sufficiently precise to allow for engineering with either poor

models or weak devices. Bead-based calibration is also sufficient to allow comparison of data

from channels with similar emission filters, even when these filters are not matched. As a

byproduct of this study, we also confirm that bead-based calibration allows highly precise

matching across different voltage levels on a single instrument (finding a precision of 1.09-

fold), which has the potential to expand effective measurement range and to allow fusion of

otherwise incompatible datasets.

Based on these results, we recommend that the following be adopted as best practices for

use of flow cytometry measurements as a basis for engineering genetic regulatory networks:

• Calibrate units using independent reference materials (e.g., NIST traceable dye-based

calibration beads). Use of a reference strain (e.g., RPU6,28) is not sufficient, as demon-

strated in11.

• Collect technical replicates for controls in triplicate to validate that measurement repli-

cability on the instrument is better than 1.2-fold standard deviation.

• Use negative and single positive controls for background removal and compensation

(not part of our study, but standard recommended practice, per29,30)
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• Standardizing machine, light path, and laser power are not necessary, as long as cali-

bration beads are used and controls indicate the instrument is performing well.

• Standardize laser/filter combinations as much as possible, even at the cost of some-

what less precise match with fluorescent protein properties. Based on results here and

elsewhere, we recommend the use of the following channels for any fluorescent protein

with a reasonable optical match:

– Yellow/green fluorescence: 488nm excitation, 530/30 emission (with 525/50 an

acceptable alternative)

– Red fluorescence: 561nm excitation, 610/20 emission (with 620/15 an acceptable

alternative)

– Blue fluorescence: 405nm excitation, 450/50 emission1

The final recommendation also points to important additional work that is still needed.

Notably, coordination between calibration bead manufacturers and flow cytometry providers

to standardize channels and/or to provide more complete spectral information about cali-

bration beads would allow for device characterization data to be shared across a broader

range of laboratories and instruments. Likewise, with a profusion of available fluorescent

proteins, it would benefit the engineering community to consider reusability of data when

selecting fluorescent proteins. There is also a gap between calibration in terms of equivalent

dye molecules and the ability to interpret these numbers in terms of the actual fluorescent

protein used, as illustrated by the high degree of variation between channels in Figure 6(c-

d). Shifting units from equivalent dye molecules to protein molecules would also address the

problem of channel-to-channel conversion, though in some circumstances this can also be

handled by multi-color controls, as shown in5,31.

1We found this channel to be widespread among cytometers (S3: Participating Instruments and Chan-
nels); though blue fluorescence was not analyzed in this study, measurements of this channel have been
sufficiently precise to support high-accuracy predictions in prior studies4,5,7,10.
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Beyond flow cytometry, it will be important establish that other measurement modalities

can also achieve the requisite level of measurement precision. Plate reader data seems readily

able to achieve similarly usable, if imperfect, error levels, given the precision and unit equiv-

alence demonstrated in12, though this has not yet been explicitly confirmed. Calibration

of RNAseq with spike-in controls also appears likely to provide sufficient precision, based

on the results in13. Other forms of measurement likewise may be evaluated using similar

methods to those presented here.

Finally, effective engineering will only be actually enabled by the availability of sufficient

data collected using methods such as these. The synthetic biology community has built

up large public repositories of reusable genetic parts, through organizations such as iGEM,

Addgene, and SEVA. The ability to engineer with such parts will be advanced by the com-

munity building up public repositories of reusable data describing part behavior, with the

data collected using comparable fluorescent proteins and sufficient precision and calibration

to allow its application in the design of new genetic regulatory networks.

Methods

Derivation of Engineering Error Inequality

Consider an engineered design with a collection of measurable property values v, such that

the design will meet its specification only if every property value is within some interval

range r = [r−, r+] specified for that property.

Note that this is formulated as a necessary condition, but not sufficient: there may

be other interactions within the system that impose additional constraints on relationships

between properties, but we may at least take the conservative view that success cannot be

achieved without at least getting every property to a value within that property’s specified

range of potentially acceptable values. Likewise, we may assume without loss of generality

that there is only a single range of viable values: a disjoint range r = [r−,1, r+,1]∪ [r−,2, r+,2]
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is strictly lower probability than a single range of the same total magnitude r′ = [r−,1, r+,1+

(r+,2 − r−,2)], as the impact of uncertainty is greatest at an interval boundary and a disjoint

range has more such boundaries.

The probability of a particular instantiation of a design satisfying its specification is thus

bounded above by the joint probability of all property values being within their respective

ranges. This, in turn, is bounded above by the probability of any individual value being

within a specified range, such that ps, the probability of successful realization of a design

specification with a particular set of design choices, given an estimated property value v̂

whose distribution is determined by measurement precision, and an estimated range r̂ whose

accuracy is limited by the accuracy of available models, may be bounded above by:

ps ≤ P (v ∈ r|v̂ ∈ r̂) (1)

where s is the event of success, in which an instantiation of a design is able to meet its

specification.

The distribution of genetic expression levels in cells is typically log-normal21 (or a close

approximation22), which implies that estimates of expression levels made from measurements

will typically have a log-normal estimation error distribution as well, unless another larger

source of error dominates (e.g., stochasticity due to very low expression levels). Likewise,

effective quantitative predictive models have typically shown distributions well-described in

terms of error on a logarithmic scale as well (e.g.,3–8). When dealing with genetic regulatory

networks, then, a reasonable null hypothesis is that both measurement errors and model

errors have independent log-normal distributions.

When this hypothesis holds, the composition of these two perturbations is a log-normal

with the sum of their variances:

logN (0, µ2) ◦ logN (0,m2) = logN (0, µ2 +m2) (3)
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taking µ as the (log-scale) standard deviation of the distribution of measurement error and

m likewise for model error.

If it is possible to choose any value for v̂, then ps may be maximized by choosing v̂ to

be at the center of r̂ (if not all values can be chosen, the best available value may have an

even lower chance of success, so the inequality is unaffected). The actual values of v̂ and r̂

then become irrelevant, and we may refactor the equation in terms of the magnitude of the

estimated range versus the magnitude of uncertainty from model and measurement around

a zero mean:

ps ≤ P (|N (0, µ2 +m2)| < |r̂log|
2

) (4)

with the magnitude of the range in the equation is also quantified on a log-scale (note

however, that this equation does assume that the values of µ and m are well constrained).

We can then normalize the range to express this probability in terms of the number of

standard deviations with respect to a standard normal distribution:

ps ≤ P (|N (0, 1)| < |r̂log|
2
√

µ2 +m2
) (5)

This value of this probability is the cumulative distribution for a folded normal distribution

evaluated at
|r̂log|

2
√

µ2+m2
, which is:

ps ≤ erf

(

|r̂log|
2
√
2
√

µ2 +m2

)

(2)

where erf is the Gauss error function. We thus have an inequality that relates model

accuracy, measurement precision, and design tolerance (in terms of magnitude of acceptable

range) to the probability that an engineered genetic regulatory network satisfies its design

specification.
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Plasmid construction

Plasmids were constructed by Golden Gate32 assembly in the MoClo33 architecture.

Strain Culturing

Plasmids were transformed into 10-beta competent E. coli cells (New England Biolabs cat.

#C3019H) according to the manufacture’s recommendation. Single colonies were struck out

on selective media and then grown overnight in 100 µL of M9 minimal media supplemented

with glycerol34 and carbenicillin (100 µgmL−1) at 900 RPM and 37 °C (Model DTS4, ELMI

North America). After 16 hours each strain was diluted 15 µL into 185 µL of media twice

successively and grown at 900 RPM and 37 °C. After 3 hours each strain was diluted 15 µL

into 185 µL of media twice successively and grown at 900 RPM and 37 °C for another 5 hours.

At this point all strains had an OD600 of 0.5 or less and were concentrated to an OD600 of

0.5; 150 µL of this culture was combined with 90 µL of 0.45 µm filter-sterilized 50% glycerol

and mixed gently, then kept on ice. Pre-labelled 2mL labelled Eppendorf tubes chilled to

−80 °C were then used to aliquot 10 µL of culture and immediately placed back at −80 °C

until distribution.

Flow Cytometry

Determining Instrument Pre-Collection Gating Each recipient was instructed to

set FSC and SSC voltages (if permitted by their instrument) such that the peak density of

cells was centered in the range of their detector. As pre-collection gating options can vary

significantly by instrument and software, recipients were instructed to set gating to retain as

many cell events as possible, even if this would result in more non-cell events being captured

in the same. Additional details can be found in S2: Protocol. See Data Processing and S4:

Flow Cytometry Data Processing for the separation of cell and non-cell events post-capture.
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Determining High, Medium, and Low Channel Voltages Each recipient was

instructed to take the brightest strain for red and green and raise the corresponding channel’s

voltage until the distribution was as high as possible without clipping the sample. This

would be used as the High voltage; the process was repeated with targeting voltages for 10x

and 100x fold less arbitrary units for Medium and Low voltage settings respectively. For

instruments with low maximum values, recipients were instructed to still space the Medium

and Low voltages evenly, but to lower the overall separation so that the sample was not

clipped significantly on the low end. For instruments without a variable voltage setting, this

step was necessarily omitted. Additional details can be found in S2: Protocol.

Sample Preparation Bacterial cultures were prepared for flow cytometry as follows:

Remove one replicate of samples from −80 °C and transfer to 42 °C heat bath for 60 sec.

990 µL of sterile filtered 1X PBS to bacterial culture, or 75 µL for calibration beads, is added

to bring the sample concentration to 1X for running on the flow cytometer. Samples are

then run immediately. This procedure is repeated independently for each replicate.

Event Collection Samples were run as close to these conditions as possible based on

local instrument and software: Each sample 1 µL s−1 for either 150 µL or 105 total events,

whichever was achieved first.

Data processing

Cell events were then separated from non-cell events by means of a Gaussian mixture model

filter trained on the negative sample. Flow cytometry data was processed using the TASBE

Flow Analytics software package31, using the recommended practices for gating, background

subtraction, and bead-based calibration. Additional details and examples are provided in

S4: Flow Cytometry Data Processing.
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