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Abstract. TheWelch lower boundon the total-squared-correlation (TSC) of binary signature sets is loose for

binary signature setswhose lengthL is not amultiple of 4.RecentlyKarystinos andPados [6,7] developednew

bounds that are better than the Welch bound in those cases, and showed how to achieve the bounds with

modified Hadamard matrices except in a couple of cases. In this paper, we study the open cases.

Keywords: binary sequences, code division multiple access, codes, Welch bound, Karystinos-Pados bound

AMS Classification: 94A05, 94B60

1. Introduction

In direct-sequence code-division multiple-access (DS-CDMA) systems, multiple
users are assigned individual binary antipodal signatures (spreading codes) to access
a common, in time and frequency, communication channel. In conjunction with
channel and receiver design specifics, the overall system performance is determined
by the selection of the user signature set. Since each user signal acts as interference
for the signals of other users, an appropriately designed user signature set contains
signatures with low pairwise cross-correlation.
One measure of the cross-correlation properties of a signature set is the total-

squared-correlation (TSC). A ðK ;LÞ signature set s ¼ fs1; s2; . . . ; sKg is a set of K
user signatures of length (processing gain) L, where si [ f�1; 1gL.



The TSC of the set s is the sum of the squared magnitudes of all inner products
between signatures:

TSCðsÞ ¼
XK
i¼1

XK
j¼1

jsisTj j
2:

Let YðK ;LÞ denote the minimum of TSCðsÞ over all ðK ;LÞ signature sets. We call a
ðK;LÞ signature set s optimal if TSCðsÞ ¼ YðK ;LÞ.
For a ðK;LÞ signature sets ¼ fs1; s2; . . . ; sKg, the corresponding signature matrix

S is the matrix with rows s1; s2; . . . ; sK . We have

TSCðsÞ ¼ trace SST
� �2� �

¼ trace STS
� �2� �

:

Therefore, if s is an optimal ðK ;LÞ signature set, then the set of columns of S gives
an optimal ðL;KÞ signature set. Hence, to determine YðK ;LÞ for all K and L, we
only need to consider the case K � L.
The Welch bound [9] for binary signature sets states that if K � L, then

YðK ;LÞ 	 KL2, and it is not tight in general. Karystinos and Pados [6,7] have
developed new bounds that improve the Welch bound for L 6:0 (mod 4). We state
their results in the following theorem.

THEOREM 1. (Karystinos and Pados). Let s be a (K, L) signature set with K � L.

i. If L:0 (mod 4), then TSCðsÞ 	 KL2, with equality if and only if sis
T
j ¼ 0 for all

i 6¼ j.

ii. If L:1 (mod 2), then TSCðsÞ 	 KL2 þ KðK � 1Þ, with equality if and only if
jsisTj j ¼ 1 for all i 6¼ j.

iii. If L:2 (mod 4), then TSCðsÞ 	 KL2 þ 8 bK=2c
2

� �
þ 8 dK=2e

2

� �
.

We repeat here the trivial proof of (i) and (ii): we have

TSCðsÞ ¼ KL2 þ
X
i=j

sis
T
j

��� ���2:
We see that (i) follows immediately. Moreover, if L is odd, then sis

T
j is odd.

Therefore jsisTj j 	 1 and so (ii) follows. The proof of (iii) and characterization of
equality in this case is a little more involved, see Karystinos and Pados [7].
If TSCðsÞ meets the bound of Theorem 1, then we say that s is perfect.
We give a simple lemma which will be useful later.

LEMMA 2. If L is odd, then TSCðsÞ:KL2 þ KðK � 1Þ (mod 16). In particular, if
K ¼ L, then TSCðsÞ:1 (mod 16).
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Proof. Since sis
T
j ¼ sjs

T
i , we have

TSCðsÞ ¼ KL2 þ 2
X

1�i<j�K
sis

T
j

��� ���2:
Since sis

T
j is odd, jsisTj j

2:1 (mod 8) and so 2jsisTj j
2:2 (mod 16). Hence

TSCðsÞ:KL2 þ
X

1�i<j�K
2 ¼ KL2 þ KðK � 1Þ ðmod 16Þ: &

We call a signature matrix normalized if all elements in the first column and the
last row are þ 1. Multiplying each element in a row or each element in a column of a
signature matrix by � 1 will produce another signature matrix with the same TSC.
By repeating this process, any signature matrix can be changed into a normalized
signature matrix with the same TSC.
A Hadamard matrix of order n is an n6n matrix Hn of þ 1’s and � 1’s such that

hih
T
j ¼ 0 for i= j (that is, HnH

T
n ¼ nI), where h1; h2; . . . ; hn are the rows of Hn. By

Theorem 1(i), a Hadamard matrix is the same as a signature matrix of a perfect ðn; nÞ
signature set. Hadamard matrices are believed to exist for all orders n divisible by 4,
but this has not been established in all cases. Detailed information about Hadamard
matrices may be found in Hedayat et al. [4].
Karystinos and Pados [6] constructed perfect signature sets for many cases, using

modifications of Hadamard matrices. We briefly describe the constructions (in our
own notation). Let H4m be a Hadamard matrix, let K � 4m, and letsK;4m be a set of
K rows from H4m. Let

. sK;4m�1 � f�1; 1g4m�1 be obtained by omitting the first element from each vector
in sK ;4m,

. sK;4mþ1 � f�1; 1g4mþ1 be obtained by appending a 1 to each vector in sK;4m,

. sK;4mþ2 � f�1; 1g4mþ2 be obtained by appending ð1; 1Þ to bK=2c of the vectors in
s4m and ð1;�1Þ to the remaining dK=2e vectors of sK ;4m.

Then sK;L is a perfect ðK ;LÞ signature set for L [ f4m� 1; 4m; 4mþ 1; 4mþ 2g and
K � 4m. This left open the question of optimal signature sets for the following cases
when K � L:

Case 1. L:1 (mod 4) and K ¼ L.

Case 2. L:2 (mod 4) and K ¼ L or K ¼ L� 1.

The purpose of this paper is to study these open cases. Case 2 turn out to be simple,
but Case 1 appears to be difficult.
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2. Perfect Signature Sets for L:2 (mod 4)

For this case we construct perfect signature sets (provided Hadamard matrices of
order Lþ 2 exist). The construction is similar to the constructions of Karystinos and
Pados [6,7].
Let HLþ2 be a normalized Hadamard matrix. Any column of HLþ2, except the

first contains an equal number of 1’s and �1’s (since HT
Lþ2 is also a Hadamard

matrix). For K � L, let t1 be a set of bK=2c rows from HLþ2 which starts with
ð1; 1Þ and t2 a set of dK=2e rows from HLþ2 which starts with ð1;�1Þ. For
k ¼ 1; 2, let sk � f�1; 1gL be the set of vectors obtained by deleting the first two
elements of the vectors in tk, and let s ¼ s1 [s2. If si and sj are distinct
vectors of s, then sis

T
j ¼ � 2 if they belong to the same sk, and sis

T
j ¼ 0

otherwise. Hence

XL
i¼1

XL
j¼1

jsisTj j
2 ¼ KL2 þ 4

K

2

� �
K

2

� �
� 1

	 

þ 4

K

2

� �
K

2

� �
� 1

	 

;

that is, the signature set is perfect.

THEOREM 3. If L:2 (mod 4) and there exists a Hadamard matrix of order Lþ 2,
then perfect (K, L) signature sets exist for all K � L.

3. Signature Sets for L:1 (mod 4)

We now consider ðL;LÞ signature sets for L:1 (mod 4). For L ¼ 5 and L ¼ 13
perfect ðL;LÞ signature sets do exist, we give constructions below. However,
perfect (9, 9) signature sets do not exist; a proof of this is given in an appendix.
By Lemma 2, for a (9, 9) signature set we have TSC ¼ 93 þ 9 ? 8þ 16a for some
integer a 	 0. In fact there do not exist (9, 9) signature sets with TSC ¼
93 þ 9 ? 8þ 16a for any a [ f0; 1; 2g. Such a set would have jsisTj j ¼ 3 for exactly a
pairs ði; jÞ where i < j and jsisTj j ¼ 1 for the remaining pairs with i < j. It is a
simple task to check by computer that this is not possible. A (9, 9) signature set
with TSC ¼ 93 þ 9 ? 8þ 16 ? 3 ¼ 849 do exist, a construction is given below. Hence,
Yð9; 9Þ ¼ 849.
The example (9, 9) is important because it shows that Karystinos and Pados’s

bound is not sharp for ðL;LÞ set in general. Therefore, it is of interest to find
constructions of ðL;LÞ signature sets, even if they are not perfect. In this section
we consider various constructions of ðL;LÞ signature sets. For all L, except
L ¼ 5 and L ¼ 13, the corresponding values of the TSC are above the
Karystinos-Pados bound, but we can not decide if they are optimal or not
(except for L ¼ 9).
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3.1. Shortening Hadamard Matrices

One possible construction is to delete three elements from the rows of a normalized
Hadamard matrix of order Lþ 3. It is easy to show that this results in a signature set
where

TSC 	 L3 þ 3ðL� 1ÞðL� 2Þ:

Since our next construction gives signature sets with lower TSC, we omit the details
of the proof.

3.2. Extending Hadamard Matrices

Let H be a Hadamard matrix of order L� 1, let a; b [ f�1; 1gL�1, and c [ f�1; 1g.
Consider the L6L matrix

SðH; a; b; cÞ ¼ aT �H

c b

2
4

3
5;

and let sH;a;b;c be the set of rows of this matrix. We want to find the minimum of
TSCðsH;a;b;cÞ over all Hadamard matrices H of order L� 1 and all a; b; c.
Normalizing SðH; a; b; cÞ we get a matrix SðH 0; 1; 1; 1Þ where H 0 is again a
Hadamard matrix. Hence, we can assume without loss of generality that a ¼ b ¼ 1

and c ¼ 1. We write sH ¼ sH;1;1;1.
The excess of a Hadamard matrix H is the sum of all its elements, we denote it by

sðHÞ. Note that sðHÞ ¼ 1H1T . Let sðnÞ denote the maximal excess of a Hadamard
matrix of order n. This quantity was first studied by Best [1]. He showed that if
Hadamard matrices of order n exist, then

n2

2n
n

n=2

	 

� sðnÞ � n3=2: ð1Þ

He determined the first few values:

n 4 8 12 16 20 24

sðnÞ 8 20 36 64 80 112

The maximal excess of Hadamard matrices has been studied by a number of
authors since and we mention a couple of the results.
Hammer et al. [3] showed that for n ¼ 22m we have sðnÞ ¼ n3=2.
For n ¼ 4mðmþ 1Þ, Kounias and Farmakis [8] improved Best’s upper bound to

4m2ð2mþ 3Þ, and for odd m � 19 it has been shown that this bound can be reached.
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THEOREM 4. Let H be a Hadamard matrix of order n. Then

TSCðsHÞ ¼ ðnþ 1Þ3 þ nð3nþ 1Þ � 4sðHÞ:

Proof. Let sH ¼ fs1; s2; . . . ; sn; snþ1 ¼ 1g. For all i we have

jsisTi j
2 ¼ ðnþ 1Þ2: ð2Þ

If i 6¼ j and 1 � i; j � n then

jsisTj j ¼ j1þ hih
T
j j ¼ 1: ð3Þ

Since the transpose of a Hadamard matrix is again a Hadamard matrix we get

Xn
i¼1

hijhik ¼
n; if j ¼ k

0; if j=k,

(

and so

Xn
i¼1

ð1hTi Þ
2 ¼

Xn
i¼1

Xn
j¼1

hij
Xn
k¼1

hik ¼
Xn
j¼1

Xn
k¼1

Xn
i¼1

hijhik ¼ n2: ð4Þ

For 1 � j � n we have snþ1s
T
j ¼ 1� 1hTj and so

Xn
j¼1

ðsnþ1sTj Þ
2 ¼ n� 2

Xn
j¼1

1hTj þ
Xn
j¼1

ð1hTj Þ
2 ¼ n� 2sðHÞ þ n2: ð5Þ

Combining (2)–(5) we get

Xnþ1
i¼1

Xnþ1
j¼1

jsisTj j
2 ¼

Xnþ1
i¼1

jsisTi j
2 þ 2

X
1�i<j�n

jsisTj j
2 þ 2

Xn
j¼1

jsnþ1sTj j
2

¼ ðnþ 1Þðnþ 1Þ2 þ nðn� 1Þ þ 2n� 4sðHÞ þ 2n2

¼ ðnþ 1Þ3 þ nð3nþ 1Þ � 4sðHÞ: &

Theorem 4 immediately gives the following result.

THEOREM 5. For K ¼ L:1 (mod 4), if Hadamard matrices of order L� 1 exist,
then there exists an (L, L) signature set s with

TSCðsÞ ¼ L3 þ ðL� 1Þð3L� 2Þ � 4sðL� 1Þ:
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EXAMPLE 1. It is known that sð4Þ ¼ 8. Hence, there exists a (5, 5) signature set s
with

TSCðsÞ ¼ 53 þ 4 ? 13� 4 ? 8 ¼ 53 þ 5 ? 4;

that is, a perfect (5,5) signature set exists.
From (1) we have sðL� 1Þ � ðL� 1Þ3=2. Hence, for L 	 9, we have

L3 þ ðL� 1Þð3L� 2Þ � 4sðL� 1Þ > L3 þ LðL� 1Þ;

and so, if perfect ðL;LÞ signature sets exist, they can not be constructed in this way for
L 	 9.

EXAMPLE 2. It is known that sð8Þ ¼ 20. Hence, the minimal TSC we obtain for a (9,
9) signature set s by this method is

TSCðsÞ ¼ 93 þ 8 ? 25� 4 ? 20 ¼ ð93 þ 9 ? 8Þ þ 48:

As explained above, this is in fact optimal (but not perfect).

EXAMPLE 3. It is known that sð12Þ ¼ 36. Hence, the minimal TSC we obtain for a
(13, 13) signature set s by this method is

TSCðsÞ ¼ 133 þ 12 ? 37� 4 ? 36 ¼ ð133 þ 13 ? 12Þ þ 144:

As we will show by another construction, this is not optimal (actually, a perfect
signature set exists).

3.3. Signature sets and codes

The problem we study can be rephrased in term of binary codes. For two n-tuples a,
b of the same length, the Hamming distance between a and b, denoted dHða; bÞ is the
number of positions where they differ. The Hamming weight of a is the number of
non-zero elements of a.
A binary ðL;MÞ code c is a subset of f0; 1gL withM elements. The elements of c

are called codewords. The minimum distance of c is the smallest Hamming distance
between distinct codewords.
The distance distribution of c is the sequence A0;A1; . . . ;AL, where

Ai ¼
jfða; bÞ j a; b [c and dHða; bÞ ¼ igj

M
:

In particular, A0 ¼ 1. In this notation, the minimum distance is the least positive d
such that Ad=0.
The (invertible) mapping f defined by fð0Þ ¼ 1 and fð1Þ ¼ �1 can be extended to

vectors and codes to get a 1� 1 correspondence between codes and signature sets. If
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c1; c2 [ f0; 1gL and si ¼ fðciÞ, then

s1s
T
2 ¼ L� 2dHðs1; s2Þ ¼ L� 2dHðc1; c2Þ:

Hence we get the following relation.

THEOREM 6. Let c be an (L, L) code with distance distribution A0;A1; . . . ;AL. Then

TSCðfðcÞÞ ¼ L
XL
i¼0

AiðL� 2iÞ2 ¼ L
XðL�1Þ=2

j¼0
ðAL�1

2 �j þ ALþ1
2 þjÞð2j þ 1Þ2:

In particular, fðcÞ is perfect if and only if Ai ¼ 0 for i 6[ f0;L� 1=2;Lþ 1=2g.

Remark 1. As noted above, if S is a ðL;LÞ signature matrix, multiplying each
element in a row or each element in a column of S by �1 will produce a signature
matrix S0 with the same TSC. Hence, we may assume without loss of generality that
1 belongs to s and that all the remaining signatures have a majority of elements
which are þ 1. This means that 0 [cðsÞ and that wHðcðsÞÞ < L=2 for all s [s. In
particular, if s is perfect, then c ¼ cðsÞnf0g is a constant weight code; all
codewords have weight ðL� 1Þ=2. Moreover, the distance between any two
codewords of c is even and it is in fðL� 1Þ=2; ðLþ 1Þ=2g so it must be ðL� 1Þ=2
(since ðLþ 1Þ=2 is odd). Hence the code is also equidistant. The size of the code c is
L� 1. The best general upper bound on equidistant constant weight codes with these
parameters turns out to be Lþ 1 (see Fu et al. [2]) and so perfect signature sets give
rise to codes which are almost best possible. On the other hand, the bounds can not
be used to rule out the existence of such codes for any L.

Remark 2. A code c is said to be self-complementary if x [c implies x [c, where
x ¼ x þ 1 denotes the complement of x. From the theorem above we see that if s is
perfect, then the code cðsÞ [ ð1 þ cðsÞÞ is self-complementary of size 2L.
Moreover, its minimum distance is ðL� 1Þ=2 since c1; c2 [cðsÞ; c1=c2, implies that

dHð1 þ c1; 1 þ c2Þ ¼ dHðc1; c2Þ [
L� 1

2
;
Lþ 1

2

� �
;

dHðc1; 1 þ c2Þ ¼ L� dHðc1; c2Þ [
Lþ 1

2
;
L� 1

2

� �
:

Hence, a perfect signature set gives a self-complementary code with size close to the
best upper bound (the Gray-Rankin bound).
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3.4. Signature Sets from Binary Functions

THEOREM 7. Let G ¼ fg1; g2; . . . ; gLg be an Abelian group of order L and let f :
G? f�1; 1g be a binary function on G. Let s be the (L, L) signature set

s ¼ fsg ¼ ð f ðg1 þ gÞ; f ðg2 þ gÞ; . . . ; f ðgL þ gÞÞ j g [Gg:

Then

TSCðsÞ ¼ L
X
h [G

ðCf ðhÞÞ2;

where

Cf ðxÞ ¼
X
y [G

f ðxþ yÞf ðyÞ;

is the autocorrelation of f.

Proof. We have

sgs
T
h ¼

XL
i¼1

f ðgi þ gÞf ðgi þ hÞ ¼
XL
j¼1

f ðgj þ g� hÞf ðgjÞ ¼ Cf ðg� hÞ:

Hence

TSCðsÞ ¼
X
g[G

X
h0[G

ðCf ðg� h0ÞÞ2 ¼
X
g[G

X
h[G

ðCf ðhÞÞ2 ¼ L
X
h[G

ðCf ðhÞÞ2: &

Consider the following special case. An m-subset D of G is called an ðL;m; lÞ
difference set if the differences x� y take on each nonzero element of G exactly l
times when ðx; yÞ ranges over all distinct pairs in D6D. D is called cyclic if G is
cyclic. If D is an ðL;m; lÞ difference set of G, then GnD is an ðL;L�m;L� 2mþ lÞ
difference set.
Define fD : G? f�1;þ 1g by

fDðhÞ ¼
�1; if h [D

þ1; if h 6[D.

(

Then CfDðhÞ ¼ L� 4ðm� lÞ for h=0. Since mðm� 1Þ ¼ lðL� 1Þ, we have
L� 4ðm� lÞ ¼ 1 if and only if

ðL;m; lÞ ¼ ð2uðuþ 1Þ þ 1; u2; uðu� 1Þ=2Þ; ð6Þ

or

ðL;m; lÞ ¼ ð2uðuþ 1Þ þ 1; ðuþ 1Þ2; ðuþ 1Þðuþ 2Þ=2Þ: ð7Þ
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If D is a difference set with parameters (7), then GnD is a difference set with
parameters (6). Hence it is sufficient to consider one of these sets of parameters.
Theorem 7 gives the following result.

COROLLARY 8. For u 	 1, if there exists a difference set with parameters (6), then
there exists a perfect ð2uðuþ 1Þ þ 1; 2uðuþ 1Þ þ 1Þ signature set.

EXAMPLE 4. For u ¼ 1 we get 2uðuþ 1Þ þ 1 ¼ 5, and there exists a ð5; 1; 0Þ
difference set in Z5, namely D ¼ f0g. Hence a perfect ð5; 5Þ signature set exists.

EXAMPLE 5. For u ¼ 2 we get 2uðuþ 1Þ þ 1 ¼ 13, and there exists a ð13; 4; 1Þ differ-
ence set in Z13, namely D ¼ f0; 1; 3; 9g. Hence a perfect ð13; 13Þ signature set exists.

It is known that for 3 � u � 6, difference sets with parameters (6) do not exist [5].
For u 	 7 the existence of such difference sets is an open question.

4. Concluding Remarks

The constructions given by Karystinos and Pados [6,7], and the constructions given
in this paper show that the Karystinos-Pados bound is sharp, for all cases, except
K ¼ L:1ðmod 4Þ.
The case K ¼ L:1ðmod 4Þ is more involved. For L ¼ 5 and L ¼ 13, the

Karystinos-Pados bound is sharp, for L ¼ 9 it is not. For L 	 17 the question is
open. The best general construction we have is by extending a Hadamard matrix
(Theorem 4). However, for the case L ¼ 13 a better construction was obtained using
difference sets (Corollary 8).

Appendix: Proof that Perfect (9, 9) Signature Sets do not Exist

Since a perfect (9, 9) signature set is equivalent to a (9, 8, 4) equidistant constant
weight code; suppose that such a code exists. We will show that this gives a
contradiction. It is sufficient to consider the code up to equivalence, that is,
permutation of positions. When we do this, we write w.l.o.g (without loss of
generality).
W.l.o.g the first two codewords are

c1 ¼ ð11 11 00 000Þ; c2 ¼ ð11 00 11 000Þ:

For any codeword c, we will group the elements into 4 groups, having 2, 2, 2, and 3
bits respectively. We denote these groups by cðiÞ, i ¼ 1; 2; 3; 4. Hence

c ¼ ðcð1Þ j cð2Þ j cð3Þ j cð4ÞÞ:
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Denote the weight of cðiÞ by wi. Then

w1 þ w2 þ w3 þ w4 ¼ wHðcÞ ¼ 4;

ð2� w1Þ þ ð2� w2Þ þ w3 þ w4 ¼ dHðc1; cÞ ¼ 4;

ð2� w1Þ þ w2 þ ð2� w3Þ þ w4 ¼ dHðc2; cÞ ¼ 4:

Solving these equations we get

w2 ¼ w3 ¼ 2� w1 and w4 ¼ w1:

Hence, up to equivalence, there are 3 possible choices for c:

ð00 11 11 000Þ; ð10 10 10 100Þ; ð11 00 00 110Þ:

We say that c is of type a if wHðcð1ÞÞ ¼ a. The potential codeword of type 0 is unique.
The potential codeword of type 2 is unique, except for the place of the 0 in group 4.
In particular, the distance between them is eight. Hence the code can not contain
codewords of both types 0 and 2. Therefore, at least five of the eight codewords of
the code are of type 1.
We now consider five such codewords ci, i ¼ 3; 4; 5; 6; 7, of type 1. Since c

ð1Þ
i ¼ ð10Þ

or ð01Þ, we may assume w.l.o.g. that c
ð1Þ
i ¼ ð10Þ for i ¼ 3; 4; 5. Similarly, w.l.o.g.

c
ð2Þ
3 ¼ c

ð2Þ
4 ¼ ð10Þ. Let ai ¼ dHðcðiÞ3 ; c

ðiÞ
4 Þ for i ¼ 1; 2; 3; 4. Then

a1 þ a2 þ a3 þ a4 ¼ 4; a1 ¼ a2 ¼ 0; a3; a4 [ f0; 2g;

and so a3 ¼ a4 ¼ 2. Hence, w.l.o.g.,

c3 ¼ ð10 10 10 100Þ; c4 ¼ ð10 10 01 010Þ:

Let bi ¼ dHðcðiÞ3 ; c
ðiÞ
5 Þ for i ¼ 1; 2; 3; 4 and b04 ¼ dHðcð4Þ4 ; c

ð4Þ
5 Þ. Then

b1 þ b2 þ b3 þ b4 ¼ dHðc3; c5Þ ¼ 4;

b1 þ b2 þ ð2� b3Þ þ b04 ¼ dHðc4; c5Þ ¼ 4:

Since b1 ¼ 0 and b2; b3; b4; b
0
4 [ f0; 2g, there are two possible solutions, and for each

solution the corresponding c5 is uniquely determined; we denote the two alternatives
by c5;A and c5;B:

b1 b2 b3 b4 b04

0 2 2 0 2 c5;A ¼ ð10 01 01 100Þ

0 2 0 2 0 c5;B ¼ ð10 01 10 010Þ :

However, fc3; c4; c5;Ag and fc4; c3; c5;Bg are equivalent (switch elements 4 and 5 and
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also elements 6 and 7). Hence, w.l.o.g. c5 ¼ c5;A, that is

c5 ¼ ð10 01 01 100Þ:

Let c be another codeword of type 1, and let di ¼ dHðcðiÞ3 ; cðiÞÞ for i ¼ 1; 2; 3; 4 and
d 04 ¼ dHðcð4Þ4 ; cð4ÞÞ. Then

d1 þ d2 þ d3 þ d4 ¼ dHðc3; cÞ ¼ 4;

d1 þ d2 þ ð2� d3Þ þ d 04 ¼ dHðc4; cÞ ¼ 4;

d1 þ ð2� d2Þ þ ð2� d3Þ þ d4 ¼ dHðc5; cÞ ¼ 4:

Again d1; d2; d3; d4; d
0
4 [ f0; 2g, and we see that there are two solutions, the

corresponding c is uniquely determined in each case:

d1 d2 d3 d4 d 04

0 2 0 2 0 c ¼ ð10 01 10 010Þ

2 0 2 0 2 c ¼ ð01 10 01 100Þ :

Since the distance between these two potential codewords is eight, they can not
both belong to the code. Hence, the code can have only four codewords of type 1,
contradicting our earlier observation that the code needs to have at least five such
codewords.
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