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Abstract

Background Polylactides (PLA) and poly lactide-co-glycolides (PLGA) undoubtedly are among the major drivers in the 

pharmaceutical market. Their relevance in pharmaceutics and biomedicine is well established in light of their sustainability, 

safety, tunable biodegradability, and versatility. However, polymer degradability and plasticity can somehow restrain indus-

trial developability of PLA and PLGA formulations, especially in the form of microparticles (MP).

Area covered This review wants to deal with the known manufacturing issues of PLA/PLGA MP, debating the potential 

contribution of modern and cutting-edge manufacturing technologies to the solution of unmet production needs. Techno-

logical and regulatory aspects will be considered outlining the potential role of advanced manufacturing techniques in the 

advancement of PLA/PLGA MP production processes.

Expert opinion The multifaceted complexity of PLA/PLGA MP manufacturing processes demands adequate standardiza-

tion and updated guidelines covering the so far unmet industrialization requirements. Novel and evolving manufacturing 

technologies will surely support the future development of bench-to-production plant transfer for such products. Careful 

evaluation of production costs is demanded in order to ensure process sustainability and patient’s outreach.

Keywords Microparticles · PLA · PLGA · Microparticle manufacturing · Advanced manufacturing technology

Introduction

A comprehensive history outline and a description of basic 

properties of polylactide (PLA) and polylactide-co-glycolide 

(PLGA) polymers and microparticle (MP) preparation are 

broadly available in literature (Lee et al. 2016; Swider et al. 

2018) and therefore this review will not go back to the fun-

damentals on such materials and drug delivery systems but 

rather it will try to dig into the aspects impacting manufac-

turing of polyester-based MP and the new advanced tech-

nologies sought by industry. A particular emphasis will be 

given to those aspects enabling progress in the transfer to 

production scale of novel manufacturing techniques deemed 

to overcome the known limitations in the use of such poly-

mers and the relative unmet issues.

Strengths and weaknesses of PLA and PLGA 
polymers

PLA and PLGA polymers are shear thinning materials that, 

depending on their composition and molecular weight, can 

show different degree of plasticity and degradability. PLA 

polymers exist as D and L isomers according to lactic acid 

configuration, that leads to different polymer tacticity and 

therefore material properties (Baker et al. 2008; Shaver and 

Cameron 2010). As a result, while L-PLA is highly crystal-

line, D-PLA is completely amorphous. The isomerism of 

lactides influences also PLGA tacticity and physical state. 

Albeit mainly amorphous, L-PLGA and DL-PLGA polymers 

can show a certain degree of crystallinity depending on the 

lactide/glycolide ratio and stereoisomeric composition of the 

lactide monomers (Avgoustakis 2015). The knowledge of 

such properties is therefore important as crystallinity affects 

the rate of degradation and the mechanical properties of PLA 

and PLGA. As a consequence, the choice of proper polymers 

for manufacturing of PLA and PLGA MP should account for 

the insightful knowledge of these fundamental properties. 
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In fact, along with their recognized safety as FDA-approved 

parenteral materials, the undeniable attractiveness of such 

polymers in drug delivery is tightly bound to their tunable 

drug release behavior that grants sustained and extended 

drug delivery applications. The choice of copolymer com-

position and/or lactide isomer as well as polymer molecular 

weight consent to tailor MP degradation and drug release 

profile (Anderson and Shive 2012). However, this high 

versatility and workability is actually counterbalanced by 

polymer plasticity, which determines the PLA and PLGA 

attitude to undergo softening and unwanted degradation 

upon manufacturing and storage (Allison 2008). In fact, the 

tunable biodegradability of these polymers represents at the 

same time their strength and weakness as it makes them 

prone to acid- and base-catalyzed degradation. Such deg-

radation has been found to occur even in MP formulations 

when basic or acidic drugs are being encapsulated (Selmin 

et al. 2012; D’Souza et al. 2014a, 2015). Naturally, these 

phenomena affect amorphous materials most. Since PLGA 

and PLA are generally low glassy polymers, interaction with 

other materials, such as excipients, solvents, drugs, and tem-

perature can easily provoke plasticization and annealing of 

the solid matrix. Even though plasticization can be favora-

ble to processing and the manufacturing of scaffolds and 

other devices, it can be detrimental to MP manufacturing 

and storage stability and today increased efforts are directed 

to identify effective stabilization strategies (Albertini et al. 

2015; Benvenutti et al. 2018). Therefore, these features can 

represent a considerable bottleneck in the development of 

PLA and PLGA MP products. In fact, the susceptibility of 

these polymers to boundary conditions and the interaction 

with other materials, drugs included, makes PLA and PLGA 

MP manufacturing prone to high variability in the absence 

of a robust control over all process parameters that partially 

explains the lack of generic products in the market (Zhou 

et al. 2018). However, novel technologies with enhanced 

performances and stability, which will be herein discussed, 

may underpin remarkable advances in the manufacturing of 

these problematic products.

PLA and PLGA microparticles in the pharmaceutical 
market

To date, there are about 20 PLA/PLGA based products 

approved by the Food and Drug Administration (FDA) and 

the European Medicines Agency (EMA) mainly aimed to 

be administered by intramuscular or subcutaneous injection 

(Table 1) (Silverman et al. 2002; Wang et al. 2016; Tice 

2017; Qi et al. 2018; CenterWatch 2019. Other products are 

to be inserted in the periodontal cavity (e.g.,  Arestin®) or 

by intra-articular injection (i.e.,  Zilretta®). The aim of using 

polyesters in these formulations are several and in particu-

lar PLA/PLGA consent to simplify the therapeutic schedule 

(i.e., reducing the administration frequency), to minimize 

drug concentration oscillation reducing side effects and 

to improve patient’s adherence to the treatment. The low 

availability of PLA/PLGA based medicines can be mainly 

ascribed to the difficulties encountered during their devel-

opment and industrial manufacturing. However, recently, 

two new formulations reached the USA market after FDA 

approval.  Zilretta® are triamcinolone acetonide loaded MP 

for intra-articular injection in the treatment of knee pain in 

patients with osteoarthritis (Kaufman 2017, 2018a). Tripto-

dur™, based on the use of triptorelin pamoate, was approved 

in 2017 for the treatment of central precocious puberty. This 

formulation is administered only twice yearly by intramus-

cular injection (2018b). In the European market, a triptore-

lin based formulation  (Salvacyl® LP,  Salvapar®,  Moapar®) 

was approved in 12 countries from 2006 to 2014 for the 

treatment of severe sexual deviation (Debiopharm group; 

Briken et al. 2012). PLA/PLGA MP based technologies are 

being exploited for drug repurposing of commercial oral 

or extended release preparations as witnessed by the large 

number of completed clinical trials on risperidone based 

products and the ongoing efforts in several therapeutic areas 

(Table 2). These considerable research investments in such 

technologies somehow underpin the advantages of PLA/

PLGA based long acting injectables (LAI) especially for the 

treatment of chronic pathological conditions. Unfortunately, 

these advantages are overweighed by the intrinsic complex-

ity of such formulations as well as limited regulatory sup-

port. As a consequence, to date, no generic version of these 

products is available on the market even though patent pro-

tection of some of them has expired (e.g.,  Lupron® Depot). 

This can be explained by the difficulty in manufacturing 

PLA/PLGA MP obtaining perfectly reproducible charac-

teristics such as drug loading and drug release profile. In 

fact, slight modifications of the manufacturing process can 

deeply affect MP properties and therefore treatment safety. 

There is also a lack of suitable tools to evaluate the impact 

of MP features on their performances (D’Souza et al. 2014b, 

c). That is why the FDA’s Office of Generic Drug (OGD) 

supports research to develop in vitro-in vivo correlations 

and in vitro release testing methods (Schoubben et al. 2012; 

Leblanc 2018). 

Conventional manufacturing technology

Lab-scale methods

Solvent evaporation and extraction

PLA and PLGA MP are often prepared by organic sol-

vent evaporation/extraction from oil-in-water (o/w) or 

water-in-oil-in-water (w/o/w) emulsions (Schoubben 
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et  al. 2009; Albertini et  al. 2015; Casagrande et  al. 

2017). This technique has been developed at the end of 

the 1970s (Hu et al. 2017). Based on the nature of the 

active pharmaceutical ingredient (API), one can choose 

to use o/w or w/o/w emulsions (Jain 2000; Rosca et al. 

2004; Lu and Park 2012; Kapoor et al. 2015; Lee et al. 

2016; Swider et al. 2018). Commonly, o/w emulsion is 

used with hydrophobic API (Ricci et al. 2005; Giovagnoli 

et al. 2010), while w/o/w emulsion is preferred for hydro-

philic API such as peptide and proteins to maximize drug 

Table 1  FDA and EMA marketed microparticles based on PLA/PLGA (not intended to be fully exhaustive)

Brand name API Administration 

route

Indication(s) Encapsulation 

technology

Encapsulation 

process

Approval/launched 

year

Arestin® Minocycline HCl Periodontal Periodontal 

disease

NA NA 2001

Bydureon® Exenatide Subcutaneous Type 2 diabetes Medisorb® Solvent evapora-

tion/extraction 

emulsion method

2012

Decapeptyl®, 

 Decapeptyl® SR

Triptorelin acetate Intramuscular Prostatic cancer Debio PLGA-2® Oil-in-water emul-

sion method/

phase separation

1986

Lupron® Depot, 

 Enantone®, 

 Prostap® SR

Leuprolide acetate Intramuscular Endometriosis NA Water-in-oil emul-

sion

1999

Prostatic cancer 1989, 1996–1997

Lupron® Depot-

PED,  Enantone®, 

 Prostap® SR

Leuprolide acetate Intramuscular Central precocious 

puberty

NA Water-in-oil emul-

sion

2011

Pamorelin® LA, 

 Trelstar® Depot, 

 Trelstar® LA

Triptorelin pamo-

ate/embonate

Intramuscular Prostatic cancer Debio PLGA-2® Oil-in-water emul-

sion method/

phase separation

2010, 2000, 2001

Parlodel® LAR Bromocriptine Intramuscular Prolactin-secreting 

tumor

NA Spray-drying ~ 1991

Risperdal® Con-

sta™

Risperidone Intramuscular Schizophrenia, 

bipolar I disorder

Medisorb® Solvent evapora-

tion/extraction 

emulsion method

2003

Salvacyl® LP, 

 Salvapar®, 

 Moapar®

Triptorelin pamo-

ate/embonate

Intramuscular Severe sexual 

deviation in 

adult men

Debio PLGA-2® Oil-in-water emul-

sion method/

phase separation

2006–2014 (12 

countries in 

Europe)

Sandostatin LAR Octreotide Subcutaneous Acromegaly, 

severe diarrhea 

with metastatic 

carcinoma or 

with vasoac-

tive intestinal 

peptide-secreting 

tumors

Medisorb® Solvent evapora-

tion/extraction 

emulsion method

1997

Signifor® LAR Pasireotide pamo-

ate

Intramuscular Acromegaly, 

Cushing’s 

disease

Novartis NA 2014

Somatuline® 

Depot

Lanreotide Intramuscular Acromegaly NA NA 2007

Suprecur® MP Buserelin acetate Endometriosis NA Spray-drying 2002

Triptodur™ Triptorelin pamo-

ate/embonate

Intramuscular Central precocious 

puberty

Debio PLGA-2® Oil-in-water emul-

sion method/

phase separation

2017

Vivitrol® Naltrexone Intramuscular Alcohol depend-

ence

Medisorb® Solvent evapora-

tion/extraction 

emulsion method

2006

Opioid depend-

ence

2010

Zilretta® Triamcinolone 

acetonide

Intra-articular Osteoarthritis knee 

pain

NA NA 2017
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Table 2  PLA/PLGA MP based depot products under clinical investigation (not intended to be fully exhaustive)

Brand name API Route* Indication(s) Encapsulation technology Description Stage 

Bydureon® Exenatide SC Type 2 diabetes Medisorb® Effect of Bydureon on 

carotid atherosclerosis 

progression in T2DM

Phase 4

Copaxone® Depot Glatiramer acetate IM Primary progressive multi-

ple sclerosis

MAPI-pharma A prospective, multicenter, 

single arm, open label, 

Phase IIa study to assess 

the safety and efficacy of 

once-a-month long-acting 

intramuscular injection of 

40 mg glatiramer acetate 

(GA depot) in subjects 

with primary progres-

sive multiple sclerosis 

(PPMS)

Phase 2

Copaxone® Depot Glatiramer acetate IM Multiple sclerosis MAPI-pharma A prospective 1-year, 

open-label, two arms, 

multicenter, Phase IIa 

study to assess safety, tol-

erability and efficacy of 

once a month long-acting 

intramuscular injection 

of 80 or 40 mg glatiramer 

acetate (GA depot) in 

subjects with relaps-

ing–remitting multiple 

sclerosis (RRMS)

Phase 1

Phase 2

Sandostatin® LAR Octreotide SC Hereditary hemorrhagic 

telangiectasia

Gastrointestinal hemor-

rhage

Anemia

Medisorb® An uncontrolled, pilot-

study assessing the effi-

cacy of octreotide long-

acting release to decrease 

transfusion requirements 

and endoscopy frequency 

in patients with rendu-

osler-weber and gastroin-

testinal bleeding

Phase 2

Sandostatin® LAR Octreotide SC Angiodysplasia

vascular Malformations

Gastrointestinal hemor-

rhage

anemia

Medisorb® A multicenter, randomized, 

open-label clinical trial 

assessing the efficacy of 

octreotide in decreasing 

blood and iron require-

ments in patients with 

refractory anaemia due to 

angiodysplasias

Phase 2

Phase 3

Signifor® LAR Pasireotide IM Neuroendocrine tumors

Carcinoid Tumors

Novartis Phase II study of Pasire-

otide LAR in patients 

with metastatic neuroen-

docrine carcinomas

Phase 2

Signifor® LAR Pasireotide IM ACTH-producing pituitary 

tumour

Novartis Pilot study of Pasireotide 

LAR treatment of silent 

corticotrophin pituitary 

tumors and effects on 

plasma levels of POMC

Phase 2

Vivitrol® Naltrexone IM Opiate addiction Medisorb® Long-acting naltrexone 

for pre-release prison-

ers: a randomized trial of 

mobile treatment

Phase 3

Vivitrol® Naltrexone IM Opioid use disorders Medisorb® Depot pharmacotherapies 

for opioid-dependent 

offenders: outcomes and 

costs

Phase 3
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loading (Giovagnoli et al. 2004, 2005, 2010). In fact, it 

can be difficult to obtain high hydrophilic drug payload 

in PLA/PLGA MP. Briefly, polymer is solubilized in an 

organic solvent such as methylene chloride together with 

the hydrophobic API and emulsified under stirring or 

sonication in the aqueous phase containing the stabiliz-

ing agent (e.g., polyvinyl alcohol, PVA; hydroxypropyl-

methylcellulose, HPMC). Successively, MP hardening is 

achieved by evaporating the solvent under reduced pres-

sure and increasing the temperature. In alternative, the 

organic solvent can be extracted by pouring the emulsion 

in a large volume of aqueous phase to favor the organic 

solvent diffusion in the continuous phase (Capan et al. 

2003; D’Souza et al. 2013). Hydrophilic API are either 

solubilized in a minimum volume of water that is the 

inner aqueous phase of the w/o/w double emulsion (Gio-

vagnoli et al. 2007) or directly suspended in the organic 

phase obtaining a solid-in-oil-in-water (s/o/w) emulsion 

(Giovagnoli et al. 2008). MP characteristics (i.e., dimen-

sions, porosity, API content, release kinetics, degradation 

kinetics) depends on the polymer used and on preparation 

parameters such as the starting polymer concentration, 

o/w volume ratio, stabilizer nature and concentration, agi-

tation conditions, and solvent evaporation rate (Lu and 

Park 2012). As evidenced in Table 1, the MP products 

existing in the market are essentially prepared using the 

emulsion technology. However, it is not clear how emul-

sion is obtained and therefore if this lab-scale method or 

the membrane emulsification technology described fur-

ther on is employed.

Cryogenic solvent extraction

This technique has been developed to limit the exposure of 

sensitive peptides and/or proteins to the harsh conditions 

of the solvent evaporation/extraction method. In fact, pro-

tein exposure to the w/o interface and temperature used 

to evaporate the organic solvent can provoke denaturation 

(van de Weert et al. 2000; Bilati et al. 2005). Cryogenic 

solvent extraction consists in the nebulization of the suspen-

sion made of the protein in dichloromethane where PLA 

or PLGA has been solubilized above a beaker containing 

ethanol (Tracy 1998; Yeo et al. 2001). In particular, etha-

nol has been cooled using liquid nitrogen at a temperature 

lower that the freezing point of the suspension nebulized. 

The droplet will freeze coming in contact with the layer of 

liquid nitrogen present above the frozen ethanol and fall into 

ethanol bath. Successively, ethanol will be slightly warmed 

up thawing out dichloromethane that will diffuse in ethanol. 

As a result, MP will solidify encapsulating the protein. This 

strategy, namely  ProLease® technology, has been applied 

in different marketed and non-marketed products (Johnson 

et al. 1997; Tracy 1998; Yaszemski et al. 2003).

Catalytic hydrolysis solvent removal

Besides dichloromethane, which is the solvent mainly used 

in the methods illustrated so far, ethyl acetate is an alter-

native. Its elimination from the o/w emulsion to achieve 

particle formation is obtained by catalytic hydrolysis in 

a HCl aqueous phase at about 30 °C.With respect to the 

*SC subcutaneous, IM intramuscular

Table 2  (continued)

Brand name API Route* Indication(s) Encapsulation technology Description Stage 

Vivitrol® Naltrexone IM Opioid use disorders Medisorb® Long acting naltrexone 

for opioid addiction: the 

importance of mental, 

physical and societal 

factors for sustained 

abstinence and recovery

Phase 4

Vivitrol® Naltrexone IM Opioid use disorders Medisorb® A feasibility study for 

testing the effects 

of extended-release 

naltrexone (Vivitrol) 

on recidivism and other 

participant outcomes in 

drug court settings

Phase 4

Vivitrol® Naltrexone IM Opioid use disorders Medisorb® A strategy to improve 

success of treatment dis-

continuation in buprenor-

phine responders

Phase 3
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conventional extraction procedure, acidic hydrolysis of 

ethyl acetate granted a higher ketoprofen encapsulation effi-

ciency (Lee et al. 2013). This process can have significative 

relevance with acidic API, since an acidic aqueous phase 

will limit their diffusion and loss in the continuous phase. 

Other papers used isopropyl formate (Im and Sah 2009) or 

methyl chloroacetate (Kim et al. 2007) as organic phase 

and their removal was carried out using ammonia solution 

that provoked solvent hydrolysis obtaining water-miscible 

formamide and isopropyl alcohol or chloroacetamide and 

methanol, respectively. As a result, the polymer precipitated 

encapsulating progesterone, used as a model API, with an 

encapsulation efficiency in the 64–97% range (Kim et al. 

2007; Im and Sah 2009).

Coacervation

Coacervation is another technique used to produce PLA/

PLGA MP. It is based on phase separation of the polymer 

(the coacervate) that coats the API particles. This process is 

commonly divided in three separate steps:

• Phase separation of the polymer that forms coacervate 

globules

• Adsorption of the coating polymer droplets on the API 

particle surface

• Solidification of the polymer around the API particles

In accordance with the triggering element that induces 

phase separation, different coacervation process can be indi-

viduated (i.e., non-solvent addition, temperature change, 

incompatible polymer addition, salting out, polymer–poly-

mer interaction). However, in the case of PLA and PLGA, 

not all the different phase separation inducing events are 

applicable (Jain 2000; Yeo et  al. 2001; Ye et  al. 2010; 

Kapoor et al. 2015; Hu et al. 2017).

Non-solvent addition

Phase separation provoked by non-solvent addition is mainly 

employed to load water-soluble API but can also be used to 

encapsulate liposoluble API. Several parameters, such as 

polymer concentration and stirring rate, influence particle 

characteristics and non-solvent addition has to be slow to 

obtain a uniform polymer coating around the API particles 

(Jain 2000; Ding and Zhu 2018). The non-solvent must be 

selected to avoid API solubilization and it has to be miscible 

in the solvent used to solubilize the polymer. Examples of 

non-solvents that cause phase separation are silicone oil, 

vegetable oil, low molecular weight methacrylic polymers, 

which are called first non-solvents. Second non-solvents, 

used to solidify the polymer layer, can be hexane or petro-

leum ether (Thomasin et al. 1998; Yeo et al. 2001).

Salt addition

Salt addition is another strategy used to obtain phase separa-

tion of PLA/PLGA solubilized in a water miscible solvent, 

such as acetone or acetonitrile, together with the lipophilic 

API. This solution is then emulsified in water containing 

both the salting-out agent (e.g., calcium chloride, sucrose) 

and a stabilizer and is then diluted with an excess volume of 

water promoting acetone diffusion and particle solidification. 

This technique can be easily scale-up but its application is 

limited to lipophilic API and requires many washing cycles 

to remove the salting-out agent (Nagavarma et al. 2012; 

Lee et al. 2016; Swider et al. 2018). The optimization of 

the different conditions (e.g., salting out compound nature 

and concentration, solvent nature, polymer concentration) is 

essential to obtain MP and not nanoparticles (Wischke and 

Schwendeman 2008).

Current industrial methods

Spray-drying

The spray-drying (SD) technology has evolved over time to 

meet industry requirements in several production fields. In 

drug delivery, novel principles and methodologies in drop-

let formation and drying have enabled considerable expan-

sion of SD applications, including biologicals and enteric 

formulations (Puccetti et al. 2018; Ziaee et al. 2019). This 

technique combines a relatively user-friendly setup with ver-

satility and scalability, and ensures a completely closed envi-

ronment, preventing the risk of room and personnel contami-

nation. Granting fast one-step fabrication and simultaneous 

control on particle size and morphology, SD is particularly 

suitable to process susceptible materials and for the manu-

facturing of precisely tailored dry MP formulations, with 

the logical benefit of storage stability. According to the noz-

zle and drying chamber geometries, and recovery method, 

pulmonary powders, pellets as well as sustained release 

MP can be fabricated. Since SD can be run in a nearly con-

tinuous manner, it can produce large batch sizes with high 

reproducibility, granting low levels of residual solvent in a 

closed loop configuration. Nowadays, beside the classical 

equipment several configurations have been designed with 

different manufacturing purposes.

The unmatched appeal of SD as a one-step, scalable man-

ufacturing technique has promoted a great deal of research 

in several fields and, it has been found particularly suitable 

for PLA and PLGA MP preparation (Sosnik and Seremeta 

2015). Exploiting the well-known SD capabilities, a number 

of works have investigated PLA and PLGA inhalable MP for 

tuberculosis and other infectious diseases in the attempt to 

extend the action of pulmonary treatment (Schoubben et al. 

2010; Ungaro et al. 2012; Palazzo et al. 2013; Giovagnoli 
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et al. 2014; Ibrahim et al. 2018; O’Connor et al. 2019). 

Additional applications have encompassed other antibiot-

ics, antitumoral, antioxidants and antiinflammatory drugs 

(Wagenaar and Müller 1994; Mu and Feng 2001; Gavini 

et al. 2004; Rivera et al. 2004; Youan 2004; Sastre et al. 

2007). Unfortunately, to date, none of them has reached the 

clinical stage.

For an in-depth analysis of the related issues and pro-

gresses in the field, interested readers can refer to Liang et al. 

(Liang et al. 2015), Miranda et al. (Miranda et al. 2018), Das 

et al. (Das et al. 2015), and Hickey et al. (Hickey et al. 2016).

Beyond its traditional role of controlled drying process 

and prominence in the inhalable powders area, current 

SD technologies may reshape manufacturing of inject-

able sustained release depots as well, as an alternative to 

emulsion-freeze-drying technologies (Mundargi et al. 2011; 

Guo et al. 2015; Wan and Yang 2016). In particular, SD is 

slowly emerging as a manufacturing process of controlled 

delivery systems for biomolecules and vaccines (Mueller 

et al. 2012; Allahyari and Mohit 2016; Kanojia et al. 2017). 

However, in order to climb over the ridge of compliance 

and controlled release requirements, traditional pitfalls have 

to be overcome. Among all, initial burst release and heat 

shock damage restrain most protein loaded spray-dried MP 

development (Yamaguchi et al. 2002; Mao et al. 2007). Such 

problems stem from the fast and turbulent drying process 

that results in poor control over molecular diffusion in the 

droplet. As a consequence, proteins are released fast from 

spray-dried MP due to the small particle size and the ten-

dency to migrate at the liquid–air interface.

Nonetheless, novel atomization technologies, based on 

coaxial ultrasonic, electrospray, and three-fluid pneumatic 

actuation (Kondo et al. 2014; Wan et al. 2014), will likely 

prompt the  progress towards the production of mono-

dispersed particles with a core–shell structure providing 

higher drug payloads (Han et al. 2016) and more accurate 

control on the release behavior. Such innovations have 

boosted the research in the last years and, likely, in the near 

future SD is about to become one of the main technolo-

gies in the manufacturing of controlled delivery systems for 

biopharmaceuticals.

Albeit established in some areas of pharmaceutical manu-

facturing, scale up of SD methods is not straightforward as a 

result of the intimate liaison between process conditions and 

product powder properties. Direct scaling of key parameters 

seems not to be effective due to practical limitations and 

temporal differences in physical processes, e.g. at pilot and 

production scales the particle residence time is much higher 

than at lab scale and yield may vary due to a different adhe-

sion extent to the equipment walls. Complete understanding 

of scale-dependent and scale-independent factors is there-

fore strategic along with the design and engineering of a 

pilot model accounting for critical geometrical and workout 

requirements (Al-Khattawi et al. 2018). This is one of the 

reasons for the as yet limited spray-dried depot products on 

the market.

Supercritical �uids

The properties of supercritical fluids (SCF) have been 

exploited in many different areas of pharmaceutics and 

biomedicine. Several organic solvents and almost all gases 

above their critical pressure and temperature assume pecu-

liar properties that stem their capacity to act at the same 

time as a liquid and a gas. The consequence is that such 

SCF show the solubilization capacity of a solvent along with 

high diffusivity and low viscosity. The liquid-like properties 

enable application in extraction processes, solubilization of 

substances, and matrix plasticization, while gas-like features 

enhance mass transfer and reaction selectivity. Carbon diox-

ide is preferred over other SCF due to mild supercritical 

conditions, low cost and environmental impact.

SCF technologies are today well-established industrial 

processes that can be applied to manufacturing of fine 

powders and polymeric micro- and nanocarriers each with 

advantages and disadvantages (Table 3). In general, the pro-

cess consists in the formation of solutions or dispersions by 

exploiting the SCF solvent or anti-solvent capacity and the 

subsequent coacervation induced by its fast removal through 

a rapid drop below supercritical conditions. This leads to 

solvent extraction with subsequent fast solidification of dis-

solved materials or drying of dispersed particles. SCF can 

be used as solvents or anti-solvents and solutes and over 

the years several different processes have been developed 

according to purposes (Table 3) for an in-depth description 

of which readers may refer to Kankala et al. (2017), Giro-

tra et al. (2013), Tabernero et al. (2012), and Soh and Lee 

(2019).

The arsenal of techniques today available is the result 

of about three decades of continuous research efforts that 

have led to considerable advances in the methods for the 

fabrication of tailored drug delivery systems destined to 

virtually all administration routes. Among all, PLA and 

PLGA delivery systems have benefited from the increased 

versatility of RESS and SAS techniques either for MP or 

nanoparticle formulations. Refinement in the control over 

coacervation and hardening/drying processes has granted 

successful development of PLA and PLGA MP for oral, 

pulmonary and parenteral administration. Antiinflammatory 

drugs have been microencapsulated in homogeneous inject-

able PLGA and PLA MP using RESS, SEDS, SAILA, and 

SFEE processes (Kim et al. 1996; Ghaderi et al. 2000; Chat-

topadhyay et al. 2006; Kang et al. 2008a; Kluge et al. 2009b; 

Della Porta et al. 2010; Campardelli et al. 2016; Campardelli 

and Reverchon 2017). Other examples include morphine, 
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methotrexate, and paclitaxel (Kang et al. 2008b; Chen et al. 

2012c, 2013b; Huang et al. 2015).

SAS methods have been developed to entrap water-solu-

ble compounds in PLA and PLGA MP. One strategy was to 

increase solubility in organic solvents by hydrophobic ion 

pairing, as in the case of gentamycin, nalozoxone, naltrexone 

(Falk et al. 1997) or addition of co-solvents, as in the case 

of morphine, bupivacaine, and ketamine (Lee et al. 2006; 

Zhang et al. 2012; Han et al. 2018).

The possibility to finely control working temperatures and 

boundary conditions makes SCF-based methods suitable for 

processing labile materials (Adami et al. 2011). Therefore, 

microencapsulation of proteins and peptides, such as bovine 

serum albumin, lysozyme and lipase (Young et al. 1999; 

Mishima et al. 2000; Tu et al. 2002; Kluge et al. 2009a; 

Chen et al. 2012b; Tran et al. 2013), insulin (Elvassore et al. 

2001; Della Porta et al. 2013), and monoclonal antibodies 

(Yandrapu et al. 2013), as well as vaccines (Baxendale et al. 

2011; Tavares et al. 2017) has been achieved.

The SCF technology enables the rapid and effective 

assembling of complex composite systems. In this way, 

nanoparticles can be entrapped within PLGA or PLA MP 

(Chen et al. 2009b) or can be coated with PLA and PLGA 

polymers to form core–shell structures (Chen et al. 2009c). 

This technology can be exploited to produce functional sys-

tems, as in the case of magnetic or antibacterial MP (Chen 

et al. 2009a, 2012a; Campardelli et al. 2013; Cricchio et al. 

2017), or composite PLGA/chitosan MP by PGSS (Casettari 

et al. 2011).

A continuous supercritical emulsion extraction (SEE-C) 

has been proposed for the production of PLGA MP for the 

encapsulation of proteins and polypeptides (Della Porta et al. 

2011; Campardelli et al. 2012; Falco et al. 2012). SEE-C 

shows significant improvements compared to batch config-

uration, as it exploits countercurrent packed columns that 

enable rapid, continuous extraction of the organic solvents 

and reproducible formation of PLGA MP with controlled 

and narrow size distributions. This system demonstrates that 

SCF technology can be scaled to a high-throughput continu-

ous mode to allow large production yields and batch control.

Naturally, as mentioned above, the highly efficient atomi-

zation technologies coupled to SCF can be exploited to pro-

duce inhalable powders. Lysozyme, celecoxib, deslorelin, 

and rifampicin loaded porous PLA and PLGA MP obtained 

by SAA represent a few examples (Koushik and Kompella 

2004; Koushik et al. 2004; Patomchaiviwat et al. 2008; Chen 

et al. 2013a; Dhanda et al. 2013; Kang et al. 2013). The 

advantages of SFC in the manufacturing of pulmonary dry 

powders are a higher control upon the formation of feed 

dispersion and solutions and a higher efficiency in solvent 

removal at reduced temperatures. Consequently, the obtained 

powders show a lower residue of organic solvent, thus a less 

plasticized solid matrix, and improved particle size distribu-

tion and morphology. Moreover, the lower process tempera-

tures enable processing of heat sensitive materials.

Membrane emulsi�cation

Emulsion solvent extraction/evaporation-based methods 

still represent one of the major manufacturing processes 

for PLA and PLGA MP. As discussed above, such meth-

ods suffer from intrinsic low reproducibility and production 

Table 3  Classification of 

SCF processes employed in 

microparticle and nanoparticle 

fabrication

SCF role Process

Solvent (RESS) Rapid expansion of supercritical solutions RESS

Solute Particle from gas saturated solution PGSS

Anti-solvent (SAS) Solution enhanced dispersion by supercritical process SEDS

Supercritical fluid extraction of emulsion SFEE

Supercritical-assisted atomization SAA

Aerosol solvent extraction system ASES

Expanded liquid anti-solvent ELS

Precipitation with compressed anti-solvent PCA

Suspension-enhanced dispersion by supercritical fluids SpEDS

Supercritical anti-solvent with enhanced mass transfer SAS-EM

Gaseous anti-solvent GAS

Supercritical assisted injection in a liquid anti-solvent SAILA

Mixed Supercritical solvent impregnation SSI

Depressurization of an expanded liquid organic solution DELOS

CO2-assisted nebulization with a bubble dryer CAN-BD

SCF-assisted spray-drying SASD

SCF-expansion depressurization SFED

SCF-processing SCP
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efficiency, and limited control on particle size that strongly 

bias industrial development. In the effort to meet industrial 

requirements, over the last two decades, membrane emulsi-

fication technology has taken the lead in particular in PLA 

and PLGA MP manufacturing (Liu et al. 2005a, b, 2006, 

2011; Lloyd et al. 2014; Ramazani et al. 2016). The tech-

nique is based on a relatively simple concept. Emulsification 

is achieved by forcing a dispersed phase, usually an organic 

solution or a premixed coarse emulsion, into an aqueous 

continuous phase through a membrane of given porosity. 

The passage through the membrane produces homogeneous 

droplets, the size of which is determined by the membrane 

pore size and geometry, the droplet detachment regime from 

the membrane surface, and the flow shear resulting from the 

agitation method applied to the continuous phase (Hancocks 

et al. 2013). Additional attention should be taken in select-

ing the proper membrane wall material, depending on the 

polarity of the dispersed and continuous phases, as mem-

brane wettability, charge and permeability influence drop-

let formation (Vladisavljević et al. 2012; Silva et al. 2017). 

Overall, ideal membranes should have a uniform pore size 

distribution over a wide range of sizes to grant tuneability 

of droplet size, low hydrodynamic resistance, high mechani-

cal strength, thermal and chemical resistance, high toler-

ance to organic solvents, ease of surface modification and 

functionalization, constant wettability with respect to the 

dispersed and continuous phase, and low fabrication costs 

(Vladisavljević 2015). Shirasu Porous Glass (SPG) material 

meets the majority of the above requirements and for such 

a reason is widely employed for membrane production (Qi 

et al. 2014; Lu et al. 2017; Gu et al. 2018).

For a complete treatment of the method, readers may refer 

to Vladisavljević et al. (Vladisavljević et al. 2016) and Pia-

centini et al. (Piacentini et al. 2014, 2017).

Benefits of membrane emulsification include enhanced 

droplet size control, low shear stress and energy require-

ment, equipment setup flexibility. This technique is therefore 

suitable for high throughput production of precisely tuned 

and highly homogenous MP with sizes between < 1 and 100 

μm (Gasparini et al. 2008). Two main membrane emulsifi-

cation modalities exist: moving continuous phase or mov-

ing membrane (Fig. 1). In the first, the continuous phase is 

kept under movement by stirring or unidirectional or pulsed 

flow. In addition, vibrating elements generate a mixing effect 

that favors the emulsification process of the droplets pro-

truding from the membrane. The second modality consists 

in a membrane cartridge containing the inner phase that is 

maintained under rotational or vibrational motion in the 

continuous phase (Fig. 1). The moving membrane emulsifi-

cation method is considered superior as it prevents droplet 

damage due to the shear when circulating the continuous 

phase, shows a higher scale-up reproducibility, and can limit 

manufacturing costs as a result of a reduced energy demand 

as well.

The energy involved is usually very low compared to 

other homogenization techniques. Indeed, this important 

aspect underpins the industrial development of this manu-

facturing technique.

Progresses towards industrialization allowed the develop-

ment of several PLA and PLGA technology platforms. Batch 

and continuous operation devices are currently available. 

The first is made up of a pressurized chamber, in which a 

membrane separates the dispersed phase and a constantly 

stirred continuous phase (Fig.  2a–c). The continuous 

Fig. 1  Particle production using the membrane emulsification tech-

nology. The membrane is shown in grey, continuous phase in blue 

and dispersed phase in yellow. Two different process modalities exist: 

the moving continuous phase and the moving membrane. In the first, 

the external continuous phase is kept under mixing by a stirring bar 

or moved by a linear unidirectional or pulsed flow generated by a flow 

pump. In the second, it is the filter system to be maintained under 

rotational (red arrow) or vibrational (blue arrows) motion. In both the 

modalities, the movement generated is essential to allow the detach-

ment of the droplets stemming from the membrane and their diffusion 

in the continuous phase. Adapted from Piacentini et al. (2014). (Color 

figure online)
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operation device is instead a typical cross-flow apparatus in 

which the dispersed phase is continuously pumped through 

the membrane and recirculated (Fig. 2d) (Ho et al. 2013).

The undeniable attractiveness of the emulsion-based 

technologies is witnessed by the number of products in 

the market that exploit such platforms as also reported in 

Table 1.

The possibility to finely tune size and composition of 

PLA and PLGA MP by adopting proper multiple emulsifi-

cation processes affords fabrication of complex composite 

particles. In this regard, a rotating membrane emulsification 

system was employed for the preparation of iron nanopar-

ticle loaded PLGA MP for tumor arterial embolization and 

magnetic ablation (Liang et al. 2017).

W/o/w emulsions are generally employed for hydrophilic 

compounds, such as many proteins (Ma 2014) and insulin 

(Liu et al. 2006). Furthermore, a w/o/w emulsion followed 

by premix rotational membrane emulsification enabled the 

fabrication of bovine serum albumin loaded mPEG-PLGA 

MP possessing proper pulmonary delivery features (Zhao 

et al. 2018).

These evidences demonstrate that this technology shows 

great potential as it couples brilliant performances in the 

production of precisely tailored uniform MP with versatility 

and limited costs.

Spray freeze-drying

Potentially scalable technologies are today available which 

combine well known techniques into a one-step manufac-

turing process. One of the most promising for the prepara-

tion of PLGA and PLA MP is spray freeze-drying (SFD) 

of drug-polymer solutions/dispersions that enables a broad 

range of applications, particularly for proteins and biologics 

(Wanning et al. 2015). Spray freeze-drying is a well-estab-

lished process since its first appearance in 1964 (Werly and 

Bauman 1964) in the food and pharmaceutical industry for 

processing and powder engineering (Ishwarya et al. 2015; 

Dutta et al. 2018).

The principle of combining spraying with lyophilization, 

rather than with common exsiccation processes, provides 

several advantages. Beyond the note improvement of drug 

solubilization and amorphization that minimizes potential 

phase separation phenomena (Vo et al. 2013), SFD shows 

its full potential in processing and encapsulation of unsta-

ble proteins and peptides for drug delivery and vaccination 

purposes (Cheow et al. 2011). Most important, SFD can 

provide additional control over MP morphology and size 

distribution. Compared to conventional freeze-drying, SFD 

is economically preferable in terms of time and energy con-

sumption (Claussen et al. 2007). Moreover, the production 

of a flowable bulk powder, in place of filled vials, enables a 

considerable increase in production plant flexibility, allow-

ing easy dosage adjustments.

In this regard, spray freeze-dried human growth hormone 

and recombinant human vascular endothelial growth factor 

loaded PLGA MP showed low burst release and the behavior 

Fig. 2  Membrane emulsification devices. a–c Batch operation 

devices: the inner organic phase is pressurized through the membrane 

by a syringe or a controlled pumping system; the mixing effect is 

obtained by stirring the static continuous phase with a stirring bar; 

the organic solvent is evaporated and the dispersed particles recov-

ered by filtration. d Continuous operation device: both the inner 

organic phase or the continuous phase flow through two separate 

loops that connect the respective reservoirs to the emulsifying cham-

ber allowing continuous operation. Adapted from Piacentini et  al. 

(2014)



391Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly…

1 3

could be controlled by prior tuning of spray-freezing condi-

tions (Cleland et al. 2001; Costantino et al. 2004).

A comparison of SFD with SD showed that the lipid-

PLGA particles obtained by SFD exhibited improved char-

acteristics in terms of size, yield, flowability, aqueous recon-

stitutibility, and aerosolization efficiency (Wang et al. 2012), 

supporting the usefulness of SFD even for the production of 

inhalable PLGA powders. Furthermore, SFD demonstrated 

superior performances compared to SD in encapsulating 

darbepoetin alfa, an erythropoiesis-stimulating protein, in 

PLGA MP in terms of yield and particle size control (Burke 

et al. 2004).

Beyond the highlighted virtues, a SFD caveat is the rela-

tive complexity of equipment setup at pilot/production scale, 

which demands particular care in the lab-to-plant transfer 

process, thing that can bear on manufacturing costs.

Other technologies

Hot-melt extrusion

A well-known method for the encapsulation of hydropho-

bic drugs in PLA and PLGA matrices is hot-melt extrusion 

(HME). The technique consists in a series of continuous 

processes in which micronized drugs are dispersed in a 

polymer melt, extruded, and then cooled down and ground 

or milled into fine particles (Wichert and Rohdewald 1990; 

Makadia and Siegel 2011). If spherical particles are desired, 

the obtained ground or milled particles can be dispersed in 

a hot polymer or surfactant solution (Crowley et al. 2007; 

Lang et al. 2014).

In fact, it is possible to produce injectable MP depots 

by coupling HME with micronization methods, such as wet 

milling or jet-milling in order to obtain spherical particles 

(Nykamp et al. 2002; Guo et al. 2017b). HME is a cost-

effective method characterized by the absence of an organic 

solvent, continuous operation, and easy scale up. However, 

several limitations should be accounted many of which relate 

to drug exposure to thermal treatment and the often large 

number of steps required to produce smooth spherical MP 

(Wischke and Schwendeman 2008).

Potentially, the method could suit not only the encapsu-

lation of hydrophobic but even of hydrophilic drugs that 

could be dispersed in the polymer matrix as a micronized 

solid. Nevertheless, the use of high temperatures discour-

ages the application to biomolecules and biologics. Moreo-

ver, it should be minded that non-porous particles are usu-

ally obtained, feature that could slow down excessively the 

release of water-insoluble drugs.

Spray-congealing

Another potentially appealing technique that to date has 

been sparingly employed for the production of PLA and 

PLGA MP is spray congealing (SC). This method consists 

in a unit operation in which a liquid melt is atomized into a 

cooling chamber. The liquid is atomized into a congealing 

gas, droplets are promptly frozen, and particles solidify upon 

removal of the gas. Several configurations exist in which a 

liquid melt or a solution can be processed. The congealing 

media in the cooling chamber change accordingly and can 

be a gas or a frozen non-solvent, which is usually layered 

with liquid nitrogen to favor the successive cryogenic solvent 

removal, see also the section referred to cryogenic solvent 

extraction (Cordeiro et al. 2013). In many ways, SC shows 

hybrid features between SD and HME. As such, SC is a 

platform suitable for the microencapsulation of thermosen-

sitive compounds, particularly proteins and peptides (Yeo 

et al. 2001).

As anticipated above, a modified SC technique has been 

developed in the Alkermes’  ProLease® platform (Johnson 

et al. 1997). This technology has been employed for the man-

ufacturing of Nutropin  Depot®, a Genentech’s somatotropin 

drug product discontinued in 2004. The Alkermes platform 

was also used in the Merck Serono’s Prolease r-hFSH, a 

sustained release formulation of recombinant human follicle 

stimulating hormone for the treatment of infertility, and the 

Janssen’s Procrit Prolease, a recombinant human erythropoi-

etin to control red blood cells production, both discontinued 

at phase 1 clinical and pre-clinical stage, respectively.

In situ forming microparticles

Worth citing is a strategy that does not rely on any peculiar 

process or equipment, but consists in an injectable solution 

that precipitates in situ forming a sustained release MP depot 

(Royals et al. 1999; Jain et al. 2000; Luan and Bodmeier 

2006).

Drug/polymer solutions are dissolved in water-miscible 

solvents, such as n-methyl pyrrolidone or dimethylsulfoxide 

(DMSO), that are then emulsified in an external oil phase. 

Upon injection, the solvent diffusion causes precipitation 

of the polymer resulting in MP entrapping the drug to 

be released. Naturally, safety issues limit types of solvents 

and oils that thus have to be carefully selected (Wischke and 

Schwendeman 2008).

This approach overcomes some drawbacks of conven-

tional techniques, including manufacturing costs and com-

plexities of manufacturing processes. Several FDA-approved 

long-acting depots exploiting this technology are available 

in the market (Table 4). An example is the leuprolide acetate 

depot which releases the drug over months.
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Advanced manufacturing technologies

Micro�uidics

Microfluidics is a technique that is quickly growing and 

that consents to prepare particles of the same dimensions 

and therefore characterized by a reproducible drug release 

pattern (Lee et al. 2016). To produce PLA/PLGA particles, 

a microfluidic device that may have different geometries 

is required. The device comprises of several microchan-

nels, etched or molded in different materials such as glass, 

silicone or poly(dimethylsiloxane) (PDMS), that are con-

nected together. These microchannels are filled in thanks 

to inlets and fluids flow rate is controlled by micropumps 

and microvalves until they are withdrawn through the device 

outlet (Swider et al. 2018). This relatively new strategy of 

PLA/PLGA MP production can be scaled up when PDMS 

devices are employed since their production is easy, cheap 

and grants the fabrication of channels with reproducible 

dimensions. This is on the contrary harder to obtain with 

glass devices. The limit of using PDMS microfluidics is 

their swelling behavior in contact with organic solvent such 

as methylene chloride. To avoid this problem, the micro-

channels inner surface can be coated with a PVA/glycerol 

solution (Duncanson et al. 2012; Li et al. 2015). Polymeric 

MP are produced exploiting single, double or multiple 

emulsions that can be formed in the device choosing the 

proper microchannel geometry. Particle dimensions can be 

easily tailored modifying the solvent nature, the polymer 

and stabilizer concentration, and the flow rate of the dif-

ferent solutions. Monodisperse droplets are obtained since 

the emulsion formation is strictly controlled passively or 

actively handling the flow rate, the volume ratio of the aque-

ous and organic phases, and the device geometry. The main 

difference between the active and passive technique is the 

use of additional accessories for the active technique such 

as microvalves, heaters that require energy to be actuated 

(Vladisavljević et al. 2013). Device microchannel geometry 

can be divided in T-junction, flow-focusing and co-flow 

Table 4  PLA//PLGA based in situ forming depot technologies and products marketed or under clinical development (not intended to be fully 

exhaustive)

Investigational or brand API Indication(s) Encapsulation technology Development stage

Atridox® Doxycycline Periodontitis AtriGel® Marketed

Atrisorb® Doxycycline Periodontitis AtriGel® Marketed

CAM2029 Ocreotide Acromegaly and neuroendo-

crine tumors

FluidCrystal® Phase I–II

CAM2032 Leuprolide acetate Prostate cancer FluidCrystal® Phase I–II

CAM2038 Buprenorphine Opioid dependence FluidCrystal® Approved

CAM4072 Setmelanotide Genetic obesity FluidCrystal® Phase I–II

Eligard® Leuprolide acetate Prostate cancer AtriGel® Marketed

mdc-iRM Not known Schizophrenia BEPO® Phase III

mdc-CWM Not known Pain and inflammation BEPO® Phase II

Perseris™ Risperidone Schizophrenia AtriGel® Approved

Sublocade® Buprenorphine Opioid dependence AtriGel® Marketed

Fig. 3  Microfluidic channel geometries; a T-junction geometry: the 

aqueous phase flows orthogonally into the oil phase; b flow-focusing 

geometry: the oil phase enters orthogonally the channel while the 

aqueous phase flows coaxially into the oil phase flow; the oil phase 

flows through a bottleneck junction and the pressure drags the aque-

ous droplets into the oil stream; c co-flow geometry: the aqueous 

phase enters coaxially into the co-current oil phase flow; the oil phase 

pressure pushes the aqueous droplets into the parallel oil stream. 

Adapted from Swider et al. (2018)
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geometries (Fig. 3). The T-junction microfluidic device pos-

sesses two inlets: the continuous phase flows through hori-

zontally, while the organic phase containing the polymer is 

introduced from the second inlet and encounters the aqueous 

phase perpendicularly. In the flow focusing device, the con-

tinuous phase is introduced in the two side channels while 

the organic phase flows through the central channel. The 

organic phase is then forced to pass through a thin orifice 

by the symmetric shear forces of the aqueous phase meeting 

the organic solution from the two lateral channels (Martín-

Banderas et al. 2005; Keohane et al. 2014; Perez et al. 2015; 

Li et al. 2015). The flow-focusing geometry device usually 

consents to obtain smaller droplets and therefore smaller 

particles than T-junction microfluidics due to the shearing 

forces applied (Xu et al. 2009; Vladisavljević et al. 2013). 

In the co-flow system (third geometry), both phases flow in 

the same direction but in two different coaxial microchan-

nels. The organic phase flows in the inner channel, while the 

continuous phase flows in the outer microchannel. To obtain 

double or multiple emulsions, different geometries can be 

combined, such as the flow-focusing microchannels with the 

co-flow system (Duncanson et al. 2012).

Electrospray

The main difference between electrospinning and electro-

spray is the polymer solution concentration. To obtain par-

ticles, it is necessary to work with a low polymer concentra-

tion. The electric field applied to the syringe containing the 

polymer solution pushes the polymer outside the syringe 

needle to form monodispersed particles on the receiving 

grounded electrode (Oliveira and Mano 2011). Electro-

spray has the great advantage of being a one-step process. 

By tuning the voltage intensity applied, the solution flow 

rate, the drying time and rate, that depend on the distance 

between the needle tip and the collection plate and on the 

solvent vapor pressure, respectively, it is possible to produce 

particles with specific features in terms of dimensions and 

morphology (Berkland et al. 2004; Xie et al. 2010). The use 

of concentric coaxial nozzle conveying two different fluids 

(i.e., the inner one that is surrounded by the outer fluid) is an 

evolution of the electrospray process (Lee et al. 2010; Han 

et al. 2016). The encapsulation efficiency is commonly 100% 

and particles are characterized by a core of API surrounded 

by a PLA/PLGA outer layer. Electrospray apparatuses 

equipped with a coaxial nozzle are particularly indicated 

for the encapsulation of peptides and proteins, considering 

the high drug loading and the limited stress to which the 

drug is exposed (Xie and Wang 2007; Xie et al. 2008; Ye 

et al. 2010). Recently, ranibizumab has been encapsulated 

with 70% efficiency and a high activity preservation (Zhang 

et al. 2015).

Microfabrication methods

Soft lithography is a family of techniques, including micro-

contact printing, micro-molding, nano-transfer printing, 

having in common the use of an elastomeric mold. Soft 

lithography is for instance the technique used to produce 

the microfluidic device mentioned above. The material used 

to produce the mold is commonly PDMS because of its low 

cost, biocompatibility, low toxicity, chemical inertness, 

and its mechanical flexibility and durability. PDMS mold 

can be fabricated with micro- or nanostructures to produce 

micro- or nanoparticles as reported in the paper by Guan 

et al. (Guan et al. 2006). Associating both micro-contact 

printing and micro-transfer molding, PLGA particles of dif-

ferent shape and size were produced evidencing the versatil-

ity of these techniques with respect to the lab-scale meth-

ods (Guan et al. 2006). To speed up and facilitate particle 

recovery from the mold, a template of gelatin was prepared 

exploiting the sol–gel phase transition of hydrogels. In this 

way, once the organic solvent containing PLGA evaporated, 

particles were recovered dissolving the gelatin mold in water 

at 40 °C and centrifugating the resultant suspension. This 

strategy is easily scalable, cheap and the conditions to which 

API are exposed are mild, making this technique advanta-

geous to prepare MP for drug delivery (Acharya et al. 2010, 

2011). These microfabrication methods are also reported in 

literature under the acronym PRINT that stands for Particle 

Replication In Nonwetting Templates (Fig. 4) (Enlow et al. 

2011; Perry et al. 2011; Swider et al. 2018). This technol-

ogy is mainly adopted for the production of nanoparticles 

but can also be applied to produce MP loaded with differ-

ent API, both hydrophilic and lipophilic (e.g., doxorubicin) 

(Enlow et al. 2011). The main difference with respect to the 

processes described previously is the use of a different mate-

rial to produce the mold. In particular, highly fluorinated 

perfluoropolyether (PFPE) elastomer is employed instead of 

PDMS. This new elastomer does not swell in the presence 

of organic solvents and is therefore advantageous in com-

parison to PDMS. It also possesses a low surface energy, a 

high gas permeability, a low toxicity, good mechanical and 

elastic properties and is chemically stable and resistant to 

solvents. The PRINT platform consents to produce particles 

of potentially any shape and size characterized by high load-

ing efficiency with low polydispersity index. Monodisperse 

particles have the great advantage of showing a predictable 

drug release pattern and are therefore very suitable for drug 

delivery applications (Swider et al. 2018).

Inkjet technology

Inkjet printing is another technology that consents to con-

trol the shape and the dimensions of the particles produced 

(Ramazani et al. 2016; Gupta et al. 2017). The ink consists 
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in an organic solution or in a w/o emulsion containing the 

polymer that is PLA or PLGA and the API. The inkjet tech-

nology has first been proposed by Berkland et al. with the 

name of Precision Particle  Fabrication® (PPF) technology 

(Berkland et al. 2001). Using this technique, PLGA MP with 

dimensions in the range 30–85 μm were obtained starting 

from an emulsion. In particular, an ultrasonic transducer was 

employed to break the liquid jet emitted from the nozzle into 

droplets. The nozzle was sunk in a water bath containing a 

stabilizer where the solvent was progressively evaporated 

to recover monodispersed particles (Berkland et al. 2007). 

Besides ultrasounds, a piezoelectric actuator can be used 

to break the inkjet in small droplets. In this case, several 

parameters of the ink such as volatility, viscosity and surface 

tension have to be optimized to be processable. With a single 

30 μm nozzle, 24,000 drops per second corresponding to 

86 million particles or 8 mL/h can be generated. Using this 

kind of nozzle submerged in an aqueous phase stabilized 

with polyvinyl alcohol, monodispersed particles with dimen-

sions of about 15 μm were obtained (Böhmer et al. 2010). 

Palmer et al. also used a piezoelectric actuator to produce 

octreotide acetate and ciclosporin A loaded polyester par-

ticles. Here, the API and the polymer were solubilized in 

DMSO and inkjetted in a transverse anti-solvent flow that 

was water or tert-butanol/water solution (Fig. 5). The possi-

bility to scale-up this technology was studied using an inkjet 

device featuring 256 nozzles working at 2–4 kHz frequency 

producing more than 1 million particles per second (Palmer 

et al. 2017). With the same scale-up purpose, Orbis Bio-

sciences, Inc. (Orbis Biosciences 2019), founded by Berk-

land and Fishback, has developed an inkjet device able to 

produce kg/h and even kg/min particles with dimensions 

comprised in the range 10 μm to 1 mm. The other impor-

tant advantages of this technique are the absence of material 

wastage, reduction of manufacturing cost and process steps 

(Lee et al. 2012; Qi et al. 2018). A variant of the process 

previously described has been reported by Lee et al. Droplets 

were produced using a continuous mode piezoelectric device 

and particles were recovered after 2 h drying of the ink that 

was printed on a glass slide. The particles showed distinctive 

paclitaxel release rate according to shape (Lee et al. 2012).

Combined technologies

PLA and PLGA MP were produced using different com-

bined technologies. PLGA particles were prepared using a 

inkjet process followed by thermally induced phase separa-

tion (TIPS). Briefly, a PLGA solution in dimethyl carbon-

ate was inkjetted using a piezoelectric actuator and drop-

lets were collected in liquid nitrogen to freeze the solvent, 

obtaining phase separation. The solvent was finally removed 

by vacuum freeze-drying to recover porous particles (Go 

et al. 2014). Spray-drying is an industrial production method 

of PLA/PLGA particles that suffers of some drawbacks 

such as the large particle size distribution and morphol-

ogy related to the atomization technology. To obtain more 

Fig. 4  Particle production using the PRINT method. The mold is ini-

tially prepared using PDMS, gelatin or PFPE by wetting the silicon 

wafer with micro- and nanosized patterns and is photocured to gener-

ate an elastomeric PRINT mold; then a solution of the polymer and 

the API is poured in the mold cavities using a film-split technique 

against a high-surface-energy polyethylene terephthalate counter 

sheet; particles of the desired shape and dimensions are obtained by 

solvent evaporation, photocuring or temperature quenching. The solid 

particles are removed by contact with an adhesive layer and freed by 

dissolving the adhesive layer. Reprinted by permission from Springer 

Nature: Springer eBook, Pharmaceutical Powder and Particles by 

Anthony J. Hickey and Stefano Giovagnoli, American Association of 

Pharmaceutical Scientists, 2018
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homogeneous particle size and morphology, it is possible 

to combine SD with several droplet generation processes 

able to generate monodisperse droplets. To this aim, inkjet 

droplet generators or microfluidic jet were combined with 

SD obtaining uniform particles with tuneable characteristics 

for the encapsulation and controlled delivery of API (Liu 

et al. 2015). Another combined technology consists in the 

production of microdroplets with uniform dimensions using 

an ultra-fine particle processing system (UPPS) followed 

by solvent evaporation in a spray-dryer. The use of UPPS 

allows to evaporate the solvent at ambient temperature as a 

result of the long path the droplets have to travel. UPPS uses 

a nozzle that feeds the solution or suspension at the center 

of a rotating disk (1000–16,000 rpm) that drives the fluid 

towards its circumference obtaining a thin fluid layer that 

is nebulized in fine droplets. The droplets travel in the body 

cavity of the UPPS where endocentric airflow and tangent 

air vortex progressively dry the droplets (Zhu et al. 2015). 

These combined technologies were used to produce risperi-

done (Fu et al. 2012) and exenatide loaded PLGA MP (Zhu 

et al. 2015) with good encapsulation efficiency, homogene-

ous dimensions and prolonged in vitro release. This com-

bined technology is particularly advantageous because heat 

sensitive macromolecules can be encapsulated under mild 

conditions (Zhu et al. 2015).

Technological and regulatory barriers

In recent years, the interest in depot drug delivery systems 

has experienced a noticeable growth in light of novel market 

opportunities. The extension of life expectancy, the general 

population aging, and striking risk factors, especially across 

industrialized areas, have led to a significant increase of 

chronic ailments. Chronic conditions place emphasis on the 

required high compliance of treatment in terms of dosing 

frequency and self-medication. Therefore, to achieve such a 

goal, prolonged and sustained action and low-invasive and 

easy administration modalities are compulsory. In this sce-

nario, depot systems find a logical prominent position, which 

explains the estimated growth of this market area over the 

next few years (Greystone Research Associates 2018).

Biodegradable PLA and PLGA depots assume a natural 

leading role in this development pipeline for the aforemen-

tioned properties of such polymers and the vast possibility 

of formulation and modulation of their drug release behav-

ior. Such a flexibility and versatility are witnessed by the 

several proprietary technologies that have been employed 

to produce a number of marketed PLGA and PLA sustained 

release depots (Table 1). The possibility of a long-term sus-

tained release and safety of these formulations raise attrac-

tive perspectives for the treatment of chronic or semi-chronic 

conditions particularly when precise adherence to therapy 

is required, e.g., the case of antipsychotic therapies. On the 

other hand, compliance of administration modality can be 

met by existing and emerging smart needle-free injection 

technologies, which enable a dramatic reduction of inva-

siveness and sterility concerns as well as improved usability 

(Barolet and Benohanian 2018). These technologies exploit 

the transient permeation effect provoked by high speed jets 

of liquids or colliding particles. Skin permeabilization is the 

result of the shockwave produced by the liquid or gas/parti-

cles impinging the stratum corneum and causing a reversible 

disruption of the skin layers over a microseconds timeframe 

(Fig. 6). The propelling power is provided by mechanical 

forces such as spring actuated plungers, compressed gas, e.g. 

nitrogen and carbon dioxide, and electrical power (Kale and 

Momin 2014; Schoubben et al. 2015).

Modern injectors show considerable advantages com-

pared to syringes or pen injectors (Guo et al. 2017a), such 

as a disposable nozzle, no sterility preservation issues, and 

Fig. 5  Particle production using the inkjet technology. The piezo-

electric actuator a nebulizes the polymer and the API solution, b in a 

transverse anti-solvent flow e, pumped with a pulseless micropump d 

from an anti-solvent reservoir (c). Adapted from Palmer et al. (2017)
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patient-friendly and high compliance features. Several FDA-

approved injectors have been marketed and regulated by spe-

cific guidelines (FDA Guidance for Industry 2013).

Therefore, today technologies are available to move PLA/

PLGA MP depots towards a new industrial era. Unfortu-

nately, the technical and regulatory gap that separates inject-

able PLA/PLGA MP depots from well-established pharma-

ceutical products, e.g. oral, is still dramatically wide. Official 

validated methods for MP testing, in particular dissolution 

and stability assays, are lacking. Non-compendial drug 

release methods such as dialysis sac, reverse dialysis sac, 

and sample-and-separate have been proposed (Andhariya 

and Burgess 2016), but no standardization is warranted. A 

possible option may be the flow-through cell based USP 

apparatus 4 that has been found to grant good sink con-

ditions, minimize microsphere aggregation, better mimic 

in vivo conditions, and it better suited long-term release 

studies (Rawat et al. 2011; Tomic et al. 2016). Recently, even 

the use of an orbital shaker based method has been positively 

evaluated, yet its application is far behind standardization 

(Garner et al. 2018).

Due to the long duration of action of PLA/PLGA depots, 

accelerated studies are desirable to shorten the testing period 

either for release or stability assessment. However, albeit some 

studies have demonstrated feasibility of accelerated release 

or stability assays, since such experiments are performed at 

increased temperatures, reliability and consistency of such 

approaches should be always checked and no standardization 

has been achieved so far. The reason is the effect of tempera-

ture on the low glassy polyester matrix, which tends to anneal 

if the testing temperature approaches the polymer glass transi-

tion temperature. Such critical features apply also to stability 

testing of MP. In this regard, directions are provided by the 

ICH Q1A guidelines that establish the proper conditions to 

assess product quality (ICH Q1A 2003).

This lack of compendial or biorelevant in vitro testing 

and related characterization standards as well as of adequate 

guidelines deeply hinder developability of PLA/PLGA depots. 

Indeed, bioequivalence assessment for these products is basi-

cally unmet. The reason is that PLGA/PLA heterogeneity and 

differences in manufacturing methods deeply influence the 

product physicochemical properties and thus release behavior 

and bioavailability. Even under high qualitative and quanti-

tative sameness, bioequivalence may not be ensured (Zheng 

et al. 2017). Furthermore, adequate clinical settings along with 

sterilization requirement are another unmet challenge that are 

under intense evaluation.

All such reasons explain the to date absence of PLGA/PLA 

based generic drug products. The increased effort directed to 

overcome such considerable challenges has led to dedicated 

initiatives by regulatory agencies. The FDA’s OGD has issued 

seven specific recommendations for MP products as guidance 

on bioequivalence study design (Wang et al. 2016) and it is 

working to develop recommendations for PLA/PLGA-based 

drug products.

Recognizing these challenges, a FDA’s regulatory science 

research program was started in 2012 under the generic drug 

user fee amendments and is currently under implementation by 

OGD to provide new tools to support generic product develop-

ment. Under this aegis, OGD has granted multiple research 

projects on PLA/PLGA based drug products involving MP, 

implants, and in situ gelling systems. These projects encom-

passed development of in vitro-in vivo correlations, in vitro 

release testing methods, characterization of PLA/PLGA 

polymers and formulations, and modeling and simulation 

of PLA/PLGA-based drug products. In spite of such efforts, 

none of the ongoing programs has completed its task so far, 

even though progresses in the field are continuous. Recently, 

an approach based on reverse engineering has been proposed 

to support generic development for 1-month  Lupron® depot 

(Zhou et al. 2018). This could represent a valuable strategy to 

be expanded to other PLA/PLGA based depots.

Fig. 6  Needle-free injection device injecting a high-speed jet of liq-

uid (a) or of powder (b). In the first case, a piston pushes the liquid 

through a nozzle, which produces a jet at > 100  m/s (velocity); the 

jet starts the formation of a hole on the skin through surface erosion, 

fracture, or other skin disruptive processes; a few tens of microsec-

onds of prolonged impingement of the jet provokes progressive 

increase of hole depth; the liquid accumulates in the skin hole slow-

ing down the jet and further increase of the hole is stopped; the con-

sequent stagnation favors diffusion of the liquid into the skin. In the 

case of powder injections, a chamber filled with the powder is pres-

surized with a gas and a jet is generated by rupture of a membrane 

set; the particles impinge the skin surface leading to formation of a 

hole into the skin depositing in a spherical pattern, penetrate across 

the stratum corneum, and distribute completely into the stratum cor-

neum and the viable epidermis; to produce a proper powder jet, par-

ticle densities of about 1 g/cc and a mean diameter > 20 μm are desir-

able. Adapted from Kale and Momin (2014)
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Current scenario and future perspectives

The overall picture drawn so far looks rather twisted and the 

road to generic PLA/PLGA MP based products seems wind-

ing and full of barriers. These products may allow different 

routes of administration, such as pulmonary and parenteral, 

and a sustained effect that is highly beneficial to the treat-

ment of chronic disease conditions. Availability of generic 

products, especially for LAI, would ease patient’s access 

and adherence to therapy, considering the high production 

and market costs. This is particularly true if considering 

schizophrenic patients who have to be treated under rigorous 

medical control. A single long-term injection would improve 

compliance and nearly erase the non-adherence risk.

In particular, LAI products show a higher cost/effective-

ness compared to oral antipsychotic treatment (Yang et al. 

2009) with reduced hospital admissions, relapse rates and 

length of inpatient stay, especially for patients who may be 

at risk of non-adherence with oral antipsychotics (Peng et al. 

2011; Nikolić et al. 2017).

Cost comparison of antipsychotic LAI versus other phar-

maceutical forms clearly shows that LAI products may be 

more expensive compared to tablets or other injectables, 

however the difference is by far counterbalanced by the 

lower costs that burden on the health system for hospitaliza-

tion, home visit and medical assistance (Ravasio et al. 2015; 

Patel et al. 2018; González et al. 2018). Similar considera-

tions have been found to apply even in other therapeutic 

areas such as cancer and contraception (Ayyagari et al. 2017; 

Di Giorgio et al. 2018).

The clinical benefits of LAI are evident although their 

employment is still controversial as dosing flexibility and 

self-management skills might be undermined. Therefore, 

clinicians ought to be required to prescribe LAI treatments 

on a case by case basis by evaluating patient’s risks and 

benefits (Mutsatsa 2017).

Naturally, this overall positive cost/effectiveness profile of 

LAI applies to PLA/PLGA MP based LAI as well. For this 

reason and the expired or expiring patent coverage for several 

products marketed in the 90s, the European Medicine Agency 

and the FDA are increasingly committed in the establishment 

of proper standards and guidelines useful to underpin the 

generic development of these peculiar products (EMA 2014).

As we have tried to point out in this review, the unmet 

aspects of PLA/PLGA MP based product development are 

reciprocally interconnected and influential on either the 

regulatory or manufacturing side. In fact, the progress of 

manufacturing techniques is hindered not only by the high 

complexity of such products but also, to a significant extent, 

by the absence of adequate standards and specific regula-

tions, which impact the assessment of suitable clinical set-

tings as well. Such a scenario is complicated further by the 

high costs associated with the technology employed to date 

for the manufacturing of PLA/PLGA MP based products. 

As highlighted above, victims of such miscalculations have 

been the discontinued Genentech’s Nutropin  Depot®, Merck 

Serono’s Prolease r-hFSH, and Janssen’s Procrit Prolease, all 

employing the Alchermes’  Prolease® platform. Unsustain-

able management costs were at the origin of Nutropin dis-

continuation and, beyond undeclared issues, they also likely 

impaired the development of the other products that never 

reached the market.

This negative experience suggests that the choice of the 

manufacturing technology should be accurately weighed 

and it should evolve withholding an intrinsic simplicity 

and control. These aspects are crucial as they considerably 

impact the health technology assessment (HTA) process. In 

this regard, we have already underlined the importance of a 

proper evaluation of the manufacturing technology costs in 

HTA for advanced pharmaceutical forms that requires the 

contribution of an expert working side by side with clini-

cians (Panzitta et al. 2015). Unfortunately, still this aspect 

demands full implementation.

Seeing the glass half-full, the new opportunities driven 

by the novel emerging manufacturing technologies con-

cisely described in this review will surely push forward the 

development of innovative and more reliable manufacturing 

methods for PLA/PLGA MP based depots. The contribu-

tion of the technology advancements recorded in the last 

years hold promises for the future assessment of robust and 

high-throughput manufacturing processes. Proper cost man-

agement favored even by new technological solutions may 

grant a bright future development for techniques such as 

SD and SCF that, albeit at present demanding, clearly hold 

considerable advantages compared with other techniques, 

especially considering the current tendency towards continu-

ous manufacturing. In addition, microfluidics and membrane 

emulsification methods and combined techniques, such as 

TIPS and UPPS may help to meet the so far unmet demand 

for lean and efficient PLA/PLGA based products manufac-

turing system.

However, the future of this promising products is pend-

ing upon the fulfilment of updated and novel quality stand-

ards and guidelines for the consolidation of development 

processes.
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