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Brainstorm is a free, open-source Matlab and Java application for multimodal

electrophysiology data analytics and source imaging [primarily MEG, EEG and depth

recordings, and integration with MRI and functional near infrared spectroscopy (fNIRS)].

We also provide a free, platform-independent executable version to users without a

commercial Matlab license. Brainstorm has a rich and intuitive graphical user interface,

which facilitates learning and augments productivity for a wider range of neuroscience

users with little or no knowledge of scientific coding and scripting. Yet, it can also be

used as a powerful scripting tool for reproducible and shareable batch processing of

(large) data volumes. This article describes these Brainstorm interactive and scripted

features via illustration through the complete analysis of group data from 16 participants

in a MEG vision study.

Keywords: magnetoencephalography (MEG), electroencephalography (EEG), brain imaging data structure (BIDS),

open data, group analysis, good practice, reproducibility, open source

INTRODUCTION

Magnetoencephalography (MEG)/EEG data analysis requires translating neuropsychology and
cognitive neuroscience questions into electrophysiology hypotheses. This in turn requires the
design of an analytical workflow for signal extraction and analysis, possibly involving source
imaging and model estimation (Baillet, 2017). With Brainstorm, we deploy tools and solutions
for this purpose for use by a broad cross-section of neuroscience researchers (Tadel et al., 2011).
We provide extensive online documentation and user support, with large collections of web
tutorials for MEG, EEG, depth recordings and various types of study design. Brainstorm also
embodies the philosophy that even sophisticated data analysis in electrophysiology benefits from
a level of interactive visual assessment of data quality and of the spatio-temporal characteristics of
possible effects within/between experimental conditions. Therefore, Brainstorm produces a variety
of graphical and quantitative reports, for both point-and-click user interactions and automated data
processing pipelines. All together, we believe these elements make Brainstorm a comprehensive yet
accessible application for sophisticated and reproducible neuroscience research. Here we emphasize
these unique software features in the context of a typical group data analysis workflow.

We used simultaneous MEG/EEG recordings from 16 participants performing a simple visual
recognition task from presentations of familiar (from celebrities), unfamiliar and scrambled faces.
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The original data was published by Wakeman and Henson
(2015) and is also featured in the SPM tutorial “Multimodal,
multisubject data fusion”1. We used the version of this dataset
organized according to the new MEG-Brain Imaging Data
Structure (BIDS2) (Gorgolewski et al., 2016; Niso et al., 2018).

We feature two specific aspects of data analysis with
Brainstorm: We first describe the interactive processing for one
typical subject, from preprocessing of raw data to the extraction
of event-related responses, the production of time-frequency
decompositions and source modeling. We then describe how
to transfer this analysis to the full group of 16 participants
and derive group-level inferential statistics. Reproducing the
analyses presented here can be done by following the new online
tutorials created as online complements to this paper3. Users
new to Brainstorm will also benefit from our comprehensive
introductory tutorials4.

DATA

The original study concerned the identification of brain responses
specific to faces and their familiarity to participants. Subjects were
presented series of still images from three categories: familiar
faces, unfamiliar faces, phase-scrambled faces. Familiar faces were
from celebrities known to all participants. They were asked to
rate a feature of no interest after each stimulus presentation,
namely the left–right symmetry of the presented image. Six 10-
min acquisition runs were collected from each participant, for a
total of about 300 trials per stimulus category. As our goal here
is to demonstrate software practicalities, we report solely on the
early visual brain response within the first 300 ms post-stimulus,
with an emphasis on the specific aspects of responses to faces
vs. scrambled images (familiarity was not a factor of interest in
the present analysis); see (Wakeman and Henson, 2015) for a
complete report on all aspects of the study.

The data were recorded in 16 healthy participants with an
Elekta Neuromag VectorViewMEG system (102 magnetometers,
204 planar gradiometers), simultaneously with 70 scalp EEG
electrodes with nose reference. The sampling rate was 1,100 Hz.
Three fiducial points and the scalp surface were 3-D digitized for
registration with M/EEG channel locations and structural MRI.

To replicate the results presented in the original article, we
imported the version of the data corresponding to recordings
processed with Elekta’s MaxFilter: they are available from the
“derivatives” folder of the MEG-BIDS distribution of the data.
MaxFilter was used to attenuate environmental noise with signal
space separation (SSS), detect bad channels, apply a notch filter
to reduce powerline artifacts, compensate for head movements
and align the data across runs to match the head position at the
start of the fourth run; see (Wakeman and Henson, 2015) for

1ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
Publications/SPM12_manual_chapter.pdf
2http://bids.neuroimaging.io
3See online tutorials MEG visual: single subject (Elekta/BIDS) and MEG visual:
group study (Elekta/BIDS).
4Introduction in 28 parts for new Brainstorm users: http://neuroimage.usc.edu/
brainstorm/Tutorials#Get_started

details. For noise modeling purposes, we used empty-roomMEG
noise recordings acquired between 0 and 6 days from acquisition
of subject data: they were also processed with MaxFilter, in an
identical manner as the participants MEG data.

Structural MRI data was acquired on a 3T Siemens TIM Trio
(1 mm × 1 mm × 1 mm, T1-weighted). The MR data volumes
were de-faced for further subject de-identification. The MEG-
BIDS data repository includes the anatomical segmentation
produced by FreeSurfer 5.35 (Dale et al., 1999).

DOWNLOAD AND INSTALLATION OF
DATA AND SOFTWARE

All the files featured in this communication are available
from openneuro.org, https://openneuro.org/datasets/ds000117.
The full analysis requires a total of 400Gb of available disk
space. To reproduce the analyses presented here readers should
download and install Brainstorm6.

The interactive environment of Brainstorm can be runwithout
a Matlab license. However, users without a Matlab license cannot
execute Matlab scripts and therefore cannot run the automated
scripts that reproduce the analyses presented here. Brainstorm
scripting requires Matlab 2008a or later.

SINGLE-SUBJECT, SINGLE-RUN DATA
ANALYSIS

We first present analyses performed on one data run from one
of the participants. We then show how the resulting pipeline can
be extended to other runs and other participants, prior to group
statistical inference.

At the core of Brainstorm’s architecture and user experience
is a data manager tool, which facilitates data organization and
sorting by experimental conditions and groups of participants.
Brainstorm exploits the principled data organization of MEG-
BIDS: all data volumes (raw and FreeSurfer processed MRI,
MEG/EEG) can be readily registered at once to the Brainstorm
database following the menu “File > Load protocol > Import
BIDS dataset”7. However, here we describe the steps necessary
to import multimodal data into Brainstorm so that the analysis
described below can be extended to new data sets. If data are not
organized using the MEG-BIDS structure, these operations need
to be repeated for all runs and participants.

Structural MRI: T1 Volume and
Derivatives
We created a new study or protocol in the software database
named “Frontiers2018Single,” to which we added a new subject
with “sub-01” as coded ID. By right-clicking on the subject
folder and selecting “Import anatomy folder” in the contextual
menu, we loaded all the MRI data from the FreeSurfer folder

5http://surfer.nmr.mgh.harvard.edu
6Installation instructions: http://neuroimage.usc.edu/brainstorm/Installation.
7See online tutorial MEG resting state and OMEGA database.
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of the downloaded dataset “derivatives/freesurfer/sub-01/ses-
mri/anat.” These included the individual structural MRI, the
tessellated cortical surfaces and anatomical atlases registered to
the individual anatomy8. The scalp surface was reconstructed
automatically by Brainstorm from the T1 volume data. Figure 1
shows a screen capture of typical Brainstorm structural (surface
and volume data) MRI displays.

Brainstorm computes a 4 × 4 affine transformation that
registers the subject’s T1MRI to theMNI coordinate system using
the spm_maff8 function (included in Brainstorm’s distribution)
from SPM12 (Ashburner and Friston, 2005). Brainstorm also
sets default coordinates for anatomical fiducials (NAS = nasion,
LPA = left ear, RPA = right ear) for registration with
MEG coordinates. These approximate points are based on
standard MNI coordinates. The actual individual locations of
these reference points are also available from the MEG data
file and are used to initialize MEG/MRI coregistration. In
principle, as few as three points are sufficient for registration
but more robust alignment can be readily achieved using
the individual digitized head shape (see next section), as
with the present dataset9. When the individual head shape
is not available or has poor quality, the positions of the
NAS/LPA/RPA fiducials must be defined manually using
Brainstorm’s MRI Viewer.

Alternatives to FreeSurfer can be used to importMR derivative
data into Brainstorm: BrainVISA (Rivière et al., 2003), BrainSuite
(Shattuck and Leahy, 2002) and CIVET (Ad-Dab’bagh et al.,
2006). All of the above generate cortical surface meshes, yet

8See online tutorial Using FreeSurfer for more information and software
capabilities.
9See online tutorial MEG-MRI coregistration, and Section “Registration With
Structural MRI.”

only FreeSurfer and BrainSuite readily provide registration
of individual data to atlases, which eventually facilitates the
projection of MEG/EEG individual source maps to a common
anatomical template across the group.

MEG/EEG and Registration With
Structural MRI
Raw MEG/EEG Files
The continuous FIF file from the first MEG acquisition run
of sub-0110 was added to the Brainstorm database using the
“Review raw file” contextual menu over the subject entry. This
operation creates a link to the original raw data file, whose
contents can be reviewed and manipulated without requiring
Brainstorm to duplicate the raw data file11. The product of
most of the following pre-processing steps is efficiently saved in
this link file without changing the contents of the original raw
data file.

We ignored two options offered interactively while linking
the recordings to the database: automatic registration with MRI
and importation of stimulus triggers. We describe below how to
proceed with these issues manually.

A channel file is created next to the link to the raw recordings:
this database entry describes the data channels available (names,
types, 3D positions). For clarification, we manually edited the
types of some channels, using Brainstorm’s channel editor:
EEG062 was changed to EOG (electro-oculogram), EEG063 to
ECG (electrocardiogram), EEG061 and EEG064 to NOSIG (no
signal) (Figure 2).

10derivatives/meg-derivatives/sub-01/ses-meg/meg/sub-01_ses-meg_task-
facerecognition_run-01_proc-sss_meg.fif
11See online tutorial Review continuous recordings.

FIGURE 1 | Brainstorm screenshot after importing anatomical MRI data and FreeSurfer derivatives. From (left) to (right): Brainstorm database explorer, 3-D

rendering of head and pial surface meshes (the scalp surface and MRI volume were de-faced for anonymization purposes), orthogonal views of T1 MRI volume and

anatomical fiducials, FreeSurfer/Mindboggle cortical parcellation, FreeSurfer/ASEG volume atlas of subcortical and cerebellar structures.
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FIGURE 2 | (Top row) Manual editing of channel types, removal of digitized head points below the nasion, and fit of remaining points to the scalp surface; (bottom

row) projection of EEG electrodes onto scalp surface. Green dots: digitized head points, white dots: EEG electrodes, gray surface: scalp surface extracted from

MRI, yellow surface: inner surface of MEG helmet.

Registration With Structural MRI
The registration of MEG sensors with structural MRI data was
initialized with the alignment of the NAS/LPA/RPA fiducial
points as identified from the MRI MNI coordinates and their
digitized locations in the MEG file. Brainstorm can refine this
geometrical alignment by estimating an optimal rigid-body
transformation that fits multiple digitized head points (expressed
in the same referential frame as the MEG sensors) to the scalp
surface (automatically extracted from T1 MRI by Brainstorm).
Note that the MRI data was de-faced, so head points below

the nasion were discarded by selecting the popup menu item
“Digitized head points > Remove points below nasion.” We
then used the menu item “MRI registration > Refine using head
points” to fit the digitized scalp points, augmented with the EEG
electrode locations, to the head surface, using an iterative closest
point algorithm (ICP).

One last step consisted of projecting the EEG electrodes
onto the scalp, thereby removing any distance between
their 3-D digitized locations and the subject’s actual scalp
surface. This step is important for accuracy of the EEG
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forward model. This projection is obtained via the menu
item “MRI registration > EEG: Edit,” followed by “Project
electrodes on surface.”

We recommend visual inspection of the registration outcome
for MEG and EEG sensors, especially before subsequent source
estimation, as incorrect coregistration negatively affects the
accuracy of source modeling (Figure 2).

Definition of Experimental Events
A stimulus trigger signal marked the presentation times of
stimulus images on the screen, with different codes for the
three experimental categories. These signals were recorded on
channel STI101 in the present data. There was a known, constant
delay of 34.5 ms between each trigger pulse in STI101 and
the actual presentation of the stimulus image. The following
binary event codes were used at the time of data acquisition
(bit number 3 coded for face, bit 4 for unfamiliarity, and bit
5 for the scrambled stimulus): Familiar faces: 5 (00101), 6
(00110), 7 (00111); Unfamiliar faces: 13 (01101), 14 (01110), 15
(01111); Scrambled images: 17 (10001), 18 (10010), 19 (10011).
There are other event codes available in the recordings, but
they are not described in the README file distributed with
this dataset.

The read-out of these markers can be performed via the
interactive menu item “File > Read events from channel” in
the Record tab12. Here, we illustrate the features of Brainstorm’s
pipeline editor to achieve the same purpose. Note that the
resulting pipeline operation can be applied at once as a batch
procedure on all runs and participants.

After dragging and dropping the link to the continuous file
in the Process1 panel at the bottom of the main Brainstorm
window, we clicked on the Run button to open the pipeline
editor. We then selected “Events > Read from channel” with
the option “Bit: detect the changes for each bit independently”
from the list of available process operations. This created
one event for each bit of the integer value recorded on
channel STI101.

We considered three stimulus categories with values: bit
3 = face, bit 4 = unfamiliar, bit 5 = scrambled. We created the
categories “Unfamiliar” (bit 3 = 1, bit 4 = 1, bit 5 = 0), “Familiar”
(bit 3 = 1, bit 4 = 0, bit 5 = 0), and “Scrambled” (bit 5 = 1).
We discarded all other event categories originally in the data, for
clarity. This step was performed via Brainstorm’s pipeline editor,
by combining the processes “Events>Group by name,” “Rename
event,” and “Delete events,” in that order.

Finally, we adjusted the timing of all detected events to
compensate for the 34.5-ms presentation delay, with process
“Events > Add time offset” (Figure 3).

Pre-processing and Data Review
Power Spectrum Estimation
We recommend estimating and reviewing power spectra of
MEG/EEG sensor traces for basic quality control. Bad channels,
episodes of major signal alterations, artifacts (breathing, dental
work, muscle, and eye movements) and environmental noise

12See online tutorials Event markers and Select files and run processes.

(stimulation devices, power lines, head localization coils) can
readily be identified by a trained user13.

To obtain an estimate of the power spectrum density (PSD)
on all channels, we dropped the raw-data link in Process1 and
selected process “Frequency > Power spectrum density (Welch)”
(window duration 3 s with 50% overlap). The PSD estimates were
saved in a separate file attached to the original data and can be
readily reviewed for all channel types (Figure 4).

We noted the presence of large side lobes around about
310 Hz in the spectrum of all MEG channels, which points to
signal discontinuities in the recordings. Indeed, while continuous
head tracking was used in this acquisition, it was only activated
at the time of the stimulation. The file starts at time 226 s,
with inactive Head Position Indicator coils (HPI). At 248 s, the
HPI coils were turned on, yielding an abrupt, step transition of
high-amplitude sinewave signals. Shortly after, MaxFilter started
filtering out the HPI signals and correcting for head movements,
yielding a second step in the MEG recordings. Such abrupt
transitions create large distortions of the power spectra. We
therefore marked the first 22 s as a bad data segment with the
process “Events>Detect cHPI activity (Elekta)” and recomputed
the power spectra from clean portions of the recordings only.

Figure 4 (lower) shows the power spectra of this truncated
data. Physiological peaks can be observed at 10 Hz (alpha
rhythm), 50 Hz and harmonics (powerline contamination in
United Kingdom) and peaks at 293, 307, 314, 321, and 328 Hz
(from Elekta electronics, including residuals of HPI signaling)
and an unknown source at 103.4 Hz.We also noticed that channel
EEG016 was noisy, with a power spectrum oddly standing above
the other EEG channels’. We therefore inspected the traces from
this electrode when reviewing the recordings (see below) and the
channel was ultimately excluded from further analysis.

Frequency Filters
Power line contamination can easily be removed with notch
filters centered at 50 Hz and harmonics (100 Hz, 150 Hz, and
higher). We restricted our analyses to that of event-related
stimulus responses below 32 Hz, the frequency range analyzed by
Wakeman and Henson (2015). Since this is below 50 Hz, notch
filtering is not required. In addition, powerline contamination is
greatly reduced by stim-locked averaging because of the random
phase of the interference from trial to trial. We did perform
notch-filtering for the sake of generalizability of the pipeline
presented here. Note also that more advanced data analysis
based on single-trial measures, including that of specific and/or
faster oscillatory components, may require more thorough
artifact correction.

Frequency filters need to be applied depending on data quality
and the signal components of interest to meet the scientific
aims of a given study. High-pass filters (HPFs) remove the
arbitrary DC offset and slow baseline drifts of MEG sensors
(<0.2 Hz), physiological artifacts due to breathing and slow eye
movements. The cutoff frequency must be selected carefully,
especially when relevant slow brain responses are expected,
e.g., in working memory retention periods. Low-pass filters

13See online tutorial: Power spectrum and frequency filters.

Frontiers in Neuroscience | www.frontiersin.org 5 February 2019 | Volume 13 | Article 76

https://neuroimage.usc.edu/brainstorm/Tutorials/EventMarkers
http://neuroimage.usc.edu/brainstorm/Tutorials/PipelineEditor
http://neuroimage.usc.edu/brainstorm/Tutorials/ArtifactsFilter
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Tadel et al. MEG/EEG Group Analysis With Brainstorm

FIGURE 3 | (Top) Selection of files in Process1 and pipeline editor; (bottom) reviewing the data traces around the event markers created for the three categories of

visual stimuli (familiar, unfamiliar, and scrambled).

(LPFs) remove high-frequency contaminants such as muscle
artifacts and physiological stimulators. LPFs also restrict the
useful frequency range that can be analyzed.

It is important to be aware that filters can generate transient
effects at the beginning and end of each signal trace. The length
of this transient depends on multiple factors, with narrow-band
filters and very low frequency cut-off HPFs inducing longer edge
effects. For this reason, it is preferable to apply frequency filters
directly on continuous signal traces, before shorter epochs of
interest are extracted14.

Here we applied notch filters on the continuous recording
by dropping its file link into the Process1 panel and ran “Pre-
process > Notch filter” at 50, 100, 150, and 200 Hz. Brainstorm
applies 4th order IIR notch filters with zero-phase lag. The

14See online tutorial Power spectrum and frequency filters.

process creates a filtered version of the continuous file with
suffix “_notch” saved in Brainstorm format. Other filter types
(band-pass, low-pass, high-pass, and band-stop) can be applied
following the same procedure.

Bad Channel Identification
The PSD plots revealed that EEG016 had poor signal quality.
Bad-channel labeling can be performed interactively15: we
displayed the EEG traces by right-clicking on the filtered file
and selected the EEG/Display time series contextual menu
item. We then selected channel EEG016 from the display and
marked it as bad after another right click (Figure 5). Note
that keyboard shortcuts are available for this and many other
procedures in Brainstorm.

15See online tutorial Bad channels.

Frontiers in Neuroscience | www.frontiersin.org 6 February 2019 | Volume 13 | Article 76

https://neuroimage.usc.edu/brainstorm/Tutorials/ArtifactsFilter
https://neuroimage.usc.edu/brainstorm/Tutorials/BadChannels
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Tadel et al. MEG/EEG Group Analysis With Brainstorm

FIGURE 4 | Power spectrum density, log-scaled. (Top) Estimated from the full recordings; (Bottom) after excluding the cHPI transition, applying the notch filters,

excluding bad channel EEG016 and re-referencing the EEG. Each type of sensor has a different range of amplitude, creating three blocks of channels in these

Figures – from top to bottom: EEG, MEG gradiometers, MEG magnetometers.

Bad channels need to be marked before running further
cleaning procedures that combine values frommultiple channels,
such as those described in the sections below.

EEG Referencing
After removing EEG016 and for visualization purposes, we re-
referenced the EEG traces with respect to the instantaneous
average across all remaining EEG signals. This was done via
the montage menu in Brainstorm by selecting the “Average
reference” entry16. Note that montages are for display only: they
do not alter the signals stored in the file. Permanent alteration
of EEG referencing is via process “Standardize > Re-reference
EEG,” which simply applies a linear re-referencing operator to
the original data, for data storage efficiency. The list of linear
operators applied to a file can be retrieved selecting the menu
item in the file viewer “Artifacts > Select active projectors”

16See online tutorial Montage editor for alternative approaches.

from the “Record” panel. The original EEG referencing can be
recovered by simply deleting the “EEG reference: AVERAGE”
entry from the list displayed.

Removal of Eye Blinks
Brainstorm features solutions for detecting eye blinks via the
process “Events>Detect eye blinks,” which creates event markers
at local maxima of EOG traces caused by eye blinks. The
MEG/EEG artifacts can then be removed by designing specific
SSP signal projectors from the signal statistics of blink events.
In the present study, the focus was on brain responses related
to visual stimulus presentations. Therefore, we opted to exclude
rather than correct the epochs where blinks were detected.

We opened the EOG traces by right-clicking on theMEG/EEG
file and selected the contextual menu item “EOG > Display time
series.” We reviewed the signal traces from EEG062 to define
the amplitude threshold for the detection of blinks. We chose
100 µV for sub-01 and ran process “Events > Detect events
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FIGURE 5 | Data cleaning. (Top) Bad channels are visualized, marked as red traces and discarded in further processing steps. (Middle) Eye blink detection in EOG

traces (green), with corresponding artifact in MEG traces (black). (Bottom) SSP components corresponding to heartbeat events and corresponding magnetometers

(left) and gradiometers (right) surface topography.

above threshold” on EEG062, in the frequency band 0.3–20 Hz,
to automatically mark blink data segment labeled “blink_bad.”
Note that with Brainstorm, all event with label names that
include the tag “bad” are automatically excluded from further
analysis (Figure 5).

Correction of Heartbeat Artifacts
Heartbeats are another common source of artifacts in MEG
and EEG recordings. Although their contribution to event-
related average signals can be small, their removal is considered

a good practice (Gross et al., 2013). We selected the filtered
continuous file from Brainstorm’s data manager and ran
the process “Events > Detect heartbeats” on ECG channel
EEG063. The built-in detection algorithm identified R-peaks
in the electrocardiogram trace, which are synchronized to
the MEG artifacts17.

We derived signal space projectors from the signal statistics
about heartbeat events (Uusitalo and Ilmoniemi, 1997).

17See online tutorial Artifact detection.
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The technique is based on the principal component analysis
(PCA) of MEG traces contaminated by heartbeat sources, and
orthogonal projections away from the corresponding spatial
patterns. We opted for SSP instead of independent component
analysis (ICA, also available in Brainstorm, Makeig et al., 1996),
because it is faster and more specific of the source of artifacts18.

We ran the Brainstorm process “Artifacts > SSP: Heartbeats”
first on MEG magnetometers (“MEG MAG” channel type),
then on MEG gradiometers (“MEG GRAD”). The orthogonal
projectors produced can be reviewed and selected interactively
(“Select active projectors”). Another benefit of SSP is that PCA
components are ordered according to their contribution to
signal variance. Brainstorm features a dedicated graphical user
interface (GUI) to review and select the SSP components of
contaminants: we selected “Display component topography” in
that GUI (Figure 5), to review the effect of removing the
first SSP component from MEG traces. We verified visually
that by doing so, it efficiently removed heartbeat artifacts
without obviously affecting signal traces away from ECG events.
This is best verified by visualizing lateral MEG sensors and
toggling the application of SSP projectors back and forth. We
selected the first SSP component for the magnetometers and
gradiometers decompositions for sub-01/run-01 for the further
processing steps.

Marking of Additional Bad Segments
Segments of MEG/EEG traces can be spoiled by other sources
of nuisance: Body and head movements, transient flux jumps
from SQUID sensors, and uncontrolled environmental sources
(building vibrations, elevators, cars, or trains, etc.).

We recommend that traces are systematically reviewed for
visual detection of obvious episodes of signal contamination.
Brainstorm features rapid browsing capacity of virtual pages of
customizable duration (typically 20–30 s) and sensor selections.
Further automatic processes help expedite such quality control:
The process “Artifacts > Detect other artifacts” identifies time
segments that contain typical artifacts from eye and head/body
movements or muscle contractions in pre-determined frequency
bands, where such signal contamination is the most commonly
observed (1–7 Hz for body movements, eye movements and
dental work; 40–240 Hz for muscle contractions, etc.; Gross
et al., 2013). This process creates new event markers to expedite
subsequent visual inspection and validation.

Another estimation of the sensor traces’ PSD after pre-
processing confirms that all the cleaning steps worked as expected
(Figure 4, bottom).

Event-Related Epoching
We performed the temporal segmentation of continuous data
about each event of interest (i.e., visual stimulus presentations)
by selecting “Import in database” from the contextual menu
over the filtered version of the continuous file19 (epoching is
also available from the process “Import recordings > Import
MEG/EEG: Events”). We selected the Familiar, Unfamiliar,

18See online tutorial Artifact cleaning with SSP.
19See online tutorial Import epochs.

and Scrambled event categories from the list displayed, and
defined the epoch as [−500, 1200] ms about each event.
This epoch duration is long enough to capture all event-
related brain responses of interest and to define a pre-
stimulus baseline for subsequent standardization procedures. It
also provides additional temporal padding to absorb further
filtering edge effects when applied to single trial data segments
(as with low-pass filtering, time-frequency decomposition and
connectivity analysis). Yet, it is also short enough not to
overlap with brain responses of interest from previous or
subsequent trials.

As we import these epochs, we also apply a correction
for the arbitrary DC offset observed in the MEG sensors.
In MEG, the sensors record variations around an arbitrary
level, therefore this operation is always needed, unless
it was already applied during one of the pre-processing
steps (e.g., a high-pass filter can efficiently replace this DC
correction). We corrected the DC offset of every sensor at
each trial by selecting the option “Remove DC offset: Time
range = [−500, −0.9] ms” at the time of epoching. This can
also be achieved as a pipeline step, choosing the process
“Pre-process > Remove DC offset” with the same baseline
definition. We applied such baseline correction to MEG and
EEG traces, as specified in the “Sensor types” field of the
related processes.

The single trials for all 3 experimental conditions were
imported in the database, each trial data being stored in
a separate file. If a trial co-occurred with a “bad” event
or segment, Brainstorm marked it as bad, which de facto
excluded it from further analysis. We found in sub-01/run-
01 that most bad trials were toward the end of the run,
with more occurrences of eye blinks and body movements,
likely due to subject fatigue. Note that trials can be toggled
as good or bad via the database explorer, selecting the
menu item “Reject trial” or “Accept trial” interactively
(Figure 6). Single trials can be rapidly inspected visually,
browsing through files using convenient keyboard shortcuts.
Additionally, Brainstorm offers several visualization features
for groups of trials, such as sensor-specific raster and cluster
plots (Figure 6).

Trial Averaging
We produced trial averages to obtain MEG event-related fields
(ERFs) and EEG event-related potentials (ERPs) for each stimulus
category for sub-01/run-01. Averaging across runs requires
further attention as MEG sensor locations can vary between runs,
because of head motion relative to the helmet. We discuss this
aspect below in the context of group analyses.

We selected all imported epochs and ran process
“Average > Average files: By trial groups (folder average).”
This created one event-related average data file per stimulus
category (Familiar, Unfamiliar, and Scrambled). Brainstorm
features a great variety of display options for event-related data:
time series, several types of 2D/3D sensor topography plots,
with interactive frequency filtering, etc. Several figures can be
opened simultaneously, for different conditions and different
modalities, and are synchronized: changing the time or sensor
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FIGURE 6 | (Left) Accepting or rejecting single trials using the database explorer. (Right) Single-trial traces for electrode EEG065 superimposed as cluster (top) and

raster (bottom) plots over 40 good trials from the Familiar condition, with a low-pass filter below 32 Hz applied for display purposes only.

selection in one figure updates the other displays (Figure 7). The
figure popup menu “Snapshot” lists several options to export
Brainstorm figures to picture files and animations20.

Source Modeling
We next obtained image models of the cerebral currents from the
preprocessed MEG/EEG sensor time series. Brainstorm’s online
tutorials describe in detail the forward and inversemodeling steps
required21; see also (Baillet et al., 2001; Baillet, 2017) for reviews.

We emphasize that not all neuroscience questions require
source modeling: differential sensor topographies and/or event-
related component latencies, or more recent multidimensional
classification techniques (Cichy et al., 2014) between
experimental conditions may suffice to test neuroscientific
hypotheses. But here we wish to verify whether the visual ventral
pathway was more strongly activated in response to faces,
especially in the fusiform area, within the first 200 ms after
stimulus presentation (Schweinberger and Neumann, 2016).

We elected to use a distributed source imaging model rather
than fitting an equivalent current dipole (ECD) model. The
rationale was that we expected multiple brain regions to be
activated simultaneously within the 0–200-ms time window of
interest, which is challenging to the non-linear optimization
problem of ECD dipole fitting (Baillet et al., 2001).

There are multiple options to distributed source modeling.
We opted for constraining the positions and orientations of
elemental current dipoles to the individual cortical surface of

20See online tutorials Average response, Visual exploration, Colormaps, and
Clusters of sensors.
21See online tutorials Head modeling, Noise covariance, Source estimation, Dipole
scanning, and Dipole fitting.

participants. We used 15,000 cortical elemental dipoles to cover
the entire cortical surface – a number sufficiently large to sample
the folded details of cortical anatomy. Brainstorm also features a
range of simpler (equivalent moving dipole fits, unconstrained 3-
D dipole grids in skull volume) and more sophisticated source
models (including cortical and subcortical structures based
on anatomical atlases of basal ganglia adjusted to individual
anatomy22). In principle, the most complete anatomical model
shall be preferred as the source space. However, adding more
detailed structures also adds signal dimensions, increasing the
ill-posedness of the inverse problem. It also increases the
complexity and practical aspects of handling, storing, visualizing
and interpreting the source models produced. For most studies,
we find the cortically constrained model to be a reasonable
tradeoff between completeness and complexity. Note that when
the individual’s structural MRI data is not available, Brainstorm
features anatomical templates that can be adjusted to the
participant’s digitized scalp points or electrode locations23.

Magnetoencephalography and EEG forward models
in Brainstorm include both Boundary Element Models
(BEMs) based on individual tessellations of segmented head
compartments24 and fast, analytical approximations of the head
geometry with multiple nested spheres, where these spheres can
also be locally fitted separately to each sensor (Leahy et al., 1998;
Huang et al., 1999).

22See online tutorial Deep cerebral structures.
23See online tutorials “Volume source estimation” (https://neuroimage.usc.
edu/brainstorm/Tutorials/TutVolSource) and “Warping the anatomy templates”
(https://neuroimage.usc.edu/brainstorm/Tutorials/TutWarping)
24See online tutorial Realistic head model: BEM with OpenMEEG.
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FIGURE 7 | Examples of display of the average of 40 trials of the Familiar condition, 113 ms after the presentation of the visual stimulus, with an online low-pass filter

at 32 Hz (subject 01, run 01) for display purposes only. The top row shows the recordings of the MEG magnetometers: (a) signal time series from 100 ms before to

600 ms after the stimulus; (b) 2D sensor topography at 113 ms; (c) 3D topography; (d) 2D Layout display showing the local shape of the signals around 113 ms.

The middle row shows the MEG gradiometers: (e) time series, (f) 2D topography, (g) 2D topography projected on a disk. The bottom row shows the EEG

recordings: (h) time series, (i) 2D topography, (j) EEG electrodes represented on the head surface with values recorded at 113 ms; (k) 2D topography zoomed

around selected electrode EEG065, (l) values recorded by electrode EEG065 between –100 and 600 ms for the three conditions Familiar (green), Unfamiliar (red),

and Scrambled (blue).

For the MEG forward model, we used the locally fitted
sphere model while we used the BEM computed from the
individual head compartments for the EEG forward model. In
principle, because they represent true head shape, BEM models
are superior to the spherical approximations. However, the latter
can be more robust as they are not sensitive to issues that can
limit BEM accuracy such as the effect of large triangle sizes
in surface tessellations or proximity of a source to one of the
mesh vertices. Generally, EEG source modeling is more sensitive
than MEG to approximations of the head shape (Baillet, 2017)
which in part motivated the different choices for MEG and
EEG here.

Brainstorm’s BEM engine uses OpenMEEG (Gramfort et al.,
2010). We produced the surface envelopes for scalp, inner skull
and outer skull within Brainstorm, via a right-click selection of
the “Generate BEM surfaces” contextual menu item over the
Subject data folder. OpenMEEG developers recommend using
dense meshes (e.g., 1922 vertices per layer), however, due to BEM
memory requirements, we reduced the number of surface nodes
of all tissue envelopes down to 1082 vertices for scalp, and 642 for
outer and inner skull (Figure 8, center).

We then produced the actual EEG forward model by right-
clicking on the channel file in the imported data folder and
selecting the contextual menu item “Compute head model”
(Figure 8, right). This generated the BEM model of the
forward fields for 45,000 dipole triplets distributed on the
cortex surface. Note that the final number of dipole sources
in the model will be 15,000: Brainstorm’s forward modeling
computes a generic forward field subspace at each of the

15,000 locations using triplets of orthogonal elementary dipoles
(3 orientations × 15,000 vertices = 45,000); the orientation
constraint is applied later at the moment of source modeling in
the pipeline.

The forward model depends on the location of the sources
with respect to sensors, which changes between MEG runs as
participants move. In this study, MEG recordings were pre-
processed using MaxFilter, which realigns all session runs to a
common head position. Therefore, we assumed theMEG forward
model was the same for all session runs of a subject. We therefore
computed the model only once then duplicated it across all runs
for that subject.

Estimation of Noise Statistics From Empty-Room
Recording (MEG)
Explicit inclusion of noise characteristics can benefit source
estimation. For instance, minimum-norm estimators can include
second-order sample statistics of sensor noise in the linear
amplitude estimation of distributed sources. These statistics
are summarized in an estimate of noise covariance between
sensors, which takes the shape of a matrix. Brainstorm’s online
documentation describes how this matrix can be estimated
from EEG and MEG data. Here we estimated the MEG noise
covariance from the empty-room measurements provided in the
dataset. For EEG, we used the pre-stimulus baseline segments
from all epochs.

For consistency, we preprocessed the empty-room recordings
in an identical manner to the task data. We therefore
applied the same notch filter before estimating the noise
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FIGURE 8 | Source estimation. From (left) to (right): BEM layers (scalp, outer skull, and inner skull) and cortex, forward model basic options, inverse model basic

options.

covariance matrix. We created a new subject called “sub-
emptyroom” and linked all the empty-room data from folder
derivatives/meg_derivatives/sub-emptyroomwithmenu “Review
raw file” (preprocessed with MaxFilter/SSS). We then applied the
same notch filters at 50, 100, 150, and 200 Hz. The estimation of
the noise covariance for each session was obtained via a simple
right-click over the filtered version of the empty-room data by
selecting “Noise covariance > Compute from recordings.”

The noise environment outside the MEG and the state
of the MEG sensors may change over time, it is therefore
recommended to use empty-room data recorded just before
or after the experimental recording itself, or at least from
the same day (Gross et al., 2013). In this dataset, empty-
room measurements were available for 8 different dates between
April and December 2009. For each subject MEG session, we
copied the noise covariance estimated from the closest empty-
room recordings, as documented in the BIDS metadata (field
“AssociatedEmptyRoom” associated to each acquisition run),
i.e., for subject sub-01 we used empty-room ses-20090409 from
April 9th, 2009.

Estimation of Noise Statistics From Pre-stimulus
Baseline Data (EEG)
Empty-room recordings are not possible with EEG as
electrodes need to be affixed to the scalp to pick up a
signal. Noise covariance statistics also depend of the quality
of each contact and therefore are specific to a given set of
recordings. In the present study, our scientific hypothesis
did not concern the possible role of pre-stimulus ongoing
activity in task performance. Therefore, we considered
these pre-stimulus data samples as noise and estimated
their sample covariance across all trials. To do this we

used time segments [−500, −0.9] ms concatenated across
trials of the pre-processed, notch-filtered version of the data
(Figure 8, left).

Weighted Minimum-Norm Estimation of Source
Amplitudes
We used Brainstorm’s implementation of the weighted
minimum-norm estimation (WMNE) of the amplitude of
distributed sources, with default parameter settings suggested
for regularization and source depth weighting. For technical
details, please refer to (Baillet et al., 2001) and the online
documentation25. WMNE has multiple options in selection of
the source model (e.g., cortically constrained or volumetric),
treatment of noise covariance and control of the regularizer
that ensures a stable inverse solution. However, Brainstorm is
configured with default values that take a conservative approach
to source estimation and can safely be used with many if not most
studies. Note that Brainstorm also features two other families of
methods widely used in MEG/EEG: beamformers and equivalent
dipole modeling but use of these is beyond the scope of the
present manuscript. Imaging estimators such as WMNE provide
well-studied solutions for subsequent statistical inference across
participants and tend to be less user-dependent than equivalent
dipole models. They are also computationally efficient as they
can be implemented via the instantaneous linear combination of
MEG/EEG sensor traces with a pre-computed kernel.

Weighted minimum-norm estimation maps can show bias
with reduced source amplitude for radial source orientations
in MEG and with increasing depth. This is partially addressed
through the use of a depth-weighting (the Brainstorm default)

25See online tutorial Source estimation.
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but some bias remains. It is therefore common to standardize
theWMNE current density estimates using information from the
noise or data covariance, such as with dSPM (Dale et al., 1999)
or sLORETA (Pascual-Marqui, 2002). These standardizations
replace the current density estimate with a dimensionless statistic
which can be used as the basis for hypothesis testing. Here we
applied a simple standardization procedure based on the sample
statistics of each source time series over the pre-stimulus baseline.
In short, a z-score transformation was applied to each cortical
source trace with respect to its pre-stimulus mean and standard
deviation across time. We applied this transformation after trial
averaging across runs, for each condition, and for each subject
separately (see below).

Magnetoencephalography and EEG sensor data can be
processed jointly to produce combined source estimates. Joint
processing presents unique challenges because EEG and MEG
use head models that exhibit differing sensitivities to modeling
errors, which can in turn lead to inconsistencies between EEG
andMEGwith respect to the (common) sourcemodel. In practice
joint processing is relatively rare (Baillet et al., 1999). However,
these data are complementary, which means that joint processing
can potentially yield insights that cannot be seen with either
modality alone. For example, in the evoked responses in the
data set used here, the first peak over the occipital areas is
observed in MEG (90 ms) slightly before EEG (110 ms). This
delay is too large to be caused by acquisition imprecisions. This
indicates that we are not capturing the same brain processes with
the two modalities, possibly because the orientation and type
of activity in the underlying cortical sources is different. MEG
and EEG have different sensitivities to source orientation and
depth. Given the challenges of joint processing, our advice is to
first look at the source reconstructions for the two modalities
separately before trying to use any type of fusion technique.

In the following, since our goal is to illustrate an end-to-end
processing pipeline rather than comprehensively demonstrate all
of Brainstorm’s features, we restrict our inverse results to MEG-
only processing and do not present results either for EEG alone
or joint MEG/EEG processing.

We used WMNE source mapping from “Compute sources
[2018]” in Brainstorm, with the options: minimum-norm
imaging, current density map, constrained normal to cortex,
MEG MAG + MEG GRAD, and left all the advanced parameters
values unchanged.

Time-Frequency Decompositions
We computed the time-frequency decomposition of broadband
MEG sensor data from each trial using Morlet wavelets. We
then averaged the modulus of Morlet coefficients across trials
for each condition and each run (Bertrand and Tallon-Baudry,
2000; Pantazis et al., 2005b). This operation was restricted to
MEG magnetometers and EEG channels. The trials for the
Familiar condition in run-01 were moved to the Process1 tab and
the process “Frequency > Time-frequency (Morlet wavelets)”:
with restriction to sensor types = MEG MAG, EEG was
applied. Other parameters for the process were: not normalized,
Frequency = log(6:20:60), which specifies that 20 frequency bins
logarithmically spaced between 6 and 20 Hz are to be used,
Measure = Power, Save average26. We repeated this procedure for
the two other conditions (“Unfamiliar,” “Scrambled”).

To avoid misinterpretation of power time-frequency
decomposition values contaminated by signal edge effects,
we selected the display option “Hide edge effects.” This latter
revealed that time-frequency decompositions were reliable
between −200 and +900 ms (Figure 9). In Process1, we selected

26See online tutorial Time-frequency.

FIGURE 9 | Time-frequency decomposition (Morlet wavelets) for channel EEG070, averaged over trials from the “Familiar” condition. The figure shows the outcome

of the decomposition before (top) and after (bottom) removing signal edge effects. The TF plots for the other two conditions (“unfamiliar,” scrambled”) were visually

indistinguishable from the one shown.
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these time-frequency results and ran process “Extract > Extract
time,” with the option to overwrite input files. This latter step
produced time-frequency decomposition data with interpretable
values away from edge-effect contamination. Note that as shown
in Figure 9 there is very little power present at frequencies above
15 Hz. Higher frequencies are typically of lower power, so that
they are visible only after performing a frequency-dependent
normalization as we describe below.

AUTOMATION: SCRIPTING AND
REPORTING OF ANALYSIS PIPELINES

Using the GUI is a convenient solution to explore options for data
analysis on a subset of the data. We describe here how scripting
can be used to reproduce efficiently an identical analysis pipeline
on all runs and participants.

The Brainstorm pipeline editor automatically generates
Matlab code from the “Generate.m script” menu item. The
resulting script reproduces exactly the processing steps of the
interactive GUI version of Brainstorm. “For” loops can be
added to the script to batch the analysis across additional
data runs, other participants or studies. We provide multiple
online examples of such scripts, which can further help users
assemble their own custom pipelines. Online recommendations
and examples for editing Brainstorm scripts are available27.

One practical recommendation for Brainstorm scripting is to
split data analysis pipelines in blocks. For instance, importing
anatomical data and raw MEG/EEG files, frequency filtering,
power spectrum estimation, artifact detection and cleaning do
not require user interaction, and can all be processed at once
from one single script. Interventions are required from users for
reviewing raw files, marking/confirming bad channels and data
segments, selecting SSP or ICA components, etc. Another batch
script can then be generated for epoching and averaging data,
producing source models and extracting measures of interest
(e.g., time-frequency decompositions and connectivity metrics).

The outputs of executed scripts are consigned to a log, for
verification of proper execution and debugging. Screen captures
are added to this execution log via the “File > Save snapshot”
menu item. Our recommendation is to add snapshots after
the following key analytical steps: MEG/EEG-MRI registration,
power spectrum density estimation, sensor topographies of
selected SSP components, average event-related responses in all
experimental conditions, sensor topography at the peak of the
strongest primary visual response (≃110 ms).

Manual data processing steps are user dependent and
therefore detrimental to the strict reproducibility of data
analyses. However, fully automated pipelines have their own
shortcomings when used blindly on rich, complex data.
Manual data cleaning processes tend to be more specific than
automated procedures, resulting in lesser amounts of data
being rejected. For this reason, they remain the preferred
approach for typical study designs in MEG/EEG research
that involve relatively small cohorts of participants. We

27See online tutorial Scripting.

note, however, that big-data repositories are emerging in
the field (e.g., OMEGA, MEG-HCP, and Cam-Can), which
require more automated procedures, but put less emphasis on
qualifying as much of the initial data volume as possible to
subsequent analyses (Van Essen et al., 2012; Niso et al., 2016;
Taylor et al., 2017).

Analysis pipelines that involve manual steps can be replicated,
with additional care and documentation. For instance, the
user-selected bad channels, bad segments and rejected spatial
components need to be clearly documented. Following this idea,
we provide a script that reports the rejected data segments
for all 16 participants to the present study dataset28. The bad
channels were identified manually; the bad segments were
detected automatically, confirmed manually, then exported
as text and copied at the end of this script. All process
calls (via bst_process.m) used to produce the results shown
here were generated with the pipeline editor, with few
manual coding additions restricted to loops, bad channel
identification and data file names. This script produced
separate reports for each participant data; for illustration,
we provide online the report produced by this script for
subject sub-0129.

SUBJECT-LEVEL SUMMARY STATISTICS

Subject-level (i.e., across data runs) averages were obtained for
event-related MEG responses, source maps and time-frequency
decompositions, in each experimental condition separately30. As
mentioned above, all data runs provided had been registered to
a common head position with MaxFilter. This minimized the
effect of different positions between runs in within-subject MEG
sensor averages.

Unlike forward head models, source models were computed
for each of the 6 runs separately before producing subject-level
averages and other statistics. The reason for this is that source
models consider effects of the SSP projectors applied and bad-
channel selection that are typically specific to each data run.

Condition-Specific Average Responses
For each experimental condition (Familiar, Unfamiliar, and
Scrambled) and each subject, we derived event-related MEG
signal averages. The subject-level average across all 6 runs
was obtained by weighting each run-specific average by the
number of good trials in each run. This approach reduces
the influence of noisy runs, with a smaller number of good
trials, on the subject-level average. For each data type (sensor
data, source maps, and time-frequency decompositions), we
used the Process1 panel after selecting all subject data from all
runs. We then used process: “Average > Average files,” with
the options: “By trial group (subject average), Weighted.” This
produced three event-related averages (one per condition), for

28https://github.com/brainstorm-tools/brainstorm3/blob/master/toolbox/script/
tutorial_frontiers2018_single.m
29https://neuroimage.usc.edu/bst/examples/report_Frontiers2018Single_sub-01.
html
30See online tutorial Workflows.
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each subject, saved in their respective “intra-subject” folders in
the Brainstorm database. Subject-level averages of MEG across
runs were obtained separately.

Event-Related Responses to Faces
(Familiar and Unfamiliar)
Subject-level average responses to faces were generated for
each data type (sensor data, source maps, and time-frequency
decompositions) by averaging across the Familiar andUnfamiliar
conditions, also using a weighted average approach. We used the
Process2 tab to obtain these statistics for all subjects at once; this
tab works similarly to Process1 except that it allows the user to
specify two series of input files for processes that require two
distinct data entries to operate. We selected all Familiar subject-
level averages for the FilesA panel, and the Unfamiliar averages
for the FilesB panel, following the same subject order for both file
selections. We ran process “Other > Average A&B: Weighted”
and added process “File > Set comment:” with option “WAvg:
Avg: Faces,” to obtain the subject-level average data in response
to the presentation of Faces.

Note that manual selection of many files from the database is
difficult and prone to human errors. Brainstorm scripts can be
used for the purpose of such database queries31.

Contrasting Subject-Level Source
Models
Special attention needs to be brought to contrasting source
models. The reason is that they produce estimates of current
amplitudes along elemental current dipoles, where the polarity
reflects both the directionality of impressed current flow
and possibly cross-talk contributions by more strongly active
neighbor regions. Depending on whether the actual sign of dipole
currents is of interest to the neuroscience question, two contrast
measures between conditions A and B are commonly used in the
field: the magnitude differences (|A| −|B|, agnostic to the current
polarity), and amplitude differences [(A−B), which takes current
polarity into consideration].

Magnitude Differences (|A| −|B| )
This measure highlights the difference in absolute current
strengths between conditions, regardless of their polarity. The
premise to this option is that polarity is of no interest to
the scientific question and that source currents can be simply
interpreted as brain activation. For instance, this option can be
selected in the present case when testing whether responses to
faces induce a greater activation in fusiform cortical regions than
control images.

Amplitude Differences (A−B)
This measure should be used if the polarity of dipolar currents
is relevant to the neuroscience question. For instance, this
option can be selected when testing whether any oscillatory
signal component can differentiate between responses to faces
vs. control images. The interpretation of an A−B contrast
with signed values is more ambiguous than with rectified

31Processes “File > Select files”, documented in online tutorial Scripting.

measures, e.g., for identifying the experimental condition that
produced the largest absolute brain response. For example, both
(A,B) = (−10,−5) and (A,B) = (5,10) yield A−B = −5, we detect
an effect but cannot identify which condition, from A and B, has
produced the strongest response. On the other hand, dipoles with
opposite directions are easy to detect with this difference, e.g., if
(A,B) = (−10,10), |A−B| = 20, while |A| −|B| = 0. We provide
online further discussion on these two alternative contrasts32.

To test when andwhere the amplitude of brain activity differed
between the presentation of faces vs. scrambled images, we used
the Process2 tab to obtain the difference between subject-level
average source data for the MEG data. We dropped all the Faces
subject averages in FilesA, and all the Scrambled averages in
FilesB. We selected the process “Difference > Difference A−B:
Do not use absolute values” and added the process “File > Set
comment: “Faces – Scrambled|MEG””. We repeated the same
procedure to obtain the difference between the Familiar and
Unfamiliar conditions for each subject.

Low-Pass Filtering
To reproduce the approach of Wakeman and Henson (2015)
we low-pass filtered the trial-averaged sensor data and source
maps below 32 Hz. To evaluate the duration of filter transients
with respect to epoch duration, we visualized the filter impulse
response from the GUI option of Brainstorm’s “Band-pass
filter” process (Figure 10, and online resource33). The procedure
indicates the full duration of the filter transients (here 1135 ms)
and the duration containing 99% of the energy of the filter
response (here 91 ms). We decided to crop 300 ms at the
beginning and end of each epoch (original epoch: −500 to
1200 ms), which does not concern the signal latencies of interest
to the present study. As mentioned above, ideally, decisions
concerning temporal filters derive from the hypotheses to be
tested with the data. Hence filtering may be advantageously
performed on the ongoing data before epoching, which produces
edge effects at the beginning and end of the recording, not of
each epoch.

We used the Process1 tab to select all the intra-subject folders
from all participants. These folders contain the condition and
subject specific averages. For each data type (sensor data and
sourcemaps), we ran the process “Pre-process> Band-pass filter”
with options passband: 0–32 Hz, data types: MEG, EEG, 60 dB
attenuation, and file Overwrite, followed by “Extract > Extract
time” with option [−200, 900] ms - this latter to remove filter
edge effects, as explained above.

Inter-Individual and Cross-Frequency
Standardization
In the same experimental conditions, and with similar behavioral
performances, the intensity of neural currents vary between
individuals because of anatomical and physiological differences
that are of no primary interest to the study. Also, for MEG
source maps, estimated current strengths are weaker where

32See online tutorials Difference and Workflows.
33See section View filter response in tutorial “Power spectrum and frequency
filters.”
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FIGURE 10 | (Left) Options user interface for process “Band-pass filter”. (Right) Time-frequency decomposition of channel EEG070 for the Familiar condition,

before (top) and after (bottom) baseline normalization.

signal sensitivity drops, for instance for radial or deeper sources.
If time-frequency decompositions are to be analyzed, cross-
frequency standardization of magnitude changes is also required,
to compensate for the typical 1/f decrease in electrophysiology
signal amplitude.

Standardization procedures with respect to baseline
levels lessen the influence of these factors of no interest.
We therefore applied a Z-transformation on source time
series with respect to pre-stimulus baseline activity. We
selected all subject-level source map averages in Process1
and ran the process “Standardize > Baseline normalization”
with options Baseline = [−200,−5] ms, Z-score, Overwrite.
We also standardized the magnitude of time-frequency
decompositions for each subject and condition with event-
related synchronization/desynchronization (ERS/ERD) scaling.
This procedure centers and normalizes the modulus of wavelet
coefficients for each frequency bin, with respect to their sample
mean over baseline, as shown in Figure 10.

We distribute a Brainstorm database that contains the outputs
of all analyses described so far (Frontiers2018Group.zip,
14 Gb, available from Brainstorm’s download page34).
These outputs can be reproduced by running the
Matlab scripts tutorial_frontiers2018_single.m35 and
tutorial_frontiers2018_copy.m36, distributed with Brainstorm.
The entire multisubject data volume can readily be imported into
Brainstorm via the “File > Load protocol > Load from zip file”
menu selection. For bandwidth considerations, the distributed
files were downsampled to 275 Hz.

34http://neuroimage.usc.edu/bst/download.php
35https://github.com/brainstorm-tools/brainstorm3/blob/master/toolbox/script/
tutorial_frontiers2018_single.m
36https://github.com/brainstorm-tools/brainstorm3/blob/master/toolbox/script/
tutorial_frontiers2018_copy.m

GROUP ANALYSES

We derived inferential statistics for two contrasts of interest:
Faces vs. Scrambled and Familiar vs. Unfamiliar faces. According
to Wakeman and Henson (2015), we expected to observe
stronger bilateral event-related responses in occipital visual
cortex (V1) and occipital face and fusiform face areas (OFA
and FFA) within 170 ms in response to stimuli containing
faces vs. the scrambled data; we also anticipated augmented
activation over the right superior temporal sulcus region (STS)
in the Familiar vs. Unfamiliar condition around a 250-ms
latency. These procedures are reproducible automatically using
the function tutorial_frontiers2018_group.m37.

Group-Level Sensor Data
Grand Averages Across Participants
We produced grand arithmetic averages of sensor data across
participants for the Faces, Scrambled, Familiar, and Unfamiliar
conditions. We selected in Process1 all the MEG/EEG subject-
level average files from the participant-specific “Intra-subject”
folders in the Brainstorm database. We then ran the process
“Average > Average files” with options “By trial group (grand
average), Not weighted.”

As anticipated, we observed in EEG a greater negative
component around 170 ms for Faces vs. Scrambled, and sustained
signal differences after 250 ms between the Familiar and
Unfamiliar conditions (Figure 11).

We computed the differences of grand averages between
conditions of interest using the Process2 tab for selecting the
grand averages for Faces (FilesA) and Scrambled (FilesB). We

37https://github.com/brainstorm-tools/brainstorm3/blob/master/toolbox/script/
tutorial_frontiers2018_group.m
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FIGURE 11 | Grand averages for the three experimental conditions for both EEG (µV) and MEG (fT), and for a single parieto-occipital electrode (EEG065). Sensor

topography maps show grand-average (group-level) MEG and EEG data at selected latencies: 50, 100, 150, 200, 250, and 300 ms. Bottom-right panel emphasizes

signal differences at electrode EEG065 between conditions. Subsequent group-level inferential statistics will test for significant differences between experimental

conditions.

then ran the process “Other > Difference A–B”. The same
procedure was repeated for Familiar vs. Unfamiliar.

We observed signal differences in both contrasts: after 160 ms
for Faces vs. Scrambled, and after 200 ms for Familiar vs.
Unfamiliar. We then performed statistical inference on the
significance of these differences, using parametric and non-
parametric approaches. We chose a type-I error rate of α = 5%
with correction from multiple comparisons by adjustment of the
false discovery rate (FDR).

Non-parametric Statistical Inference
Brainstorm features a toolkit for parametric and non-parametric
inferential statistical testing 38. Here we present the application of
a non-parametric procedure using permutation testing. Although
more computationally demanding, it is a more robust approach
than parametric tests (Pantazis et al., 2005a). We selected in
Process2 the 16 subject averages for Faces (FilesA) and Scrambled
(FilesB) and ran process “Test > Permutation test” with options
“Paired: t-test and “1000 randomizations.” We repeated the
procedure for Familiar vs. Unfamiliar (Figure 12).

38See online tutorial Statistics.

For completeness of the illustration of possible
workflows produced with Brainstorm, we also applied
cluster correction to sensor data contrasts (Maris and
Oostenveld, 2007). We used Brainstorm’s capacity to
execute code from the FieldTrip toolbox (Oostenveld et al.,
2011). Brainstorm structures are converted dynamically
to FieldTrip structures, the FieldTrip code is executed,
and the returned structures are converted into Brainstorm
database entries.

Group-Level Source Maps
We now describe the procedure to produce inferential statistics
on source maps for the Faces vs. Scrambled contrast (same
approach would apply to Familiar vs. Unfamiliar).

Anatomical Standardization Between Participants
We mapped all individual source maps to the MNI/ICBM152
brain template (Fonov et al., 2009)39, available in the “default
anatomy” folder of the Brainstorm protocol. Brainstorm uses
the surface-based registration approach from FreeSurfer,

39http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
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FIGURE 12 | Sensor-level contrasts Faces vs. Scrambled (top) and Familiar vs. Unfamiliar (bottom). The output of non-parametric t-tests are t-value traces that are

set to 0 at every channel and time point where p > 0.05 (FDR-corrected). The non-zero values from the cluster-based permutation test results revealed a difference

in spatiotemporal adjacency of the sensor data between the two tested conditions.

FIGURE 13 | Surface-based coregistration procedure by alignment of curvature maps in spherical topology.

based on a spherical representation of the cortex topology.
Note that this feature is available in Brainstorm when
the imported MRI data is processed with FreeSurfer40

40See online tutorial Group analysis: Subject coregistration.

(Figure 13). A similar approach is available for data processed
with BrainSuite.

We aligned the individual source maps consisting of the
absolute values of current amplitudes to assess differential effects
in brain activation between experimental conditions (see above).
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FIGURE 14 | Various measures associated to the contrast (Faces-Scrambled) for MEG sources. (Top) Average of within-subject differences, normalized source

maps at various latencies from 50 to 400 ms for Z > 3, and time series extracted from three ROIs of the ventral visual stream. (Bottom) Difference of grand

averages, source maps and ROI time series.

We selected in Process1 all 16 intra-subject folders and
ran process “Pre-process > Absolute values” followed
by process “Sources > Project on default anatomy.” The
projected source maps were automatically regrouped in
a single Brainstorm folder labeled “Group analysis/Intra-
subject.” Note that new folders can be created by users

for customized data organization, e.g., with one folder per
experimental condition.

Spatial Smoothing
To reduce noise and ameliorate the impact of individual
variations in functional specialization relative to cortical
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anatomy, we applied spatial smoothing of the resulting source
maps to further reduce inter-individual variability across the
group. Smoothing is performed using a Gaussian kernel scaled
to the size of edges on the cortical mesh. We selected in Process1
all the projected source maps and ran process “Sources > Spatial
smoothing” with options “FWHM = 3 mm” (FWHM = Full
Width Half maximum) and “Overwrite”. This process relies
on the function ‘SurfStatSmooth,’ implemented in SurfStat
(Worsley et al., 2009).

Contrasting Group-Level Source Maps
Contrast maps of z-scored cortical sources in the Faces vs.
Scrambled face conditions showed enhanced responses for
Faces in occipital and ventral stream regions, including in the
fusiform face area (FFA; Figure 14). The analysis used both
the amplitude difference approach (Figure 14, top) and the
magnitude difference approach (Figure 14, bottom). Stronger
activity for Faces in the most posterior regions was initiated
before FFA, with contrast activations in all ROIs peaking
around 155 ms.

CONCLUSION

Brainstorm provides interactive and user-friendly tools to design
automated and standardized processing pipelines, with an
emphasis on quality control and verification of data integrity. The
application features convenient tools to perform visual inspection
of the outcome of all steps of a data analysis pipeline via execution
reports. The analyses presented here are entirely reproducible via
the following procedure:

(1) Download the data in tutorial_dir (170 Gb): https://
openneuro.org/datasets/ds000117.

(2) Note that getting the data from a web browser as a single zip
file did not work well at time of submission, another more
reliable solution using the Amazon AWS CLI software is
described on the online tutorials41.

(3) In this analysis, we used only the “derivatives” folder
(85 Gb), all the other folders can be safely deleted if disk
space is an issue.

(4) The execution of the pipeline scripts requires a
Matlab license: you may use any Matlab version from
2008b to 2018b, except for 2018a because of a bug in
Matlab’s svd function.

(5) Download and install Brainstorm42. In general, we
recommend getting the most up-to-date version available
from the Brainstorm website, however, for the strict
reproducibility of the results presented in this article, we
uploaded a development snapshot from November 11th,
2018, on the Zenodo website43.

(6) For cluster-based statistics, we used functions from the
FieldTrip toolbox. Download FieldTrip44 and add it to the

41https://neuroimage.usc.edu/brainstorm/Tutorials/VisualSingle#Download_
and_installation
42http://neuroimage.usc.edu/brainstorm/Installation
43https://zenodo.org/record/1479794
44http://www.fieldtriptoolbox.org/download

Matlab path. If you are using the Brainstorm version from
Zenodo, the repository also includes the FieldTrip version
we used for the computation (December 17, 2017).

(7) Start Brainstorm, set the database folder as instructed in the
installation instructions.

(8) In the Brainstorm window, select menu File > Edit
preferences: Edit the paths to the temporary folder (if you
have limited space in your user’s home folder) and to the
FieldTrip toolbox.

(9) Close Brainstorm.
(10) Create an empty folder to store the execution reports,

outside of any of the Brainstorm folders (reports_dir).
(11) The total size of the Brainstorm database after processing

will be around 130 Gb, make sure enough space is available
on the hard drive.

(12) In your Matlab command window, type: tutorial_
frontiers2018(tutorial_dir, reports_dir). This will run all
the scripts mentioned in this article: tutorial_
frontiers2018_single.m, tutorial_frontiers2018_copy.m,
tutorial_frontiers2018_group.m. All these scripts are
located in the folder brainstorm3/toolbox/script, which is
created and added to the user Matlab path after starting
Brainstorm. Execution time is typically between 10 and
30 h, depending on hardware. For detailed execution times
on the reader’s system, please refer to the reports saved in
reports_dir; examples for the execution on a Dell XPS 2016
laptop are available from the online tutorials45.

(13) For keeping the execution time reasonable, some processes
described in this article that have no or very little impact
on the final results have been commented out, identified
with the label “SHORT VERSION” in the scripts. The
skipped steps are the following: import of the FreeSurfer
ASEG atlas, notch filtering, EEG BEM forward model with
OpenMEEG, individual source snapshots in the execution
reports, time-frequency analysis. To enable a step, delete
the comment marker “%” at the beginning of all the
lines in the code section. Additionally, the recordings and
source results have been downsampled to 275 Hz before
group analysis.
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