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Objective: Although lower brain volume has been routinely

observed in individuals with substance dependence com-

paredwith nondependent control subjects, the brain regions

exhibiting lower volume have not been consistent across

studies. In addition, it is not clear whether a common set of

regions are involved in substance dependence regardless of

the substance used or whether some brain volume effects are

substance specific. Resolution of these issues may contrib-

ute to the identification of clinically relevant imaging bio-

markers. Using pooled data from 14 countries, the authors

sought to identify general and substance-specific associa-

tions between dependence and regional brain volumes.

Method: Brain structure was examined in a mega-analysis

of previously published data pooled from 23 laboratories,

including 3,240 individuals, 2,140 of whom had substance

dependence on one of five substances: alcohol, nicotine,

cocaine, methamphetamine, or cannabis. Subcortical vol-

ume and cortical thickness in regions defined by FreeSurfer

were compared with nondependent control subjects when

all sampled substance categories were combined, as well as

separately, while controlling for age, sex, imaging site, and

total intracranial volume. Because of extensive associations

with alcohol dependence, a secondary contrast was also

performed for dependence on all substances except alcohol.

An optimized split-half strategy was used to assess the re-

liability of the findings.

Results: Lower volume or thickness was observed in many

brain regions in individuals with substance dependence. The

greatest effects were associated with alcohol use disorder. A

set of affected regions related to dependence in general,

regardless of the substance, included the insula and the

medial orbitofrontal cortex. Furthermore, a support vector

machine multivariate classification of regional brain vol-

umes successfully classified individuals with substance de-

pendence on alcohol or nicotine relative to nondependent

control subjects.

Conclusions: The results indicate that dependence on a

range of different substances shares a common neural

substrate and that differential patterns of regional volume

could serve as useful biomarkers of dependence on alcohol

and nicotine.

Am J Psychiatry 2019; 176:119–128; doi: 10.1176/appi.ajp.2018.17040415

The social and economic costs associated with problem-

atic use of drugs and alcohol place an enormous burden on

the individual and society (1–5). In the United States alone,

the National Institute on Drug Abuse estimates that the

costs associated with problematic substance use—including

medical care, law enforcement, and lost productivity—exceed
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$700 billion per year (6). Substance dependence is charac-

terized by a loss of control over drug and alcohol taking

behavior, which contributes to high relapse rates (7–10). The

therapeutic landscape would be radically altered by the

identification of a set of biomarkers that could be used to

estimate risk at various stages of the disorder—for example,

the risk of transition from occasional to problematic patterns

of use or risk of relapse after treatment—and to prescribe the

most appropriate treatments on the basis of the individual

patient’s specific functional vulnerabilities (11, 12).

It remains to be determined whether regional differences

in brain volume measured by MRI can provide clinically

useful biomarkers of substance dependence. Although brain

volumetric studieshave routinely observed lowergraymatter

volume in individuals with substance dependence compared

with healthy control subjects who do not have a substance

dependence, the brain regions associated with dependence

on a specific substance have not been consistent across studies

(13–15). Since volumetric studies have tended to focus on one

substance at a time, it is also not clear from this literature

whether a shared set of brain areas will exhibit altered volume

in all individuals with substance dependence regardless of

the substance used. Human twin studies suggest that genetic

vulnerability to substance dependence is accounted for prin-

cipally by a shared set of variations regardless of the sub-

stance used, with proportionately smaller substance-specific

effects (16). On the basis of preclinical research and data from

other imaging modalities, several candidate brain regions

have been proposed as playing a central role in substance

dependence, including the striatum, the insula, and parts of

the frontal cortex (reviewed in references 17–19).

The authors of the present study joined to form an in-

ternational working group within the framework of the

EnhancingNeuro-ImagingGenetics ThroughMeta-Analysis

(ENIGMA) project (20, 21) to overcome issues related to low

statistical power in individual neuroimaging studies. This

first project of the AddictionWorking Group has pooled data

from23 laboratories in 14countries and represents the largest

study of brain volumetric data in substance dependence

research to date. The objective was to identify general and

substance-specific associations between dependence and

regional brain volumes. The large sample size facilitated the

adoption of a rigorous cross-validationmethod to address the

widespread failure to replicate neuroimaging results, which

has been noted in several recent influential reports (22, 23).

In addition, a support vector machine classifier was used

to explore patterns of regional brain volume that could po-

tentially serve as disease biomarkers.

METHOD

Behavioral Phenotyping

All procedures were performed in accordance with the

Declaration of Helsinki. Data sets from the working group

were selected that assessed individuals for dependence on one

of five substances: alcohol, nicotine, cocaine, methamphetamine,

and cannabis. A variety of diagnostic instruments were used to

assess substance dependence (see Table S1 in the online sup-

plement). Case and control data were gathered from 23 labo-

ratories on 3,240 individuals, of whom 2,140 were diagnosed

with current dependence on at least one of the five substances

of interest. Individuals were excluded if they had a lifetime his-

tory of neurological disease, a current DSM-IV axis I diagnosis

other than depressive and anxiety disorders, or any contrain-

dication for MRI. Control subjects may have used addictive

substances recreationally but were not diagnosed as dependent.

Summary demographic statistics (sex distribution and mean

age) on participants whose data passed the quality control

steps described below are provided in Table 1. Site-specific

summaries are provided in Table S1 in the online supplement.

Preparation of Structural MRI Data

Structural T1-weightedMRI brain scans were acquired from

all participants. Scanner and acquisition details at each site

are provided in Table S1 in the online supplement. Datawere

prepared in FreeSurfer (version 5.3), a fully automated MRI

processing pipeline that identifies seven bilateral subcortical

and 34 bilateral cortical regions of interest (24, 25). A major-

ity of the data sets were prepared using CBRAIN, a network

of high-performance computing facilities in Canada (26).

The volume of subcortical regions of interest andmean thick-

ness of cortical regions of interest served as the dependent

measure in all analyses. The use of FreeSurfer in multisite

analyses has been validated in previous ENIGMA studies

(27–30) that established a standardized protocol of quality

control procedures performed at each site (http://enigma.

ini.usc.edu/protocols/imaging-protocols/). This includes de-

tection of outliers and visual inspection of all data in a series

of standard planes (for more details, see the Supplemental

Methods section in the online supplement). An additional

level of visual inspection was performed centrally at the Uni-

versity of Vermont on a randomly selected subsample of par-

ticipants to ensure uniformity of quality control across sites.

Linear Mixed-Effects Models With Cross-Validation

Differences in region-of-interest thickness or volume be-

tween substance-dependent participants and nondependent

control subjects were assessed in each region of interest with

two linear mixed-effects models, using SPSS Statistics for

Windows, version 21.0 (IBM, Armonk, N.Y.). The linear

mixed-effects model effectively accounts for site effects,

including sites that did not collect data on nondependent

control subjects (31). In model 1, substance-dependent

individuals were treated as one group regardless of the sub-

stance used; individuals dependent on any of the five sub-

stances of interest were coded as “dependent” and control

subjects as “nondependent.” Model 1 permitted inclusion of

individuals whowere dependent onmore than one substance.

In model 2, dependence on the five substances was coded

as individual categories in a single fixed factor: individuals

were coded as belonging to one and only one of six cate-

gories: “nondependent” ordependent on “alcohol,” “nicotine,”
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“cocaine,” “methamphetamine,” or “cannabis.” Model 2 did

not permit inclusion of individuals who were dependent on

more than one substance. In both models, MRI site was

entered as a random factor, and sex, age, and total intracranial

volume were included as covariates. Further analyses were

performed to disconfirm the existence of a site-by-diagnosis

interaction (see the Supplemental Methods section in the

online supplement).

The replicability of neuroimaging results has recently

been brought into question (22, 23). The large sample size of

the present study facilitated the adoption of an optimized

split-half strategy to verify the reliability of effects. The data

were split into two halves (a discovery data set and a repli-

cation data set) with statistically matched stratification for

age, sex, and intracranial volume within each site and de-

pendence status. Since each region of interest was analyzed

separately, a false discovery rate method (the Benjamini-

Hochberg procedure) was used to control for multiple

comparisons on the first half of the data (the discovery data

set). Associations discovered in the first half of the data are

reported here as significant only if they were replicated in

the second half of the data (the replication data set), that is, if

the sign of the difference in means was the same and the

null hypothesis had a probability ,0.05.

General Versus Substance-Specific Dependence Effects

Model 2 permitted a comparison of the estimated marginal

mean region-of-interest volume or thickness between non-

dependent control subjects and participants dependent on

each substance. Significance was defined as in model 1. The

large impact of alcohol dependence on the data (see the

Results section) influenced the decision to examine whether

dependence on any of the substances other than alcohol was

related to differences in region-of-interest volume or thick-

ness compared with nondependent control subjects. This

was assessed with a secondary linear contrast within model

2 that grouped dependence on nicotine, cocaine, metham-

phetamine, and cannabis (but not alcohol) in a comparison

with nondependent control subjects.

Past-30-Day Use

Linear mixed-effects models were used to determine whether

past-30-day nicotine or alcohol usewas related to the volume

or thickness of regions of interest identified by model 1 or

2 (i.e., those brain regions listed in Tables 2 and 3). (See the

online supplement for more details.)

Support Vector Machine Classification

Support vector machine classification was implemented in

MATLAB (MathWorks, Natick, Mass.) with a radial basis

function kernel, tuned by parameter sweep in a 10-fold inner

loop nested within an optimized split-half cross-validation

(32) (for details, see the SupplementalMethods section in the

online supplement). The radial basis function kernel facili-

tates the inclusion of nonlinear relationships in the classifier.

In other words, the support vector machine can detect

informative patterns in the data that may not be identified by

traditional linear analyses such as models 1 and 2. To miti-

gate site, sex, age, and intracranial volume effects, region-

of-interest data were residualized prior to classification.

Five studies without control participants were excluded.

Area under the receiver operating characteristic curve and

corresponding p values based on equivalence with the

Mann-Whitney U test were calculated to estimate gener-

alizable classifier performance on the independent half of

the data for each of two train–test scenarios (i.e., train on the

first half, test on the second, and vice versa). A greater area

under the receiver operating characteristic curve, which

plots true positive rate against false positive rate, indicates

a better separation of the substance-dependent and nonde-

pendent groups. The significance threshold for area under the

curve was defined as a p value of 0.05 in both classification

scenarios. The top 20 features of each classification were

determined by the greatest change in cost function resulting

from their individual removal from the classification (33).

RESULTS

Basic demographic information (sex distribution and mean

age) is provided inTable 1 and by site in Table S1 in the online

supplement.

Model 1: Dependent Versus Nondependent Subjects

Subcortical volume in dependent individuals was signifi-

cantly lower in the left and right hippocampus, the left and

right amygdala, and the right nucleus accumbens (Table 2).

Lower cortical thickness was observed in several areas,

TABLE 1. Sex Distribution and Mean Age of Case and Control

Subjects, by Dependence Subgroup, in a Mega-Analysis of Gray

Matter Volume in Substance Dependence

Group or Dependence
Subgroup Total N

Female Age (years)

N % Mean SD

All Groups

Control 1,100 449* 40.8 28.5* 9.9

Case 2,140 731 34.2 33.3 10.6

Alcohol

Control 292 99 33.9 31.3* 10.2

Case 898 291 32.4 34.7 10.7

Nicotine

Control 290 155* 53.4 26.1* 8.0

Case 602 250 41.5 30.8 9.8

Cocaine

Control 99 39* 39.4 36.0* 10.3

Case 227 54 23.8 40.2 7.7

Methamphetamine

Control 173 71 41.0 31.7 9.3

Case 228 78 34.2 32.9 10.0

Cannabis

Control 246 85 34.6 22.7* 7.5

Case 185 58 31.4 26.5 10.0

*p,0.05.
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including the left and right insula, precentral gyrus, and

supramarginal gyrus and the right medial orbitofrontal

cortex. See Table 2 for a complete list and Supplemental

Table S2 in the online supplement for an at-a-glance

summary.

Model 2: Substance Dependence Groups Compared

Separately to Nondependent Control Subjects

All subcortical regions of interest identified in model 1 plus

the right thalamus, the left and right putamen, the right

globus pallidus, and the left nucleus accumbens had signif-

icantly lower volume in model 2 when alcohol-dependent

participants were compared with nondependent control

subjects. In addition, alcohol-dependent participants ex-

hibited lower average thickness in 27 cortical regions of in-

terest (Table 3, Figure 1). Cocainedependencewas associated

with lower cortical thickness in only one brain region

(see Table 3, Figure 1). No cross-validated differences in

regional volume or thickness were significant for de-

pendence on nicotine, methamphetamine, or cannabis on

their own. Since most effects were related to alcohol de-

pendence, a secondary linear contrast was performed to

explore theeffect of removing alcohol fromtheanalysis.The

contrast comparedparticipantsdependent onany substance

except alcohol against nondependent control subjects. It

revealed that the left inferior parietal cortex and the insula

bilaterally were significantly thinner in dependent indi-

viduals (see Table 3).

Substance-Specific Versus Shared Substance-General

Effects

Three distinct patterns of results emerged, which are illus-

trated in Figure 2.

Pattern 1 (substance specific). In most regions of interest

where a significant difference was observed, the effect was

demonstrated in model 2 to be related specifically to de-

pendence on alcohol alone (27 regions of interest)—for ex-

ample, the right nucleus accumbens (Figure 2)—or to both

alcohol and cocaine—the right supramarginal gyrus (one

region of interest) (see Figure 1, Tables 2 and 3).

Pattern 2 (substance general). Six cortical regions of interest

(e.g., the left supramarginal gyrus and the right medial

orbitofrontal cortex) were associated with dependence in

model 1 but were not significantly thinner in any one par-

ticular substance group relative to nondependent control

subjects in model 2 (see Tables 2 and 3, Figures 1 and 2).

Pattern 3 (substance general). Three cortical regions of in-

terest (the left inferior parietal cortex and the right and left

insula) were significantly thinnerwhen all dependent groups

were compared with control subjects (model 1) and when all

dependent groups except alcohol were contrasted against

control subjects (model 2). In addition, the left insula was

significantly thinner in the alcohol-dependent group alone

relative to control subjects (Tables 2 and 3, Figures 1 and 2).

TABLE 2. Model 1, Individuals With Substance Dependence Compared With Nondependent Control Subjects: Left and Right

Hemisphere Regions of Interest That Exhibited Lower Subcortical Volume or Cortical Thickness in a Mega-Analysis of Gray Matter

Volume in Substance Dependencea

Left Right

p Cohen’s d p Cohen’s d

Region and Comparison
1st Half of

Data
2nd Half of

Data
Both Halves

of Data
1st Half of

Data
2nd Half of

Data
Both Halves

of Data

Subcortical volume

Substance-dependent versus nondependent controls

Amygdala 0.0002 0.0039 –0.055 0.0011 0.0037 –0.041

Hippocampus ,0.0001 ,0.0001 –0.087 ,0.0001 ,0.0001 –0.081

Nucleus accumbens 0.0068 0.0214 –0.025

Cortical thickness

Substance-dependent versus nondependent controls

Caudal middle frontal gyrus ,0.0001 0.0370 –0.038

Fusiform gyrus ,0.0001 0.0231 –0.036

Inferior parietal cortex ,0.0001 0.0298 –0.026

Insula ,0.0001 0.0002 –0.056 0.0007 0.0003 –0.042

Isthmus of cingulate gyrus ,0.0001 0.0447 -0.035

Medial orbitofrontal cortex 0.0095 0.0491 –0.029

Middle temporal gyrus 0.0910 0.0065 –0.030 0.0040 0.0474 –0.026

Paracentral lobule 0.0019 0.0015 –0.031 0.0421 0.0056 –0.024

Precentral gyrus ,0.0001 0.0025 –0.039 ,0.0001 0.0042 –0.042

Precuneus ,0.0016 0.0425 –0.023

Superior parietal cortex 0.0082 0.0472 –0.022

Supramarginal gyrus 0.0049 0.0131 –0.027 0.0046 0.0319 –0.026

a In model 1, all individuals were classified as either substance dependent or nondependent. Only significant associations are shown.
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Past-30-Day Use

The volume of several subcortical regions of interest were

negatively associated with past-30-day use of alcohol after a

false discovery rate correction for multiple comparisons: the

left and right amygdala and nucleus accumbens, the right

hippocampus, and the left globus pallidus. No brain regions

were related to past-30-day nicotine use.

Support Vector Machine

The support vector machine produced a significant classifi-

cation of alcohol- and nicotine-dependent individuals relative

to nondependent control subjects (Figure 3) in both halves of

the data (p,0.05). The classification of cocaine-dependent

individuals approached significance. The top 20 structural

predictors distinguishing dependence on each substance from

nondependent control subjects in each classification are listed

in Table S3 in the online supplement.

DISCUSSION

Subcortical volume or cortical thickness was significantly

lower on average in substance-dependent individuals com-

pared with nondependent control subjects across wide-

spread parts of the brain (i.e., 22 distinct regions of interest

out of a total of 82) (see Table 2; see also Table S2 in the on-

line supplement). Some of these differences were substance

TABLE 3. Model 2, Individuals With Specific Substance Dependences Compared With Nondependent Control Subjects: Left and

Right Hemisphere Regions of Interest That Exhibited Lower Subcortical Volume or Cortical Thickness in a Mega-Analysis of Gray

Matter Volume in Substance Dependencea

Left Right

p Cohen’s d p Cohen’s d

Region and Comparison
1st Half of

Data
2nd Half of

Data
Both Halves

of Data
1st Half of

Data
2nd Half of

Data
Both Halves

of Data

Subcortical volume

Alcohol-dependent versus nondependent controls

Amygdala ,0.0001 0.0021 –0.107 ,0.0001 0.0003 –0.111

Globus pallidus 0.0274 0.0005 –0.075

Hippocampus ,0.0001 ,0.0001 –0.196 ,0.0001 ,0.0001 –0.180

Nucleus accumbens 0.0159 0.0013 –0.048 ,0.0001 ,0.0001 –0.088

Putamen 0.0006 ,0.0001 –0.098 0.0001 0.0014 –0.080

Thalamus 0.0149 0.0002 –0.098

Cortical thickness

Alcohol-dependent versus nondependent controls

Caudal middle frontal gyrus 0.0006 0.0219 –0.062 0.0264 0.0298 –0.054

Fusiform gyrus 0.0017 0.0002 –0.072 ,0.0001 ,0.0001 –0.094

Inferior temporal gyrus 0.0021 0.0146 –0.056 0.0148 0.0214 –0.047

Insula 0.0023 ,0.0001 –0.087

Isthmus of cingulate gyrus 0.0009 0.0005 –0.078

Lateral occipital cortex 0.0013 0.0211 –0.042

Lateral orbitofrontal cortex 0.0322 0.0021 –0.061

Medial orbitofrontal cortex 0.0432 0.0197 –0.060

Parahippocampal gyrus 0.0281 0.0265 –0.076

Paracentral lobule 0.0002 0.0001 –0.074 0.0053 0.0003 –0.062

Posterior cingulate gyrus ,0.0001 ,0.0001 –0.091 0.0004 ,0.0001 –0.085

Precentral gyrus 0.0091 0.0007 –0.063 0.0008 0.0003 –0.079

Precuneus 0.0008 0.0003 –0.062 0.0039 0.0002 –0.061

Rostral anterior cingulate cortex 0.0381 0.0090 –0.082

Superior frontal gyrus ,0.0001 0.0030 –0.071 0.0003 0.0060 –0.071

Superior parietal cortex 0.0198 0.0272 –0.040

Superior temporal gyrus 0.0239 0.0353 –0.062

Supramarginal gyrus 0.0493 0.0168 –0.044

Temporal pole 0.0518 0.0464 –0.063

Cocaine-dependent versus nondependent controls

Supramarginal gyrus 0.0177 0.0491 –0.047

Nicotine-, cocaine-, methamphetamine-, and cannabis-dependent versus nondependent controls

Inferior parietal cortex 0.0011 0.4630 –0.029

Insula 0.0057 0.0300 –0.041 0.0303 0.0274 –0.033

a In model 2, individuals were sorted by dependence on one and only one substance, and individuals dependent onmore than one substance were excluded from

the model. Comparisons of estimated marginal means for dependence on alcohol and cocaine relative to nondependent control subjects are presented for

model 2. The additional contrast in model 2 included individuals dependent on nicotine, cocaine, methamphetamine, or cannabis (but not alcohol). Only

significant associations are shown. There were no significant associations with nicotine, methamphetamine, or cannabis dependence on their own.
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specific, and others appear to constitute a shared neural

substrate associated with dependence regardless of the sub-

stance used (see Table 3 and Figure 1). A majority of the

identified regions of interest were smaller or thinner specifi-

cally in the brains of alcohol-dependent individuals (e.g., the

left and right posterior cingulate and superior frontal cortex). A

more limited set of seven regions with lower cortical thickness

across substance dependence groups included the left and

right insula, the left inferior parietal cortex, the right medial

orbitofrontal cortex, the left and rightmiddle temporal gyrus,

and the left supramarginal gyrus. No region of interest was

significantly larger or thicker in substance-dependent indi-

viduals relative to control subjects. An unexpected finding of

the studywas the absence of substance-specific linear effects

on brain volume related to nicotine, methamphetamine, or

cannabis dependence despite the collection of large pooled

samples. Also, the successful classification of individuals

dependent on nicotine, alcohol, or cocaine using the support

vector machine approach suggests that the development of

clinically useful neuroimaging biomarkers of substance de-

pendence may be more productive if based on broader pat-

terns of brain function or structure rather than differences in

unique brain regions considered alone.

The set of brain regions identified with substance de-

pendence in general is supported by previous evidence. The

insula performs a central role in the perception of the in-

ternal state of the body (34). Disruption of the insula could

alter regulation of the intense positive and negative bodily

states associated with drug taking and withdrawal, biasing

the individual toward relapse as a maladaptive response to

anticipated challenges to physiological homeostasis (35). It

has been reported that smokers who have suffered brain

damage involving the insula have subsequently lost the urge

to smoke (36). The parietal cortex has been associated with

attention and working memory (37, 38). Disruption of these

processes could interfere with self-awareness about a sub-

stance use problem and the management of stressful situa-

tions. The medial orbitofrontal region of interest defined by

FreeSurfer (also known as the ventromedial prefrontal cor-

tex) encodes the subjective value of future rewards during

decision making (39). Lesions of this region produce disad-

vantageous choices on gambling tasks that model real-life

decisions (40). Altered neural activity in the insula and the

medial orbital and parietal cortex has frequently been linked to

substancedependenceandmaypredictgreatercravingandrisk

of relapse (41–44). The present results support the idea that

substance dependence is mediated by a shared set of mech-

anisms across substance groups. Indeed, twin studies suggest

that vulnerability to substance dependence is accounted for

principally by a shared set of genetic variations regardless of

the substance used, with proportionately smaller substance-

specific effects (16).

Although subtle in magnitude, the wide spatial distribu-

tion of alcohol-specific effects is a striking finding of the

study. Alcohol consumption enjoys greater cultural accep-

tance in the countries fromwhich thedata for this studywere

sampled relative to the other substances examined (45).

Alcohol is legal to buy and consume, and widely publicized

government-sanctioned guidelines exist for “safe” low-dose

use of alcohol. This tolerance of alcohol-related health risks

is unlike the cultural views toward any of the other sub-

stances investigated here, whose use even in small amounts

is discouraged (45). It should be noted that lifetime exposure

to each substance could not be uniformly assessed in the data

sets used here. As a consequence, the scope of the alcohol

dependence effects may in part be related to greater absolute

consumption of alcohol relative to the other substances.

FIGURE 1. Cortical Regions of Interest Exhibiting Substance-

Specific or Shared Substance-General Effects Displayed on the

Surface of Partially Inflated Average Brainsa

a Substance specific: alcohol alone (green), alcohol and cocaine (purple);

substance general: pattern 2 (yellow), pattern 3 (orange).
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Itwaspossible to assess past-30-dayuse of nicotine andalcohol,

a limited proxy of level of exposure, in a sizable minority of

the data sets. Several subcortical regions of interest, such as

the amygdala and the nucleus accumbens, were significantly

smaller in individuals who reported the highest numbers of

alcoholic drinks consumed in the past 30 days, consistent

with thenotion that greater exposurecouldbe responsible for

themagnitudeof theobservedalcohol effects. Further studies

will be required to clarify whether the greater number of

observed alcohol-specific effects relative to the other sub-

stances is related to differences in toxicity or total exposure.

It is also notable that, besides the seven brain regions

associated with dependence in general, there were no drug-

specific effects for dependence on nicotine, methamphet-

amine, and cannabis. Although cross-validation demon-

strated that the volumetric differences observed were

reliable, the effect sizes were uniformly small (see Tables 2

and 3). This suggests that the lack of consistency in the lit-

erature (13–15) may be related to the insufficient power of

most studies to detect true effects. Other imaging modalities,

such as task-based functional MRI (41–44) and higher-

resolution structural imaging, may be required to detect

reliable substance-specific nicotine, methamphetamine, or

cannabis effects if they exist. It is also possible that substance

dependence has multiple, heterogeneous interactions with

brain volume that are not well assessed by simple linear

analyses. Evidence for this is provided by the support vector

machine classification.

The support vector machine classification found that the

pattern of regional volume differences could be used suc-

cessfully to distinguish between nondependent control

subjects and individuals dependent on alcohol and nicotine.

The transformation of the data with a radial basis function

kernel prior to classification facilitated the detection of

nonlinear patterns that cannot be detected bymodels 1 and 2.

Additionally, the support vector machine can identify a

multivariate pattern of effects across numerous regions of

interest, each of which, in isolation, may not pass statistical

threshold. Thus, the support vector machine detected useful

information in the pattern of results that was not apparent

from the linear analysis. The significant classifications sug-

gest that the overall pattern of volumetric effectsmay contain

useful clinical information that would not be apparent if

only traditional univariate linear analyses were performed.

While influential features in the classification partly over-

lapped with the regions of interest identified by the uni-

variate analyses—for example, brain regions associated

with alcohol dependence, such as the hippocampus and

amygdala—additional regions not identified by the linear

mixed effects analyses (i.e., model 1 and model 2) were also

involved (see Table S3 in the online supplement). Future

efforts of the Addiction Working Group will include the

incorporation of other imaging modalities with which it may

be possible to distinguish individuals with dependence on

additional substances, such as methamphetamine and can-

nabis, from nondependent control subjects. It would also be

clinically useful to examine whether the support vector

machine classifications developed in this study offer an index

of the strength of substance dependence in individuals who

go on to recover or relapse. It is worth noting that current

blood and urine tests do not identify dependence, as the

machine learning classifier in the present study does, but

rather detect, and to an extent quantify, recent substance use.

While the present findings are preliminary and the support

vector machine classifications should be tested on other

independent samples, if brain volume is confirmed as a viable

biomarkerof dependence, or of biological riskof dependence,

it could be used to plan how prevention and treatment re-

sources are allocated to individual patients as well as, po-

tentially, to track intervention success. A structuralMRI scan

in combination with other factors known to be related to

substance use problems (e.g., change in employment or

marital status, health issues) could be used to assess risk of

transition to problematic patterns of use or to quantify the

current degree of dependence, which would influence the

intervention strategy.

Several factors limit the interpretation of the study find-

ings. Different diagnostic instruments were used to assess

FIGURE 2. Different Contributions of Dependence on the Five Substances Studied to the Association of Lower Volume or Thickness

With Substance Dependencea
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a For illustration purposes, both halves of the data (serving as the discovery and replication data sets) have been combined in the bar graphs. Three different

patterns are illustrated. In pattern 1 (substance-specific effect), lower volume in the right nucleus accumbens was largely accounted for by dependence

on alcohol alone. In pattern 2 (substance-general effect), volume in the left supramarginal gyrus was significantly lower in dependent compared

with nondependent individuals (model 1) but was not significantly lower in any one particular substance group (model 2) compared with control

subjects. In pattern 3 (substance-general effect), volume in the left insula was lower when either the alcohol-dependent group or the linear contrast of

all substance groups except alcohol was compared with nondependent control subjects. Bars represent estimated marginal means expressed as

percent difference from mean volume or thickness in nondependent control subjects. Error bars represent standard error. Meth=methamphetamine.
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substance dependence (see Table S1 in the online supple-

ment). Although the validity of each of these instruments has

been well established, variation between instruments could

add noise to the measured behavioral phenotype. This, how-

ever, could be an advantage because the extrapolation of

significant findings to the general population is also likely to

be more robust by virtue of generalizing across different

methods of assessment. The absence of nutrition and edu-

cation information, which are potential confounders, also

limits the interpretability of the results. A perennial concern

with multisite studies is variation attributable to different

scanners and acquisition protocols. This issue was mitigated

by using a standard data extraction protocol developed by

the ENIGMA project that has been validated in previous

multisite reports (20, 28–30) and by the formal consider-

ation of potential site differences in all statistical analyses.

As discussed above, the degree of exposure to the various

substances was not characterized uniformly across studies,

which limits, for instance, the interpretation of the wide-

spread alcohol effects and whether alcohol represents a

greater source of toxicity than the other substances exam-

ined. It should be emphasized, however, that this study ex-

amined brain volumetric associations with dependence and

not with total lifetime substance use. A beneficial outcome

of this first study of the Addiction Working Group will be to

raise awareness of the data needed to estimate the relation

between brain volume and total exposure and, more gen-

erally, of the utility of uniform phenotypic data for data

pooling. Greater consideration of how data may be used in

international collaborations may influence the collection of

data in future studies, which will increase their impact

beyond their primary research focus. The PhenX Toolkit

(https://www.phenxtoolkit.org/), for example, provides an

extensive catalog of standardized measures expressly in-

tended to facilitate secondary cross-study comparisons. Fi-

nally, co-occurring substance use limits the interpretation of

thefindings. Pervasive recreational substance use is a general

issue for all studies of human substance dependence. For

example, it is likely epidemiologically that a methamphet-

amine user will be exposed to alcohol. Methamphetamine

users who do not use any other addictive substance would be

an unusual group who, in practice, would be difficult to

identify but, more importantly, would not be characteristic of

the real-world population of methamphetamine users—that

is, there would be a selection bias. Unlike studies in animal

models, it is not possible to randomly assign humans to groups

with restricted exposure to one substance alone. The typical

strategy, which was used in the data sets included in this

study, is to screen subjects for dependence on other sub-

stances but not to exclude for nondependent use of other

substances.

The field of neuroimaging faces a crisis of relevance if

published studies cannot be replicated, as noted in a series of

reviews (22, 23). The authors of the present study joined to

form a working group within the preexisting framework of

the ENIGMA project to assemble a sufficiently large sample

to overcome issues related to low statistical power that af-

fect most individual neuroimaging studies. Using a rigorous

cross-validationmethod, several brain regions were found to

have a reliable association with substance dependence, in-

cluding a shared set of regions across substances, such as

the insula and the medial orbitofrontal cortex. Although the

FIGURE 3. Plot of Receiver Operating Characteristic Curves for the Support Vector Machine Classification of Individuals Dependent on

One of Five Substances Relative to Nondependent Control Subjectsa
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Alcohol: AUC=0.78; p=0.0000
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a The area under the curve (AUC) is significant for alcohol or nicotine dependence when trained on the first half of the data and tested on the second

half (left) as well as when trained on the second half and tested on the first half (right). Meth=methamphetamine.
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univariate analyses failed to identify linear effects in relation

to dependence on nicotine, methamphetamine, and cannabis

specifically, amachine learning algorithm,whichwas also able

to detect nonlinear patterns in the data, successfully classi-

fied individuals dependent on alcohol or nicotine relative to

nondependent control subjects. This suggests that the overall

pattern of volumetric effects may contain more useful in-

formation with regard to the development of a neuroimaging

biomarker of substance dependence than is revealed by the

magnitude of single brain regions examined in isolation.
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