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ABSTRACT

In-memory key-value stores play a critical role in data pro-
cessing to provide high throughput and low latency data
accesses. In-memory key-value stores have several unique
properties that include (1) data intensive operations de-
manding high memory bandwidth for fast data accesses, (2)
high data parallelism and simple computing operations de-
manding many slim parallel computing units, and (3) a large
working set. As data volume continues to increase, our ex-
periments show that conventional and general-purpose mul-
ticore systems are increasingly mismatched to the special
properties of key-value stores because they do not provide
massive data parallelism and high memory bandwidth; the
powerful but the limited number of computing cores do not
satisfy the demand of the unique data processing task; and
the cache hierarchy may not well benefit to the large working
set.
In this paper, we make a strong case for GPUs to serve

as special-purpose devices to greatly accelerate the opera-
tions of in-memory key-value stores. Specifically, we present
the design and implementation of Mega-KV, a GPU-based
in-memory key-value store system that achieves high per-
formance and high throughput. Effectively utilizing the
high memory bandwidth and latency hiding capability of
GPUs, Mega-KV provides fast data accesses and signifi-
cantly boosts overall performance. Running on a commodity
PC installed with two CPUs and two GPUs, Mega-KV can
process up to 160+ million key-value operations per second,
which is 1.4-2.8 times as fast as the state-of-the-art key-value
store system on a conventional CPU-based platform.

1. INTRODUCTION
The decreasing prices and the increasing memory densi-

ties of DRAM have made it cost effective to build commod-
ity servers with terabytes of DRAM [30]. This also makes
it possible to economically build high performance SQL and
NoSQL database systems to keep all (or nearly all) their
data in main memory or at least to cache the applications’
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working sets [9, 25, 26]. In-memory key-value store (IMKV)
is a typical NoSQL data store that keeps data in memory for
fast accesses to achieve high performance and high through-
put. Representative systems include widely deployed open
source systems such as Memcached [2], Redis [3], RAM-
Cloud [26] and recently developed high-performance pro-
totypes, such as Masstree [22] and MICA [21]. As a crit-
ical component in many Internet service systems, such as
Facebook [25], YouTube, and Twitter, the IMKV system is
critical to provide quality services to end users with high
throughput. With the ever-increasing user populations and
online activities of Internet applications, the scale of data in
these systems is experiencing explosive growth. Therefore,
a high performance IMKV system is highly demanded.

An IMKV is a highly data-intensive system. Upon receiv-
ing a query from the network interface, it needs to locate
and retrieve the object from memory through an index data
structure, which generally involves several memory accesses.
Since a CPU only supports a small number of outstanding
memory accesses, an increasingly long delay is spent on wait-
ing for data to be fetched from memory. Consequently, the
high parallelism of query processing is hard to be explored
to hide the memory access latency. Furthermore, an IMKV
system has a large working set [6]. As a result, the CPU
cache would not help much to reduce the memory access
latency due to its small capacity. Each memory access gen-
erally takes 50-100 nanoseconds; however, the average time
budget for processing one query is only 10 nanoseconds for
a 100 MOPS (Million Operations Per Second) system. Con-
sequently, the relatively slow memory access speed signifi-
cantly limits the throughput of IMKV systems.

In summary, IMKVs in data processing systems have three
unique properties: (1) data intensive operations demand-
ing high memory bandwidth for fast data accesses, (2) high
data parallelism and simple computing demanding many
slim parallel computing units, and (3) a large working set.
Unfortunately, we will later show that conventional general-
purpose multicore systems are poorly matched to the unique
properties of key-value stores because they do not provide
massive data parallelism and high memory bandwidth; the
powerful but the limited number of computing cores mis-
match the demand of the special data processing [12]; and
the CPU cache hierarchy does not benefit the large working
set. Key-value stores demand simple but many computing
units for massive data parallel operations supported by high
memory bandwidth. These unique properties of IMKVs ex-
actly match the unique capability of graphics processing
units (GPUs).
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In this paper, we make a strong case for GPUs to serve
as special-purpose devices in IMKVs to offload and dra-
matically accelerate the index operations. Specifically, we
present the design and implementation of Mega-KV, a GPU-
based in-memory key-value store system, to achieve high
throughput. Effectively utilizing the high memory band-
width and latency hiding capability of GPUs, Mega-KV
provides fast data accesses and significantly boosts overall
performance. Our technical contributions are fourfold:

1. We have identified that the index operations are one
of the major overheads in IMKV processing, but are
poorly matched to conventional multicore architectures.
The best choice to break this bottleneck is to shift the
task to a special architecture serving high data paral-
lelism on high memory bandwidth.

2. We have designed an efficient IMKV called Mega-KV
which offloads the index data structure and the corre-
sponding operations to GPUs. With a GPU-optimized
hash table and a set of algorithms, Mega-KV best uti-
lizes the unique GPU hardware capability to achieve
unprecedented performance.

3. We have designed a periodical scheduling mechanism
to achieve predictable latency with GPU processing.
Different scheduling policies are applied on different
index operations to minimize the response latency and
maximize the throughput.

4. We have intensively evaluated a complete in-memory
key-value store system that uses GPUs as its acceler-
ators. Mega-KV achieves up to 160+ MOPS through-
put with two off-the-shelf CPUs and GPUs, which is
1.4-2.8 times as fast as the state-of-the-art key-value
store system on a conventional CPU-based platform.

The roadmap of this paper is as follows. Section 2 intro-
duces the background and motivation of this research. Sec-
tion 3 outlines the overall structure of Mega-KV. Sections
4 and 5 describe the GPU-optimized cuckoo hash table and
the scheduling policy, respectively. Section 6 describes the
framework of Mega-KV and lists the major techniques used
in the implementation. Section 7 shows performance eval-
uations, Section 8 introduces related work, and Section 9
concludes the paper.

2. BACKGROUND AND MOTIVATION

2.1 An Analysis of Key-Value Store Processing

2.1.1 Workflow of a Key-value Store System

A typical in-memory key-value store system generally pro-
vides three basic commands that serve as the interface to
clients: 1) GET(key): retrieve the value associated with the
key. 2) SET/ADD/REPLACE(key, value): store the key-
value item. 3) DELETE(key): delete the key-value item.
Figure 1 shows the workflow of GET, SET, and DELETE
operations. Queries are first processed in the TCP/IP stack,
and then parsed to extract the semantic information. If a
GET query is received, the key is searched for in the index
data structure to locate its value, which will be sent to the
requesting client. For a SET query, a key-value item is allo-
cated, or evicted if the system does not have enough mem-
ory space, to store the new one. For a DELETE query, the
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Figure 1: Workflow of a Typical Key-Value Store
System

key-value item is removed from both the main memory and
the index data structure. In summary, there are four major
operations in the workflow of a key-value store system: (I)
Network Processing: including network I/O and protocol
parsing. (II) Memory Management: including memory allo-
cation and item eviction. (III) Index Operations: including
Search, Insert, and Delete. (IV) Read Key-Value Item in
Memory: only for GET queries.

Overheads from network processing and concurrent data
access had been considered to be the major bottlenecks in a
key-value store system [36]. 1) Network processing in a tra-
ditional OS kernel, which involves frequent context switches
between the OS kernel and user space, causes high instruc-
tion cache misses and virtual memory translation overhead.
For instance, 70% of the processing time is spent on network
processing in CPHash [23], and MemC3 [11] suffers 7× per-
formance degradation with network processing. A set of
techniques have been proposed to alleviate this overhead,
such as UDP [6], Multiget [2], and bypassing the OS kernel
with new drivers [14, 1]. 2) The locks for synchronization
among cores in concurrent data accesses can significantly
reduce the potential performance enhancement offered by
multicore architectures. In recent works, techniques such as
data sharding [21, 23] and optimized data structures [11,
22] are proposed to tackle this issue. After the overhead
is significantly mitigated with the proposed techniques, the
performance bottleneck of an IMKV system shifts. In the
following section, we will show that the performance gap
between CPU and memory becomes the major factor that
limits key-value store performance on the multicore archi-
tecture.

2.1.2 Bottlenecks of Memory Accesses in a CPU-
Based Key-Value Store

Memory accesses in a key value store system consist of two
major parts: 1) accessing the index data structure, and 2)
accessing the stored key-value item. To gain an understand-
ing of the impact of the two parts of memory accesses in an
in-memory key-value store system, we have conducted ex-
periments by measuring the execution time of a GET query
of MICA [21]. MICA is a CPU-based in-memory key-value
store with the highest known throughput. In the evaluation,
MICA adopts lossy index data structure and runs in EREW
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Figure 2: Execution Time Breakdown of a GET
Query in a CPU-Based Key-Value Store System

mode with a uniform key distribution. The following four
data sets are used as the workloads: 1) 8 bytes key and 8
bytes value; 2) 16 bytes key and 64 bytes value; 3) 32 bytes
key and 512 bytes value; 4) 128 bytes key and 1,024 bytes
value. This evaluation is conducted on a PC equipped with
two Intel Xeon E5-2650v2 CPU and 8×8 GB memory. As
shown in Figure 2, index operations take about 75% of the
processing time with the 8 bytes key-value workload (data
set 1), and take around 70% and 65% of the time for data
sets 2 and 3, respectively. For data set 4, the value size in-
creases to 1,024 bytes, and the index operation time portion
decreases, but still takes about 50% of the processing time.
With DPDK and UDP protocol, receiving and parsing a

packet takes only about 70 nanoseconds, and the cost for
each key is significantly amortized with Multiget. For in-
stance, eleven 128-byte keys can be packed in one packet
(1500 bytes MTU) so that the amortized packet I/O and
parsing cost for each key can be as low as only 7 nanosec-
onds. MICA needs one or more memory accesses for its loss-
less index, and one memory access for its lossy index data
structure. The key comparison in the index operation may
also load the value stored next to the key. That is why the
proportion of the accessing value is smaller although they
both take one memory access for the data set 1. The CPI
(cycles per instruction) of a CPU-intensive task is generally
considered to be less than 0.75. For example, the CPI of
Linpack on an Intel processor is about 0.42-0.59 [20]. We
have measured that the CPI of MICA with the data set 1
is 5.3, denoting that a key-value store is memory-intensive,
and the CPU-memory gap has become the major factor that
limits its performance.
We have analyzed other popular key-value store systems,

and all of them show the same pattern. The huge over-
head of accessing index data structure and key-value items
is incurred by the memory accesses. The index data struc-
ture commonly uses a hash table or a tree, which needs one
or more memory accesses to locate an item. With a huge
working set, the index data structure may take hundreds of
megabytes or even several gigabytes of memory space. Con-
sequently, it cannot be kept in a CPU cache that has only
a capacity of tens of megabytes, and each access to the in-
dex data structure may result in a cache miss. To locate a
value, it generally takes one or more random memory ac-
cesses. Each memory access fetches a fixed size data block
into a cache line in the CPU cache. For instance, with n
items, each lookup in Masstree [22] needs log4 n−1 random
memory accesses, and a cuckoo hash table with k hash func-
tions would require (k + 1)/2 random memory accesses per
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Figure 3: Sequential Memory Access Time

index lookup in expectation. The ideal case for a linked-
list hash table with load factor 1 is that items are evenly
distributed in the hash table and each lookup requires only
one memory access. However, the expected worst case cost
is O(lg n/ lg lg n) [8]. On the other hand, accessing the key-
value item is the next step, which consists of sequential
memory accesses. For instance, a 1 KB key-value item needs
16 sequential memory accesses with a cache line size of 64
bytes. However, sequential memory accesses are much faster
than random memory accesses, because the processor can
recognize the sequential pattern and prefetch the following
cache lines.

We have conducted another experiment to show the per-
formance of sequential memory accesses. We start from ac-
cessing one cache line (64 bytes), and continue to increase
the number of cache lines to read, up to 16 cache lines (1,024
bytes). Figure 3 shows the time of 1-16 sequential memory
accesses. A random memory access takes about 76 nanosec-
onds in our machine, while 16 sequential memory accesses
take 231 nanoseconds, only about 3 times higher than one
access. In conclusion, the random memory accesses involved
in accessing the index data structure may result in a huge
overhead in an in-memory key-value store system.

Memory access overhead cannot be easily alleviated for
the following three technical reasons. 1) Memory access la-
tency hiding capability for a multicore system is limited by
its CPU instruction window size and the number of Miss
Status Holding Registers (MSHRs). For example, an Intel
X5550 CPU is capable of handling only 4-6 cache misses [14].
Therefore, it is hard to utilize the inter-thread parallelism.
2) As a thread cannot proceed without the information be-
ing fetched from the memory, the intra-thread parallelism
can not be explored either. 3) The working set of an IMKV
system is very large [6]. Therefore, the CPU cache with a
limited capacity is helpless in reducing the memory access
latency. With a huge amount of CPU time being spent on
waiting for memory to return the requested data, both CPU
and memory bandwidth are underutilized. Since accessing
the key-value item is inevitable, the only way to significantly
improve the performance of an in-memory key-value store
system is to find a way to accelerate the random memory
accesses in the index operations.

2.2 Opportunities and Challenges by GPUs

2.2.1 Advantages of GPUs for Key-value Stores

CPUs are general-purpose processors which feature large
cache size and high single-core processing capability. In con-
trast to CPUs, GPUs devote most of their die areas to large
array of Arithmetic Logic Units (ALUs), and execute code in
an SIMD (Single Instruction, Multiple Data) fashion. With
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the massive array of ALUs, GPUs offer an order of magni-
tude higher computational throughput than CPUs for ap-
plications with ample parallelism. A key-value store system
has the inherent massive parallelism where a large volume
of queries can be batched and processed simultaneously.
GPUs are capable of offering much higher data accessing

throughputs than CPUs due to the following two features.
First, GPUs have very high memory bandwidth. Nvidia
GTX 780, for example, provides 288.4 GB/s memory band-
width, while the most recent Intel Core E5-2680v3 processor
only has 68 GB/s memory bandwidth. Second, GPUs effec-
tively hide memory access latency by warp switching. Warp
(or wavefront called in OpenCL), the basic scheduling unit
in Nvidia GPUs, can benefit zero-overhead scheduling by
the GPU hardware. When one warp is blocked by mem-
ory accesses, other warps whose next instruction has its
operands ready are eligible to be scheduled for execution.
With enough threads, memory stalls can be minimized or
even eliminated [29].

2.2.2 Challenges of Using GPUs in Key-value Stores

GPUs have great capabilities to accelerate data-intensive
applications. However, they have limitations and may incur
extra overhead if utilized in an improper way.
Challenge 1: Limited Memory Capacity and Data

Transfer Overhead. The capacity of GPU memory is
much smaller than that of main memory [31]. For example,
the memory size of a server-class Nvidia Tesla K40 GPU is
only 12 GB, while that of a data center server can be hun-
dreds of gigabytes. Since a key-value store system generally
needs to store tens of or hundreds of gigabytes key-value
items, it is impossible to store all the data in the GPU mem-
ory. With the low PCIe bandwidth, it is nontrivial to use
GPUs in building a high performance IMKV.
Challenge 2: Tradeoffs between Throughput and

Latency. To achieve high throughput, GPUs need data
batching to improve resource utilization. A small batch size
for a GPU will result in low throughput, while a large batch
size will lead to a high latency. However, a key-value store
system is expected to offer a response latency of less than 1
millisecond. Therefore, tradeoffs have to be made between
throughput and latency, and optimizations are needed to
match IMKV workloads.
Challenge 3: Specific Data Structure and Algo-

rithm Optimization on GPUs. Applications on GPUs
require a well-organized data structure and efficient GPU-
specific parallel algorithms. However, IMKV needs to pro-
cess various-sized key-value pairs, which makes it hard to
well utilize the SIMD vector units and the device memory
bandwidth. Furthermore, as there are no global synchro-
nization mechanisms for all threads in a GPU kernel, a big
challenge is posed for algorithm design and implementation,
such as the Insert operation.

3. MEGA-KV: AN OVERVIEW
To address the memory access overhead in the IMKV sys-

tem, Mega-KV offloads the index data structure and its cor-
responding operations to GPUs. With GPUs’ architecture
advancement on high memory bandwidth and massive par-
allelism, the performance of index operations is significantly
improved, and the load of CPU is dramatically lightened.

3.1 Major Design Choices

Receiver 1

Receiver 2

Compress 

keys to key 

signatures

Hash Table in GPU 

Device Memory

Sender 1

Sender 2

Convert 

locations 

to pointers

Slab Subsystem

Signature Algorithm

SchedulerGPU

Figure 4: The Workflow of Mega-KV System

Decoupling Index Data Structure from Key-Value
Items. Due to the limited GPU device memory size, the
number of key-value items that can be stored in the GPU
memory is very small. Furthermore, transferring data be-
tween GPU memory and host memory is considered to be
the major bottleneck for GPU execution. Mega-KV decou-
ples index data structure from key-value items, and stores
it in the GPU memory. In this way, the expensive index op-
erations such as Search, Insert, and Delete can be offloaded
to GPUs, significantly mitigating the load of CPUs.

GPU-optimized Cuckoo Hash Table as the Index
Data Structure. Mega-KV uses a GPU-optimized cuckoo
hash table [27] as its index data structure. According to
GPUs’ hardware characteristics, the cuckoo hash table data
structure is designed with aligned and fixed-size cells and
buckets for higher parallelism and less memory accesses.
Since keys and values have variable lengths, keys are com-
pressed into 32-bit key signatures, and the location of the
key-value item in main memory is indicated by a 32-bit lo-
cation ID. The key signature and location ID serve as the
input and output of the GPU-based index operations, re-
spectively.

Periodic GPU Scheduling for Bounded Latency. A
key-value store system has a stringent latency requirement
for queries. For a guaranteed query processing time, Mega-
KV launches GPU kernels in pre-defined time intervals. At
each scheduled time point, jobs accumulated in the previ-
ous batch are launched for GPU processing. GET queries
need fast responses for quality of services, while SET and
DELETE queries have a less strict requirement. Therefore,
Mega-KV applies different scheduling policies on different
types of queries for higher throughput and lower latency.

3.2 The Workflow of Mega-KV
Figure 4 shows the workflow of Mega-KV in a CPU-GPU

hybrid system. Mega-KV divides query processing into three
stages: pre-processing, GPU processing, and post-processing,
which are handled by three kinds of threads, respectively.
Receiver threads are in charge of the pre-processing stage,
which consists of packet parsing, memory allocation and
eviction, and some extra work for batching, i.e., components
(I) and (II) in Figure 1. Receivers batch Search, Insert and
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Delete jobs separately into three buffers. The batched input
is 32-bit key signatures which are calculated by perform-
ing a signature algorithm on the keys. Scheduler, as the
central commander, is a thread that is in charge of peri-
odic scheduling. It launches the GPU kernel after a fixed
time interval to process the query operations batched in the
previous time window. Sender threads handle the post-
processing stage, including locating the key-value items with
the indexes received from the GPU, and sending responses
to clients. Mega-KV uses slab memory management where
each slab object is assigned with a 32-bit location ID. After
the key-value item locations for all the Search jobs are re-
turned, Sender threads convert the locations to item point-
ers through the slab subsystem (see Section 6.2 for details).
Because the overhead from packet I/O, query parsing, and
the memory management is still high, several Receiver and
Sender threads are launched in pairs to form the pipelines,
while there is only one Scheduler per GPU.

4. GPU-OPTIMIZED CUCKOO HASH TA-

BLE

4.1 Data Structure
Since the GPU memory capacity is small, the hash table

data structure should be efficiently designed for indexing a
large number of key-value items. Mega-KV adopts cuckoo
hashing, which features a high load factor and a constant
lookup time. The basic idea of cuckoo hashing is to use
multiple hash functions to provide each key with multiple
locations instead of one. When a bucket is full, existing
keys are relocated to make room for the new key.
There are two parameters affecting the load factor of a

cuckoo hash table and the eviction times for insertion: the
number of hash functions, and the number of cells in a
bucket. Increasing either of them can lead to a high load
factor [10]. Since the GPU memory size is limited and the
random memory access overhead of a cuckoo eviction is high,
we use a small number of hash functions (two) and a large
number of cells per bucket in our hash table design.
The various-sized keys and values not only impose a huge

overhead on data transfer, but also make it hard for GPU
threads to locate their data. In our hash table design, a
32-bit key signature is used to identify a key, and a 32-bit
location ID is used to reference the location of an item in
the main memory. As shown in Figure 5, a hash bucket
contains N cells, each of which stores a key signature and
the location of the corresponding key-value item. The key
signatures and locations are packed separately for coalesced
memory access. Each key is hashed onto two buckets, where

a 32-bit hash value is used as the index of one bucket, and
the index of the other bucket is calculated by performing an
XOR operation on the signature and the hash value. The
compactness of the key signatures and locations also lead to
a small hash table size. For instance, for an average key-
value item size of 512 bytes, a 3 GB hash table is capable of
indexing 192 GB data.

The overhead of generating key signatures and hash values
is small with the built-in SSE instructions of Intel x86 CPU,
such as AES, CRC, or XOR. In a 2 GB hash table with 8 cells
(one cell has one key signature and its location) per bucket,
there will be 225 buckets with 25 bits for hashing. With 32
bits for signature, the hash table can hold up to 231/8 = 228

elements, with a collision rate of as low as 1/225+32 = 1/257.

4.2 Hash Table Operations
A straightforward implementation of the hash table oper-

ations on GPUs may result in low resource utilization, and
consequently low performance. As the L2 cache size of a
GPU is very small (1.5 MB for Nvidia GTX 780), only a
few buckets can be operated at the same time. When tens
of thousands of threads are operating on different buckets
simultaneously, the fetched memory block may be imme-
diately evicted out of the cache after one access. Conse-
quently, if a thread is trying to match all the signatures in
a bucket, the fetched memory block has a high possibility
of being evicted after each access; thus it has to be fetched
from memory repeatedly. To address this issue, we propose
to form multiple threads as a processing unit for cooperative
processing. With a bucket of N cells, N threads can form
a processing unit to check all the cells in the bucket to find
an empty one simultaneously. Since the threads forming a
processing unit are selected within one warp, they perform
the operations simultaneously. Therefore, after the opera-
tions are performed, the data is no longer needed and can
be evicted from the cache. Based on this approach, this sec-
tion describes the specific hash table operations optimized
for GPU execution.

Search: A Search operation checks all 2×N candidate key
signatures in the two buckets, and writes the corresponding
location into the output buffer. When searching for a key,
the threads in the processing unit compare the signatures
in the bucket in parallel. After that, the threads use the
built-in vote function ballot() to inform each other with the
information of the corresponding cells. With the ballot()
result, all the threads in the processing unit know if there is
a match in the current bucket and its position. If none of the
threads find a match, they will do the same process on the
alternative bucket. If there is a match, the corresponding
thread will write the location ID to the output buffer.

Insert: For Insert operation, the processing unit firstly
tries to find if there are the same signatures in the two buck-
ets, i.e., conflicts. If there are conflicts, the conflicting loca-
tion is replaced with the new one, or the processing unit will
try to find an empty cell in the two buckets. With ballot(),
all threads will know the positions of all the empty cells. If
either of the two buckets has an empty cell, the thread that
is in charge of the corresponding cell tries to insert the key-
value pair. After the insertion, synchronize() is performed
to make sure all memory transactions have been done within
the thread block for checking whether the insertion is suc-
cessful. If not, the processing unit will try again. There will
be at least one successful insertion for the conflict in a cell.
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If neither bucket has empty cells, a randomly selected
cell from one candidate bucket is relocated to its alterna-
tive location. Displacing the key may also require kicking
out another existing key, which will repeat until a vacant
cell is found, or until a maximum number of displacements
is reached.
There may be severe write-write conflicts if multiple pro-

cessing units are trying to insert an item in the same posi-
tion. To alleviate the conflict, instead of always trying to
insert into the first available cell in a bucket, a preferred cell
is assigned for each key. We use the highest bits of a signa-
ture to index its preferred cell. For instance, 3 bits can be
used to indicate the preferred cell in a bucket with 8 cells.
If multiple available cells in a bucket are found, the cell left
nearest to the preferred cell is chosen for insertion. There
will be no extra communication between the threads in a
processing unit, since each of them knows whether its cell is
chosen with the ballot() result.
Delete: Delete operation is almost the same with Search.

When both the signature and location are matched, the cor-
responding thread clears the signature to zero to mark the
cell as available.

4.3 Hash Table Optimization and Performance
In this section, we use a Nvidia GTX 780 in evaluating

the hash table performance.

4.3.1 The Choice of Processing Unit and Bucket Size

To evaluate the effectiveness of processing unit, Figure 6
shows the GPU execution time for Search operation with
a different number of cells in one bucket and a different
number of threads in a processing unit. Since a memory
transaction is 32 bytes in the non-caching mode of Nvidia
GPUs, the bucket size is set as multiples of 32 bytes to effi-
ciently utilize memory bandwidth. As shown in the figure,
decreasing the number of cells and increasing the number
of threads in processing unit lead to a reduced execution
time. We choose 8 cells for each bucket, which allows a
higher load factor. And correspondingly, 8 threads form a
processing unit.

4.3.2 Optimization for Insert

Insert operation needs to make sure whether the key-value
index has been successfully inserted, and a synchronize()
operation is performed after the insertion. However, this op-
eration can only synchronize threads within a thread block,
but cannot synchronize threads in different thread blocks.
A naive approach to implementing Insert operation is to
launch only one thread block. However, a thread block can

S
p

e
e

d
u

p

1

1.3

1.6

1.9

Batch Size

2K 4K 6K 8K 10K 12K 14K 16K 18K 20K

2 insert block 4 insert block 8 insert block

16 insert block 32 insert block

Figure 7: Speedups for Insert with Multiple Blocks

(B) Search - Large Batch

L
a

te
n

c
y
 

(m
ic

ro
s
e

c
o

n
d

)

0

100

200

300

400

500

0

70

140

210

280

350

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

Throughput - 1 CUDA Stream Throughput - 7 CUDA Stream

Latency       - 1 CUDA Stream Latency       - 7 CUDA Stream

(D) Insert - Large Batch

L
a

te
n

c
y
 

(m
ic

ro
s
e

c
o

n
d

)

0

225

450

675

900

0

60

120

180

240

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

(F) Delete - Large Batch

L
a

te
n

c
y
 

(m
ic

ro
s
e

c
o

n
d

)

0

175

350

525

700

0

50

100

150

200

Batch Size

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

(A) Search - Small Batch

20

45

70

95

120

T
h

ro
u

g
h

p
u

t 
(M

O
P

S
)

0

40

80

120

160

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

(C) Insert - Small Batch

20

50

80

110

140

T
h

ro
u

g
h

p
u

t 
(M

O
P

S
)

0

25

50

75

100

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

(E) Delete - Small Batch

20

45

70

95

120

T
h

ro
u

g
h

p
u

t 
(M

O
P

S
)

0

35

70

105

140

Batch Size

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Figure 8: GPU Hash Table Performance

only execute on one streaming multiprocessor, leading to
resource underutilization and low performance.

We divide the hash table into several logical partitions.
According to the hash value, key signatures are batched into
different buffers with each buffer belonging to a logical parti-
tion exclusively. For the alternative bucket in cuckoo hash,
a mask is used to make it still locate in the same parti-
tion. With each thread block processing one input buffer
and one logical partition exclusively, throughput of Insert
operation is boosted by utilizing more streaming processors.
Figure 7 shows the performance improvement with multiple
insert blocks. As can be seen in the figure, an average of
1.2 speedup is achieved with 2 blocks, and the throughput
becomes 1.3-1.8 times higher with 16 blocks.

4.3.3 Hash Table Performance

Figure 8 shows the throughput and processing latency
for hash table operations with different input batch size.
Comparing with 1 CUDA stream, a 24%-60% performance
improvement is achieved with 7 CUDA streams, which ef-
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fectively overlaps kernel execution with data transfer. Our
hash table implementation shows the peak performance for
Search, Insert, and Delete operations with large batch sizes
are 303.7 MOPS, 210.3 MOPS, and 196.5 MOPS, respec-
tively. For a small batch, the performance of 7 streams is
lower than that of 1 stream. This is because GPU resources
are underutilized for a small batch, which is partitioned into
smaller ones with the multiple CUDA streams.

4.4 The Order of Operations
The possibility of conflicting operations on the same key

within such a microsecond scale time interval is very small,
and there is no need to guarantee their orders. This is be-
cause, in multicore-based key-value store systems, the op-
erations may be processed by different threads, which may
have context switching and compete for a lock to perform
the operations. Moreover, the workload of each thread is dif-
ferent and the delays of packets transferred in the network
also vary over a large range. For example, TCP processing
may take up to thousands of milliseconds [18], and queries
may wait for tens of milliseconds to be scheduled in a data
processing system [25]. Therefore, the order of operations
within only hundreds of microseconds can be ignored, and
the order of operations within one GPU batch is not guar-
anteed in Mega-KV. For the conflicts on accessing the same
item among the CPU threads, a set of optimistic concur-
rency control mechanisms are proposed in the implementa-
tion of Mega-KV (Section 6.4).

5. SCHEDULING POLICY
In this section, we study the GPU scheduling policy to

balance between throughput and latency.

5.1 Periodical Scheduling
To achieve a bounded latency for GPU processing, we pro-

pose a periodical scheduling mechanism based on the follow-
ing three observations. First, the majority of the hash table
operations are Search in a typical workload, while Insert and
Delete operations account for a small fraction. For example,
a 30:1 GET/SET ratio is reported in Facebook Memcached
workload [6]. Second, as shown in Section 4.3, the process-
ing time for Insert and Delete operations increase very slowly
when the batch size is small. Third, SET queries have less
strict latency requirement than that of GET queries.
Different scheduling cycles are applied on Search, Insert,

and Delete operations, respectively. Search operations are
launched for GPU processing after a query batch time C.
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Insert and Delete operations, however, are processed for ev-
ery n × C. We define the GPU execution time for Search
operations batched in C as TS . In Mega-KV, we assume
that GPUs are capable of handling the input queries, and
we can get TS < C. Figure 9 shows an example with n = 2.
In the example, Search operations accumulated in the last
time interval C are processed in the next time interval, while
Insert and Delete operations are launched for execution ev-
ery 2×C. We define the sum of TS and the time for Insert
and Delete operations batched in n×C as Tmax. To guaran-
tee that Search operations that have been batched in a time
interval C can be processed within the next time interval,
the following rule should be satisfied:

TS + Tmax ≤ 2× C (1)

With the time for reading the value and sending the re-
sponse, a maximum response time of 3 × C is expected for
the GET queries.

5.2 Lower Bound of Scheduling Cycle
Figure 10 shows the fitting lines for the relation of pro-

cessing time and batch size for Search and Insert & Delete
operations on Nvidia GTX 780. The workload has 95% GET
and 5% SET queries with a uniform distribution. Both lines
are drawn with the same horizontal axis, which is the batch
size for Insert. With an Insert batch size x, the correspond-
ing batch size for Search is 19x. As is shown in the figure, the
processing time of Search operations increases more quickly
than Insert/Delete operations with the growth of the batch
size, which also proves that Insert and Delete operations
are fit to be batched for a longer time in read heavy IMKV
systems.

Since the processing time TS of Search operation almost
increases linearly with the increase of the batch size xS , we
define it as TS = kS ·xS+bS , where kS = 3.0×10−3 and bS =
37.4. Similarly, for the Insert/Delete operations, we define
its relation between batch size xI and processing time TI as
TI = kI ·xI+bI , where kI = 5.6×10−3 and bI = 136.9. With
a fixed input speed V , the relations between the batching
time t and the processing time are TS = kS · pS · V · t + bS
and TI = kI · pI · V · t + bI , where pS is the proportion
of Search operations, and pI = 1 − pS is the proportion
of Insert operations, which are 95% and 5% in the figure,
respectively.

The maximum processing time Tmax = (kS · pS · V · C +
bS)+ (kI · (1− pS) ·V ·C ·n+ bI). To satisfy the inequation
TS + Tmax ≤ 2× C, we get

C ≥
2 · bS + bI

2− 2 · kS · pS · V − n · kI · (1− pS) · V
(2)
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where V < 2/(2 ·kS ·pS +n ·kI · (1−pS)) , and n ≥ 2. From
the formula, we learn that an increasing n leads to a larger
lower bound of C. Therefore, with the same input speed,
we get the minimum C with n = 2.
Without the delayed scheduling, C should follow C ≥

Tmax, and we get C ≥ (bS+bI)/(1−kS ·pS ·V −kI ·(1−pS)·V ),
where V < 1/(kS · pS + kI · (1 − pS)). Figure 11 shows the
reduction on the lower bound of scheduling cycle C with
the delayed scheduling, where an average of 65% reduction
is achieved. The delayed scheduling policy not only offers a
reduced overall latency, but also makes the system capable
of achieving a higher throughput with the same latency.

6. SYSTEM IMPLEMENTATION AND OP-

TIMIZATION
To build a high performance key value store that is capa-

ble of processing hundreds of millions of queries per second,
the overheads from data copy operations, memory manage-
ment, and locks should be addressed. In this section, we
illustrate the framework of Mega-KV and the major tech-
niques used in alleviating the overheads.

6.1 Zero-copy Pipelining
Data copy is known to be a big overhead in a high-speed

networking system, which may limit the overall system per-
formance. To avoid the expensive memory copy operations
between pipeline stages, each pipeline is assigned with three
buffers, and data between the stages is transferred by pass-
ing the buffers. Figure 12 shows the zero-copy pipelining
framework of Mega-KV . At any time, each Receiver works

on one buffer to batch incoming queries. When GPU kernel
launching time arrives, Scheduler uses an available buffer to
swap the one that Receiver is working on. In a system con-
figured with N Receivers, N CUDA streams are launched to
process the buffer of each Receiver. After the GPU kernel
completes execution, Scheduler handles the buffer to Sender
for post-processing. Sender marks its buffer as available af-
ter it completes the post-processing. With this technique,
the overhead of data transferring between pipeline stages is
significantly mitigated.

6.2 Memory Management
Slab Memory Management. Mega-KV uses slab allo-

cation. The location of an item, which is 32 bits, is used in
the hash table to reference where the item is located in the
main memory. Through the slab data structure, a mapping
is made between the location and the corresponding item,
where the highest bits in the location are used to indicate
which slab it belongs to, and the rest of the bits stand for
the offset.

CLOCK Eviction. Each slab adopts a bitmap-based
CLOCK eviction mechanism where the item offset in a bitmap
is the same with its offset in the slab. A walker pointer tra-
verses the bitmap and performs the CLOCK algorithm for
eviction. By tightly associating location with the slab and
bitmap data structures, both locating an item and updating
the CLOCK bitmap can be performed with extremely low
overhead.

If there is a conflict when inserting an item in the hash
table, the conflicting location is replaced with the new one
(Section 4.2), and the conflicting item stored in main mem-
ory should be evicted for memory reuse. With the CLOCK
eviction mechanism, the conflicting items in the main mem-
ory will be evicted after it is not accessed for a period.
Therefore, no further actions need to be performed on the
conflicting items. This also works for the items that are ran-
domly evicted when a maximum number of displacements
is reached in cuckoo hash insertion.

Batched Lock. With a shared memory design among
all threads, synchronization is needed for memory alloca-
tion and eviction. Since acquiring a lock in the critical path
of query processing has a huge impact on the overall perfor-
mance, batched allocation and eviction are adopted to mit-
igate its overhead. Each allocation or eviction will return
a memory chunk, containing a list of fixed-size items. Cor-
respondingly, each Receiver thread maintains a local slab
list for storing the allocated and evicted items. By amortiz-
ing the lock overhead across hundreds of items, the perfor-
mance of memory management subsystem is dramatically
improved.

6.3 APIs: get and getk
The same as Memcached, Mega-KV has two APIs for

GET: get and getk. When a get query is received, Mega-
KV is responsible for making sure that the value sent to the
client matches the key. Therefore, before sending a found
value to clients, its key stored in the main memory is com-
pared to confirm the match. If the keys are the same, the
value is sent to the client, or NOT FOUND is sent to notify
that the key-value item is not stored in Mega-KV.

Since a getk query asks a key-value store to send the key
with the value to the client, the client is capable of matching
the key with its value. Therefore, Mega-KV does not com-
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pare the keys to confirm the match, and requires its client
to do the job. Our design choice is mainly based on two fac-
tors: 1) the false positive rate/conflict rate is very low; and
2) the key comparison cost is comparatively high. There-
fore, avoiding the key comparison operation for each query
will lead to a higher performance.

6.4 Optimistic Concurrent Accesses
To avoid adopting locks in the critical path of query pro-

cessing, the following optimistic concurrent accesses mecha-
nisms are applied in Mega-KV.
Eviction An item cannot be evicted under the following

two situations. First, an free slab item that has not been al-
located should not be evicted. Second, if an item is deleted
and recycled to a free list, it should not be evicted. To han-
dle the two situations, we assign a status tag to each item.
Items in the free lists are marked as free, and the allocated
slab items are marked as using. The eviction process checks
the item’s status, and will only evict items with a status tag
of using.
Reading vs. Writing. An item may be evicted when

other threads are reading the value. Under such a scenario,
the thread checks the status tag of the item after finishing
reading its value. If the status tag is not using any more, the
item has already been evicted. Since the value read may be
wrong, a NOT FOUND response will be sent to the client.
Buffer Swapping. Receiver does not know when Sched-

uler swaps its buffer. Therefore, a query may not be success-
fully batched in the buffer if the buffer is swapped before the
last moment. To address this issue without using locks, we
record the buffer ID before a query is added into the buffer,
and check if the buffer has been swapped after the insertion.
If the buffer has been swapped during the process, Receiver
is not sure whether the query has been successfully inserted,
and the query is added into the new buffer again.
For Search operation, if the buffer has been swapped, the

total number of queries in the buffer is not increased so
that the new query, whether or not it has been added into
the buffer, will not be processed by the Sender. For Insert
operation, the object can be inserted twice, as the latter one
will overwrite the former one. Therefore, the correctness will
not be affected, and so does the Delete operation.

7. EXPERIMENTS
In this section, we evaluate the performance and latency of

Mega-KV under a variety of workloads and configurations.
We show that Mega-KV achieves a super high throughput
with a reasonably low latency.

7.1 Experimental Methodology
Hardware. We conduct the experiments on a PC equipped

with two Intel Xeon E5-2650v2 octa-core processors run-
ning at 2.6 GHz. Each processor has an integrated memory
controller installed with 8×8 GB 1600MHz DDR3 memory,
and supports a maximum of 59.7 GB/s memory bandwidth.
Each socket is installed with a Nvidia GTX 780 GPU as our
accelerator. GTX 780 has 12 streaming multiprocessors and
a total of 2,304 cores. The device memory on each GPU is 3
GB GDDR5, and the maximum data transfer rates between
main memory and device memory are 11.5 GB/s (Host-to-
Device) and 12.9 GB/s (Device-to-Host). The operating sys-
tem is 64-bit Ubuntu Server 14.04 with Linux kernel version
3.13.0-35. Each socket is installed with an Intel 82599 dual

port 10 GbE card, and the open source DPDK [1] is used as
the driver for high-speed I/O. We also use another two PCs
in the experiments as clients.

Mega-KV Configuration. For the octa-core CPU on
each socket, one physical core is assigned with a Scheduler
thread. Each Scheduler controls all the other threads on the
socket and launches kernels to its local GPU. Since Receiver
is compute-intensive while Sender is memory-intensive, we
enable hyper-threading in the machine, and assign each of
the left 7 physical cores with one Receiver and one Sender
thread, forming a pipeline on the same physical core. There-
fore, there are 7 pipelines in our system on each socket. The
AES instruction from the SSE instruction set is used in cal-
culating key signature and hash value.

Data sharding is adopted for the NUMA system. By par-
titioning data across the sockets, each GPU will only index
the key-value items located in its local socket. This avoids
remote memory accesses, which are considered to be a big
overhead. In this way, Mega-KV achieves good scalability
with multiple CPUs and GPUs.

Comparison with a CPU-based IMKV system. We
take the open source in-memory key-value store MICA as
our baseline for comparison. According to MICA’s exper-
imental environment, the hyper-threading is disabled. We
modify the microbench in MICA for the evaluation, which
includes loading different size key-value items from local
memory and writing values to packet buffers. All the ex-
periments are performed in its EREW mode with MICA’s
lossy index data structure. On the same hardware platform
with Mega-KV, the performance of MICA is measured and
shown in Section 7.2.3.

Workloads. We use four datasets in the evaluation: a)
8 bytes key and 8 bytes value; b) 16 bytes key and 64 bytes
value; c) 32 bytes key and 512 bytes value; and d) 128 bytes
key and 1024 bytes value. In the following experiments,
workload a is evaluated by feeding queries via network. To
allow a high query speed via network transmission, clients
batch requests and Megak-KV batches responses in an Eth-
ernet frame as much as possible. For the large key-value
pair workloads b, c and d, the network becomes the bottle-
neck. Thus, keys and values are generated in local memory
to evaluate the performance.

Both uniform and skewed workloads are used in the eval-
uation. The uniform workload uses the same key popularity
for all queries. The key popularity in the skewed workload
follows a Zipf distribution of skewness 0.99, which is the
same with YCSB workload [7]. Our clients use approxima-
tion Zipf distribution generation described in [13] for fast
workload generation. For all the workloads, the working set
size is 32 GB, and a 2 GB GPU hash table is used to in-
dex the key-value items. The key-value items are preloaded
in the evaluation, and the hit ratio of GET query is higher
than 99.9%.

7.2 System Throughput

7.2.1 Theoretical Maximum System Throughput

As discussed in Section 5, the system throughput V is
closely related to the scheduling cycle C. Since our system
needs to guarantee that the GPU processing time for each
batch is less than the scheduling cycle C, the theoretical
maximum throughput should be known in advance before
the evaluation.
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The major mission of the periodical scheduling policy is
to satisfy the inequation (1) TS + Tmax ≤ 2× C. With the
delayed scheduling, we get

V ≤
2 · C − 2 · bS − bI

2 · kS · pS · C + 2 · kI · (1− pS) · C
(3)

where C > (2 · bS + bI)/2. Without the delayed scheduling,
V and C form the relation 0 ≥ V ≥ (C − bS − bI)/(kS · pS ·

C + kI · (1− pS) ·C), where C > bS + bI . For the 95% GET
workload, we get C > 105.8 with the delayed scheduling,
and C > 174.3 without the delayed scheduling.
With the same parameters kS , bS , kI , and bI listed in Sec-

tion 5.2, Figure 13 demonstrates the relation between the
allowed maximum throughput and the scheduling cycle C
for the workload with 95% GET and 5% SET. The theoret-
ical maximum throughput of Mega-KV increases with the
increasing of the scheduling cycle, and will reach an upper
bound with a large enough scheduling cycle, which is the
maximum GPU throughput. Compared with scheduling all
operations with the same scheduling cycle, system perfor-
mance is improved by 14%-400% with delayed Insert and
Delete scheduling. It is worth noting that for C ≤ 174.3
microseconds, the system cannot work without the delayed
scheduling. This is because the total GPU execution and
data transfer overhead for Search, Insert, and Delete ker-
nels is higher than the scheduling cycle when the batch size
is small. With the delayed scheduling, the scheduling cycle
C is required to be greater than 105.8 microseconds.

7.2.2 System Throughput with Network Processing

To measure the maximum throughput of Mega-KV, we
use workload a where both keys and values are 8 bytes so
that the network is capable of transferring a huge amount
of queries. This experiment is performed with network pro-
cessing, where Mega-KV receives requests from clients and
sends back responses through the NIC ports. In the experi-
ments, we find that the throughput that GPUs offer is much
higher than that of CPUs in the pipeline of Mega-KV. After
the expensive index operations are offloaded to GPUs, the
memory accesses to the key-value items become the major
factor that limits the system performance.

Figure 14 plots the throughput of Mega-KV with work-
load a. Both the performance of getk query and get query
are measured. With getk query, Mega-KV achieves the max-
imum throughput of 160 MOPS for 95% GET and 5% SET,
and 166 MOPS for 100% GET skewed workload, respec-
tively. With get query, the throughput of Mega-KV is 120
MOPS (95% GET and 5% SET) and 124 MOPS (100%
GET) for the skewed workload. For the uniform workload,
the throughput is 6%-10% lower. In a real-world scenario
where a mix of get and getk queries are sent by clients,
the performance of Mega-KV should lie between get and
getk ’s maximum throughput, i.e., 120-166 MOPS for the
skewed workload and 100-150 MOPS for the uniform work-
load. With the 95% GET workload, Mega-KV is 1.6-2.2
times as fast as MICA (76.3 MOPS), the CPU-based IMKV
system with the highest known throughput. To address the
limitations from the memory accesses, these experiments are
performed with a GET hit ratio of more than 99.9%.

The skewed workload has a better performance than the
uniform workload. This is because our system applies a
shared memory design within each NUMA node; thus the
skewed workload will not result in an imbalanced load on the
CPU cores. As accessing key-value items in memory is still
the major bottleneck, the most frequently visited key-value
items may benefit from the CPU cache, and consequently
the skewed workload leads to a higher throughput.

7.2.3 System Throughput with Large Key-Value Sizes

Because the network bandwidth may become a bottleneck
for large key-value items, the performance for various sized
keys and values is measured by loading generated key-value
items from the local memory, and values are written into
packet buffers as responses.

Figure 15 shows the performance of Mega-KV with work-
loads b, c, and d by loading data from memory. For the
95% GET 5% SET skewed workload, Mega-KV achieves
110 MOPS, 55 MOPS, and 34 MOPS with get query, and
achieves 139 MOPS, 60 MOPS, and 30 MOPS with getk
query. For the 100% GET skewed workload, Mega-KV achieves
107 MOPS, 56 MOPS, and 36 MOPS with get query, and
achieves 144 MOPS, 62 MOPS, and 33 MOPS with getk
query, respectively. As is shown in the figure, the key com-
parison operation involved in the get query processing de-
grades system throughput for 20%-30% with the small size
key-value workload. With a larger key-value size, the over-
head of accessing the large values in the memory becomes
dramatically higher, and thus the ratio of key comparison
cost is much smaller and even neglectable.

For comparison, we also measure the performance of CPU-
based MICA as the baseline. The throughput of Mega-KV
is 1.3-2.9 times as high as MICA with 95% GET 5% SET,
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and is 1.3-2.6 times as high as MICA with 100% GET.

7.3 Response Time Distribution

We evaluate system processing latency by measuring the
time elapsed from sending a getk query to receiving its re-
sponse. The client keeps sending queries with a 95% GET
and 5% SET workload, and the client IP address is increased
by 1 for each packet. By sample logging the IP addresses
and the sending/receiving time, the round trip time can be
calculated as the time elapsed between the queries and re-
sponses with matched IP addresses.
The scheduling cycle has an impact on the both the sys-

tem performance and the processing latency. Figure 16
shows the CDF (Cumulative Distribution Function) of query
round trip latency with different scheduling cycles. We fix
the scheduling cycle C to 120, 160, 200, 240, 280, and 320
microseconds, respectively, and use the allowed maximum
input speed for each scheduling cycle. As shown in the fig-
ure, the round trip time of queries is effectively controlled
within 3 × C, which demonstrates the effectiveness of our
GPU scheduling policy in achieving predictable latency.
The latency of Mega-KV is comparatively higher than a

fast CPU-based implementation. Specifically, if an applica-
tion requires a strictly low latency of less than 317.4 (105.8
× 3) microseconds, Mega-KV cannot guarantee that the
deadline could be met by all the queries. This is because
the minimum scheduling cycle C for Mega-KV is 105.8 mi-
croseconds (Section 7.2.1). MICA, which adopts DPDK as
its NIC driver, achieves a latency lying between 24-52 mi-

croseconds. As is shown in Figure 13, Mega-KV achieves
a maximum throughput of 204 MOPS for the 95% GET
and 5% SET workload with C = 160 microseconds. With
this configuration, the average and 95th percentile latencies
of Mega-KV are about 280 microseconds and 410 microsec-
onds (Figure 16). However, in Facebook, the average and
95th percentile latencies of web servers in production getting
keys are about 300 microseconds and 1,200 microseconds, re-
spectively [25]. Therefore, although the latency of Mega-KV
is higher than that of a fast CPU-based implementation, it
is still capable of meeting the requirements of the current
data processing systems.

8. RELATED WORK
CPU-based in-memory key-value stores [11, 22, 24, 23]

have been focusing on designing efficient index data struc-
ture and optimizing network processing to achieve higher
performance. MICA has compared itself with RAMCloud,
MemC3, Memcached, and Masstree in its paper, and shown
an at least 4 times higher throughput than the next best sys-
tem. That is why we choose MICA for performance compar-
ison. Systems such as Chronos [19], Pilaf [24], and RAM-
Cloud [26] focus on low latency processing, which achieve
latencies of less than 100 microseconds. Specifically, by tak-
ing advantage of Infiniband, RAMCloud and Pilaf achieve
average latencies of as low as 5 microseconds and 11.3 mi-
croseconds, respectively.

Rhythm [4] proposes to use GPUs in accelerating web
server workloads, which also batches requests to trade re-
sponse time for higher throughput. The latency of the re-
quests in Rhythm is above 10 milliseconds, which is hun-
dreds of times higher than that of a CPU-based web server,
but its throughput is about 10 times higher.

Although previous work has adopted GPUs in a key-value
store system [17], it only ports the existing Memcached im-
plementation to an OpenCL version, and does not explore
GPUs’ hardware characteristics for higher performance.

Graphic applications do not need a persistent hash table;
instead, they need hash tables to be quickly constructed,
such as [5]. The methods adopted in building the hash tables
may result in construction failures, and do not fit for key-
value store systems.

There are already a set of research papers on adopting
GPUs in database systems [35, 33, 32, 28, 15, 16, 34]. The
techniques we developed in Mega-KV can also be utilized to
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accelerate the relational database query processing. For ex-
ample, cuckoo hash table is adopted in implementing GPU-
based hash join [35]. Therefore, Mega-KV’s GPU-optimized
cuckoo hash table with its corresponding operations is a
good candidate for accelerating the hash join operation.

9. CONCLUSION
Having conducted thorough experiments and analyses, we

have identified the bottleneck of IMKV running on multi-
core processors, which is a mismatch between the unique
properties IMKV for increasingly large data processing and
the CPU-based architecture. We have made a strong case by
designing and implementing Mega-KV for GPUs to serve as
special-purpose devices to address the bottleneck that mul-
ticore architectures cannot break. Our evaluation results
show that Mega-KV advances the state of the art of IMKV
by significantly boosting its performance up to 160+ MOPS.
Mega-KV is an open source software. The source code can

be downloaded from http://kay21s.github.io/megakv.
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