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Abstract

Single-view depth prediction is a fundamental problem

in computer vision. Recently, deep learning methods have

led to significant progress, but such methods are limited by

the available training data. Current datasets based on 3D

sensors have key limitations, including indoor-only images

(NYU), small numbers of training examples (Make3D), and

sparse sampling (KITTI). We propose to use multi-view In-

ternet photo collections, a virtually unlimited data source,

to generate training data via modern structure-from-motion

and multi-view stereo (MVS) methods, and present a large

depth dataset called MegaDepth based on this idea. Data

derived from MVS comes with its own challenges, includ-

ing noise and unreconstructable objects. We address these

challenges with new data cleaning methods, as well as auto-

matically augmenting our data with ordinal depth relations

generated using semantic segmentation. We validate the use

of large amounts of Internet data by showing that models

trained on MegaDepth exhibit strong generalization—not

only to novel scenes, but also to other diverse datasets in-

cluding Make3D, KITTI, and DIW, even when no images

from those datasets are seen during training.1

1. Introduction

Predicting 3D shape from a single image is an important

capability of visual reasoning, with applications in robotics,

graphics, and other vision tasks such as intrinsic images.

While single-view depth estimation is a challenging, un-

derconstrained problem, deep learning methods have re-

cently driven significant progress. Such methods thrive when

trained with large amounts of data. Unfortunately, fully gen-

eral training data in the form of (RGB image, depth map)

pairs is difficult to collect. Commodity RGB-D sensors

such as Kinect have been widely used for this purpose [34],

but are limited to indoor use. Laser scanners have enabled

important datasets such as Make3D [29] and KITTI [25],

but such devices are cumbersome to operate (in the case

of industrial scanners), or produce sparse depth maps (in

1Project website: http://www.cs.cornell.edu/projects/

megadepth/

(a) Internet photo of Colosseum (b) Image from Make3D

(c) Our single-view depth prediction (d) Our single-view depth prediction

(e) Image from KITTI

(f) Our single-view depth prediction

Figure 1: We use large Internet image collections, combined

with 3D reconstruction and semantic labeling methods, to

generate large amounts of training data for single-view depth

prediction. (a), (b), (e): Example input RGB images. (c),

(d), (f): Depth maps predicted by our MegaDepth-trained

CNN (blue=near, red=far). For these results, the network

was not trained on Make3D and KITTI data.

the case of LIDAR). Moreover, both Make3D and KITTI

are collected in specific scenarios (a university campus, and

atop a car, respectively). Training data can also be generated

through crowdsourcing, but this approach has so far been

limited to gathering sparse ordinal relationships or surface

normals [12, 4, 5].

In this paper, we explore the use of a nearly unlimited

source of data for this problem: images from the Internet

from overlapping viewpoints, from which structure-from-
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motion (SfM) and multi-view stereo (MVS) methods can

automatically produce dense depth. Such images have been

widely used in research on large-scale 3D reconstruction [35,

14, 2, 8]. We propose to use the outputs of these systems

as the inputs to machine learning methods for single-view

depth prediction. By using large amounts of diverse training

data from photos taken around the world, we seek to learn

to predict depth with high accuracy and generalizability.

Based on this idea, we introduce MegaDepth (MD), a large-

scale depth dataset generated from Internet photo collections,

which we make fully available to the community.

To our knowledge, ours is the first use of Internet

SfM+MVS data for single-view depth prediction. Our main

contribution is the MD dataset itself. In addition, in creating

MD, we found that care must be taken in preparing a dataset

from noisy MVS data, and so we also propose new methods

for processing raw MVS output, and a corresponding new

loss function for training models with this data. Notably,

because MVS tends to not reconstruct dynamic objects (peo-

ple, cars, etc), we augment our dataset with ordinal depth

relationships automatically derived from semantic segmen-

tation, and train with a joint loss that includes an ordinal

term. In our experiments, we show that by training on MD,

we can learn a model that works well not only on images

of new scenes, but that also generalizes remarkably well to

completely different datasets, including Make3D, KITTI,

and DIW—achieving much better generalization than prior

datasets. Figure 1 shows example results spanning different

test sets from a network trained solely on our MD dataset.

2. Related work

Single-view depth prediction. A variety of methods have

been proposed for single-view depth prediction, most re-

cently by utilizing machine learning [15, 28]. A standard

approach is to collect RGB images with ground truth depth,

and then train a model (e.g., a CNN) to predict depth from

RGB [7, 22, 23, 27, 3, 19]. Most such methods are trained on

a few standard datasets, such as NYU [33, 34], Make3D [29],

and KITTI [11], which are captured using RGB-D sensors

(such as Kinect) or laser scanning. Such scanning methods

have important limitations, as discussed in the introduction.

Recently, Novotny et al. [26] trained a network on 3D mod-

els derived from SfM+MVS on videos to learn 3D shapes of

single objects. However, their method is limited to images

of objects, rather than scenes.

Multiple views of a scene can also be used as an im-

plicit source of training data for single-view depth pre-

diction, by utilizing view synthesis as a supervisory sig-

nal [38, 10, 13, 43]. However, view synthesis is only a proxy

for depth, and may not always yield high-quality learned

depth. Ummenhofer et al. [36] trained from overlapping

image pairs taken with a single camera, and learned to pre-

dict image matches, camera poses, and depth. However, it

requires two input images at test time.

Ordinal depth prediction. Another way to collect depth

data for training is to ask people to manually annotate depth

in images. While labeling absolute depth is challenging,

people are good at specifying relative (ordinal) depth rela-

tionships (e.g., closer-than, further-than) [12]. Zoran et al.

[44] used such relative depth judgments to predict ordinal

relationships between points using CNNs. Chen et al. lever-

aged crowdsourcing of ordinal depth labels to create a large

dataset called “Depth in the Wild” [4]. While useful for pre-

dicting depth ordering (and so we incorporate ordinal data

automatically generated from our imagery), the Euclidean

accuracy of depth learned solely from ordinal data is limited.

Depth estimation from Internet photos. Estimating ge-

ometry from Internet photo collections has been an active

research area for a decade, with advances in both structure

from motion [35, 2, 37, 30] and multi-view stereo [14, 9, 32].

These techniques generally operate on 10s to 1000s of im-

ages. Using such methods, past work has used retrieval and

SfM to build a 3D model seeded from a single image [31],

or registered a photo to an existing 3D model to transfer

depth [40]. However, this work requires either having a de-

tailed 3D model of each location in advance, or building one

at run-time. Instead, we use SfM+MVS to train a network

that generalizes to novel locations and scenarios.

3. The MegaDepth Dataset

In this section, we describe how we construct our dataset.

We first download Internet photos from Flickr for a set

of well-photographed landmarks from the Landmarks10K

dataset [21]. We then reconstruct each landmark in 3D using

state-of-the-art SfM and MVS methods. This yields an SfM

model as well as a dense depth map for each reconstructed

image. However, these depth maps have significant noise

and outliers, and training a deep network on this raw depth

data will not yield a useful predictor. Therefore, we propose

a series of processing steps that prepare these depth maps for

use in learning, and additionally use semantic segmentation

to automatically generate ordinal depth data.

3.1. Photo calibration and reconstruction

We build a 3D model from each photo collection using

COLMAP, a state-of-art SfM system [30] (for reconstructing

camera poses and sparse point clouds) and MVS system [32]

(for generating dense depth maps). We use COLMAP because

we found that it produces high-quality 3D models via its

careful incremental SfM procedure, but other such systems

could be used. COLMAP produces a depth map D for every

reconstructed photo I (where some pixels of D can be empty

if COLMAP was unable to recover a depth), as well as other

outputs, such as camera parameters and sparse SfM points

plus camera visibility.

2042



(a) Input photo (b) Raw depth (c) Refined depth

Figure 2: Comparison between MVS depth maps with

and without our proposed refinement/cleaning methods.

The raw MVS depth maps (middle) exhibit depth bleeding

(top) or incorrect depth on people (bottom). Our methods

(right) can correct or remove such outlier depths.

3.2. Depth map refinement

The raw depth maps from COLMAP contain many outliers

from a range of sources, including: (1) transient objects (peo-

ple, cars, etc.) that appear in a single image but nonetheless

are assigned (incorrect) depths, (2) noisy depth discontinu-

ities, and (3) bleeding of background depths into foreground

objects. Other MVS methods exhibit similar problems due to

inherent ambiguities in stereo matching. Figure 2(b) shows

two example depth maps produced by COLMAP that illus-

trate these issues. Such outliers have a highly negative effect

on the depth prediction networks we seek to train. To address

this problem, we propose two new depth refinement methods

designed to generate high-quality training data:

First, we devise a modified MVS algorithm based on

COLMAP, but more conservative in its depth estimates, based

on the idea that we would prefer less training data over bad

training data. COLMAP computes depth maps iteratively, at

each stage trying to ensure geometric consistency between

nearby depth maps. One adverse effect of this strategy is

that background depths can tend to “eat away” at foreground

objects, because one way to increase consistency between

depth maps is to consistently predict the background depth

(see Figure 2 (top)). To counter this effect, at each depth

inference iteration in COLMAP, we compare the depth val-

ues at each pixel before and after the update and keep the

smaller (closer) of the two. We then apply a median filter

to remove unstable depth values. We describe our modified

MVS algorithm in detail in the supplemental material.

Second, we utilize semantic segmentation to enhance and

filter the depth maps, and to yield large amounts of ordinal

depth comparisons as additional training data. The second

row of Figure 2 shows an example depth map computed

with our object-aware filtering. We now describe our use of

semantic segmentation in detail.

3.3. Depth enhancement via semantic segmentation

Multi-view stereo methods can have problems with a

number of object types, including transient objects such as

people and cars, difficult-to-reconstruct objects such as poles

and traffic signals, and sky regions. However, if we can

understand the semantic layout of an image, then we can

attempt to mitigate these issues, or at least identify prob-

lematic pixels. We have found that deep learning methods

for semantic segmentation are starting to become reliable

enough for this use [41].

We propose three new uses of semantic segmentation in

the creation of our dataset. First, we use such segmentations

to remove spurious MVS depths in foreground regions. Sec-

ond, we use the segmentation as a criterion to categorize

each photo as providing either Euclidean depth or ordinal

depth data. Finally, we combine semantic information and

MVS depth to automatically annotate ordinal depth relation-

ships, which can be used to help training in regions that

cannot be reconstructed by MVS.

Semantic filtering. To process a given photo I , we first run

semantic segmentation using PSPNet [41], a recent segmen-

tation method, trained on the MIT Scene Parsing dataset

(consisting of 150 semantic categories) [42]. We then divide

the pixels into three subsets by predicted semantic category:

1. Foreground objects, denoted F , corresponding to ob-

jects that often appear in the foreground of scenes, in-

cluding static foreground objects (e.g., statues, foun-

tains) and dynamic objects (e.g., people, cars).

2. Background objects, denoted B, including buildings,

towers, mountains, etc. (See supplemental material for

full details of the foreground/background classes.)

3. Sky, denoted S, which is treated as a special case in the

depth filtering described below.

We use this semantic categorization of pixels in several ways.

As illustrated in Figure 2 (bottom), transient objects such as

people can result in spurious depths. To remove these from

each image I , we consider each connected component C

of the foreground mask F . If < 50% of pixels in C have a

reconstructed depth, we discard all depths from C. We use

a threshold of 50%, rather than simply removing all fore-

ground depths, because pixels on certain objects in F (such

as sculptures) can indeed be accurately reconstructed (and

we found that PSPNet can sometimes mistake sculptures and

people for one another). This simple filtering of foreground

depths yields large improvements in depth map quality. Ad-

ditionally, we remove reconstructed depths that fall inside

the sky region S, as such depths tend to be spurious.

Euclidean vs. ordinal depth. For each 3D model we have

thousands of reconstructed Internet photos, and ideally we

would use as much of this depth data as possible for training.

However, some depth maps are more reliable than others, due
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Figure 3: Examples of automatic ordinal labeling. Blue

mask: foreground (Ford) derived from semantic segmenta-

tion. Red mask: background (Bord) derived from recon-

structed depth.

to factors such as the accuracy of the estimated camera pose

or the presence of large occluders. Hence, we found that it is

beneficial to limit training to a subset of highly reliable depth

maps. We devise a simple but effective way to compute a

subset of high-quality depth maps, by thresholding by the

fraction of reconstructed pixels. In particular, if ≥ 30% of an

image I (ignoring the sky region S) consists of valid depth

values, then we keep that image as training data for learning

Euclidean depth. This criterion prefers images without large

transient foreground objects (e.g., “no selfies”). At the same

time, such foreground-heavy images are extremely useful

for another purpose: automatically generating training data

for learning ordinal depth relationships.

Automatic ordinal depth labeling. As noted above, tran-

sient or difficult to reconstruct objects, such as people, cars,

and street signs are often missing from MVS reconstructions.

Therefore, using Internet-derived data alone, we will lack

ground truth depth for such objects, and will likely do a poor

job of learning to reconstruct them. To address this issue,

we propose a novel method of automatically extracting or-

dinal depth labels from our training images based on their

estimated 3D geometry and semantic segmentation.

Let us denote as O (“Ordinal”) the subset of photos that

do not satisfy the “no selfies” criterion described above. For

each image I ∈ O, we compute two regions, Ford ∈ F

(based on semantic information) and Bord ∈ B (based on

3D geometry information), such that all pixels in Ford are

likely closer to the camera than all pixels in Bord. Briefly,

Ford consists of large connected components of F , and Bord

consists of large components of B that also contain valid

depths in the last quartile of the full depth range for I (see

supplementary for full details). We found this simple ap-

proach works very well (> 95% accuracy in pairwise ordinal

relationships), likely because natural photos tend to be com-

posed in certain common ways. Several examples of our

automatic ordinal depth labels are shown in Figure 3.

3.4. Creating a dataset

We use the approach above to densely reconstruct 200 3D

models from landmarks around the world, representing about

150K reconstructed images. After our proposed filtering, we

are left with 130K valid images. Of these 130K photos,

around 100K images are used for Euclidean depth data, and

the remaining 30K images are used to derive ordinal depth

data. We also include images from [18] in our training

set. Together, this data comprises the MegaDepth (MD)

dataset, available at http://www.cs.cornell.edu/

projects/megadepth/.

4. Depth estimation network

This section presents our end-to-end deep learning algo-

rithm for predicting depth from a single photo.

4.1. Network architecture

We evaluated three networks used in prior work on single-

view depth prediction: VGG [6], the “hourglass” network [4],

and a ResNet architecture [19]. Of these, the hourglass

network performed best, as described in Section 5.

4.2. Loss function

The 3D data produced by SfM+MVS is only up to an

unknown scale factor, so we cannot compare predicted and

ground truth depths directly. However, as noted by Eigen

and Fergus [7], the ratios of pairs of depths are preserved

under scaling (or, in the log-depth domain, the difference

between pairs of log-depths). Therefore, we solve for a depth

map in the log domain and train using a scale-invariant loss

function, Lsi. Lsi combines three terms:

Lsi = Ldata + αLgrad + βLord. (1)

Scale-invariant data term. We adopt the loss of Eigen and

Fergus [7], which computes the mean square error (MSE) of

the difference between all pairs of log-depths in linear time.

Suppose we have a predicted log-depth map L, and a ground

truth log depth map L∗. Li and L∗
i denote corresponding

individual log-depth values indexed by pixel position i. We

denote Ri = Li − L∗
i and define:

Ldata =
1

n

n
∑

i=1

(Ri)
2 −

1

n2

(

n
∑

i=1

Ri

)2

(2)

where n is the number of valid depths in the ground truth

depth map.

Multi-scale scale-invariant gradient matching term. To

encourage smoother gradient changes and sharper depth

discontinuities in the predicted depth map, we introduce

a multi-scale scale-invariant gradient matching term Lgrad,

defined as an ℓ1 penalty on differences in log-depth gradients

between the predicted and ground truth depth map:

Lgrad =
1

n

∑

k

∑

i

(∣

∣∇xR
k
i

∣

∣+
∣

∣∇yR
k
i

∣

∣

)

(3)

where Rk
i is the value of the log-depth difference map at

position i and scale k. Because the loss is computed at
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Input photo Output w/o Lgrad Output w/ Lgrad

Figure 4: Depth prediction with and without Lgrad. Lgrad

encourages the prediction to match the depth gradient of the

ground truth.

Input photo Output w/o Lord Output w/ Lord

Figure 5: Depth prediction with and without Lord. Lord

tends to corrects ordinal depth relations for hard-to-construct

objects such as the person in the first row and the tree in the

second row.

multiple scales, Lgrad captures depth gradients across large

image distances. In our experiments, we use four scales. We

illustrate the effect of Lgrad in Figure 4.

Robust ordinal depth loss. Inspired by Chen et al. [4], our

ordinal depth loss term Lord utilizes the automatic ordinal

relations described in Section 3.3. During training, for each

image in our ordinal set O, we pick a single pair of pixels

(i, j), with pixel i and j either belonging to the foreground

region Ford or the background region Bord. Lord is designed

to be robust to the small number of incorrectly ordered pairs.

Lord =

{

log (1 + exp (Pij)) if Pij ≤ τ

log
(

1 + exp
(√

Pij

))

+ c if Pij > τ
(4)

where Pij = −r∗ij (Li − Lj) and r∗ij is the automatically

labeled ordinal depth relation between i and j (r∗ij = 1 if

pixel i is further than j and −1 otherwise). c is a constant

set so that Lord is continuous. Lord encourages the depth

difference of a pair of points to be large (and ordered) if our

automatic labeling method judged the pair to have a likely

depth ordering. We illustrate the effect of Lord in Figure 5.

In our tests, we set τ = 0.25 based on cross-validation.

5. Evaluation

In this section, we evaluate our networks on a number of

datasets, and compare to several state-of-art depth prediction

algorithms, trained on a variety of training data. In our

evaluation, we seek to answer several questions, including:

• How well does our model trained on MD generalize to

new Internet photos from never-before-seen locations?

• How important is our depth map processing? What is

the effect of the terms in our loss function?

• How well does our model trained on MD generalize to

other types of images from other datasets?

The third question is perhaps the most interesting, because

the promise of training on large amounts of diverse data is

good generalization. Therefore, we run a set of experiments

training on one dataset and testing on another, and show that

our MD dataset gives the best generalization performance.

We also show that our depth refinement strategies are

essential for achieving good generalization, and show that

our proposed loss function—combining scale-invariant data

terms with an ordinal depth loss—improves prediction per-

formance both quantitatively and qualitatively.

Experimental setup. Out of the 200 reconstructed models

in our MD dataset, we randomly select 46 to form a test set

(locations never seen during training). For the remaining

154 models, we randomly split images from each individual

model into training and validation sets with a ratio of 96%

and 4% respectively. We set α = 0.5 and β = 0.1 using

cross-validation. We implement our networks in PyTorch [1],

and train using Adam [17] for 30 epochs with batch size 32.

5.1. Evaluation and ablation study on MD test set

In this subsection, we describe experiments where we

train on our MD training set and test on the MD test set.

Error metrics. For numerical evaluation, we use two scale-

invariant error measures (as with our loss function, we use

scale-invariant measures due to the scale-free nature of SfM

models). The first measure is the scale-invariant RMSE

(si-RMSE) (Equation 2), which measures precise numerical

depth accuracy. The second measure is based on the preser-

vation of depth ordering. In particular, we use a measure

similar to [44, 4] that we call the SfM Disagreement Rate

(SDR). SDR is based on the rate of disagreement with ordi-

nal depth relationships derived from estimated SfM points.

We use sparse SfM points rather than dense MVS because

we found that sparse SfM points capture some structures not

reconstructed by MVS (e.g., complex objects such as lamp-

posts). We define SDR(D,D∗), the ordinal disagreement

rate between the predicted (non-log) depth map D = exp(L)
and ground-truth SfM depths D∗, as:

SDR(D,D∗) = 1

n

∑

i,j∈P ✶
(

ord(Di, Dj) 6= ord(D∗
i , D

∗
j )
)

(5)
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Network si-RMSE SDR=% SDR 6=% SDR%

VGG∗ [6] 0.116 31.28 28.63 29.78

VGG (full) 0.114 29.34 26.91 27.53

ResNet (full) 0.112 26.25 24.23 25.14

HG (full) 0.100 25.17 23.80 24.39

Table 1: Results on the MD test set (places unseen during

training) for several network architectures. For VGG∗

we use the same loss and network architecture as in [6] for

comparison to [6]. Lower is better.

Method si-RMSE SDR=% SDR 6=% SDR%

Ldata only 0.146 32.32 29.96 30.08

+Lgrad 0.111 25.17 27.32 26.11

+Lgrad +Lord 0.099 25.17 23.80 24.39

Table 2: Results on MD test set (places unseen during

training) for different loss configurations. Lower is better.

Test set Error measure Raw MD Clean MD

Make3D RMS 11.41 5.493

Abs Rel 0.614 0.298

log10 0.386 0.115

KITTI RMS 12.15 6.874

RMS(log) 0.582 0.336

Abs Rel 0.433 0.282

Sq Rel 3.927 2.223

DIW WHDR% 31.32 22.97

Table 3: Results on three different test sets with and with-

out our depth refinement methods. Raw MD indicates raw

depth data; Clean MD indicates depth data using our refine-

ment methods. Lower is better for all error measures.

where P is the set of pairs of pixels with available SfM
depths to compare, n is the total number of pairwise compar-
isons, and ord(·, ·) is one of three depth relations (further-
than, closer-than, and same-depth-as):

ord(Di, Dj) =















1 if
Di

Dj
> 1 + δ

−1 if
Di

Dj
< 1− δ

0 if 1− δ ≤
Di

Dj
≤ 1 + δ

(6)

We also define SDR= and SDR6= as the disagreement rate

with ord(D∗
i , D

∗
j ) = 0 and ord(D∗

i , D
∗
j ) 6= 0 respectively.

In our experiments, we set δ = 0.1 for tolerance to uncer-

tainty in SfM points. For efficiency, we sample SfM points

from the full set to compute this error term.

Effect of network and loss variants. We evaluate three

popular network architectures for depth prediction on our

MD test set: the VGG network used by Eigen et al. [6], an

“hourglass”(HG) network [4], and ResNets [19]. To compare

our loss function to that of Eigen et al. [6], we also test

the same network and loss function as [6] trained on MD.

[6] uses a VGG network with a scale-invariant loss plus

single scale gradient matching term. Quantitative results are

shown in Table 1 and qualitative comparisons are shown in

Figure 6. We also evaluate variants of our method trained

using only some of our loss terms: (1) a version with only

the scale-invariant data term Ldata (the same loss as in [7]),

(2) a version that adds our multi-scale gradient matching

loss Lgrad, and (3) the full version including Lgrad and the

ordinal depth loss Lord. Results are shown in Table 2.

As shown in Tables 1 and 2, the HG architecture achieves

the best performance of the three architectures, and training

with our full loss yields significantly better performance

compared to other loss variants, including that of [6] (first

row of Table 1). Figure 6 shows that our joint loss helps

preserve the structure of the depth map and capture nearby

objects such as people and buses.

Finally, we experiment with training our network on MD

with and without our proposed depth refinement methods,

testing on three datasets: KITTI, Make3D, and DIW. The

results, shown in Table 3, show that networks trained on raw

MVS depth do not generalize well. Our proposed refine-

ments significantly boost prediction performance.

5.2. Generalization to other datasets

A powerful application of our 3D-reconstruction-derived

training data is to generalize to outdoor images beyond land-

mark photos. To evaluate this capability, we train our model

on MD and test on three standard benchmarks: Make3D

[28], KITTI [11], and DIW [4]—without seeing training

data from these datasets. Since our depth prediction is de-

fined up to a scale factor, for each dataset, we align each

prediction with the ground truth by a scalar computed as the

median ratio between ground truth and predicted depth.

Make3D. To test on Make3D, we follow the protocol of prior

work [23, 19],resizing all images to 345× 460, and remov-

ing ground truth depths larger than 70m (since Make3D

data is unreliable at large distances). We train our net-

work only on MD using our full loss. Table 4 shows nu-

merical results, including comparisons to several methods

trained on both Make3D and non-Make3D data. Our net-

work trained on MD has the best performance among all

non-Make3D-trained models and outperforms the second

best non-Make3D-trained model (trained on DIW) by a

large margin. Our model even outperforms several models

trained directly on Make3D. Finally, the last row of Table 4

shows that our model fine-tuned on Make3D achieves better

performance than the state-of-the-art. Figure 7 visualizes

depth predictions from our model and several other non-

Make3D-trained models. Our predictions achieve preserve

the structure of the depth maps significantly better.
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(a) Image (b) GT (c) VGG∗ (d) VGG∗ (M) (e) ResNet (f) ResNet (M) (g) HG (h) HG (M)

Figure 6: Depth predictions on MD test set. (Blue=near, red=far.) For visualization, we mask out the detected sky region.

In the columns marked (M), we apply the mask from the GT depth map (indicating valid reconstructed depths) to the prediction

map, to aid comparison with GT. (a) Input photo. (b) Ground truth COLMAP depth map (GT). VGG∗ prediction using the loss

and network of [6]. (d) GT-masked version of (c). (e) Depth prediction from a ResNet [19]. (f) GT-masked version of (e). (g)

Depth prediction from an hourglass (HG) network [4] . (h) GT-masked version of (g).

Training set Method RMS Abs Rel log10

Make3D Karsch et al. [16] 9.2 0.355 0.127

Liu et al. [24] 9.49 0.335 0.137

Liu et al. [22] 8.6 0.314 0.119

Li et al. [20] 7.19 0.278 0.092

Laina et al. [19] 4.45 0.176 0.072

Xu et al. [39] 4.38 0.184 0.065

NYU Eigen et al. [6] 6.96 0.427 0.180

Liu et al. [22] 7.96 0.438 0.186

Laina et al. [19] 7.99 0.466 0.195

KITTI Zhou et al. [43] 10.47 0.383 0.478

Godard et al. [13] 11.76 0.544 0.193

DIW Chen et al. [4] 6.45 0.346 0.149

MD Ours 5.49 0.298 0.115

MD+Make3D Ours 4.26 0.176 0.069

Table 4: Results on the Make3D test set for various train-

ing datasets and approaches. The first column indicates

the training dataset. Lower is better for all error metrics.

KITTI. Next, we evaluate our model on the KITTI test set

based on the split of [7]. As with our Make3D experiments,

we do not use images from KITTI during training. The

KITTI dataset is very different from ours, consisting of driv-

ing sequences that include objects, such as sidewalks, cars,

and people, that are difficult to reconstruct with SfM/MVS.

Nevertheless, as shown in Table 5, our MD-trained network

still outperforms approaches trained on non-KITTI datasets

(a) Image (b) GT (c) DIW [4] (d) NYU [6] (e) KITTI [13] (f) MD

Figure 7: Depth predictions on Make3D. (Blue=near,

red=far.) The last four columns show the results of the

best models trained on non-Make3D datasets (last column is

our result).

and has comparable performance with networks directly

trained on KITTI. In particular, our performance is similar to

the method of Zhou et al. [43] trained on the Cityscapes (CS)

dataset. CS also consists of driving image sequences quite

similar to KITTI’s. In contrast, our MD dataset contains

much more diverse scenes. Finally, the last row of Table 5

shows that we can achieve state-of-the-art performance by

fine-tuning our network on KITTI training data. Figure 8

shows visual comparisons between our results and models

trained on other non-KITTI datasets. One can see that we
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(a) Image (b) GT (c) DIW [4] (d) Best NYU [23] (e) Best Make3D [19] (f) MD

Figure 8: Depth predictions on KITTI. (Blue=near, red=far.) None of the models were trained on KITTI data.

Training set Method RMS RMS(log) Abs Rel Sq Rel

KITTI Liu et al. [23] 6.52 0.275 0.202 1.614

Eigen et al. [7] 6.31 0.282 0.203 1.548

Zhou et al. [43] 6.86 0.283 0.208 1.768

Godard et al. [13] 5.93 0.247 0.148 1.334

Make3D Laina et al. [19] 8.50 0.397 0.311 3.201

Liu et al. [22] 11.88 0.416 0.365 7.591

NYU Eigen et al. [6] 10.47 0.492 0.367 3.716

Liu et al. [22] 10.19 0.446 0.321 3.118

Laina et al. [19] 10.58 0.508 0.390 3.939

CS Zhou et al. [43] 7.58 0.334 0.267 2.686

DIW Chen et al. [4] 8.57 0.428 0.324 2.734

MD Ours 6.87 0.336 0.282 2.223

MD+KITTI Ours 5.90 0.241 0.141 1.328

Table 5: Results on the KITTI test set for various train-

ing datasets and approaches. Columns are as in Table 4.

Training set Method WHDR%

DIW Chen et al. [4] 22.14

KITTI Zhou et al. [43] 31.24

Godard et al. [13] 30.52

NYU Eigen et al. [6] 25.70

Laina et al. [19] 45.30

Liu et al. [22] 28.27

Make3D Laina et al. [19] 31.65

Liu et al. [22] 29.58

MD Ours 22.97

Table 6: Results on the DIW test set for various training

datasets and approaches. Columns are as in Table 4.

(a) Image (b) NYU [6] (c) KITTI [13] (d) Make3D [22] (e) MD

Figure 9: Depth predictions on the DIW test set.

(Blue=near, red=far.) None of the models were trained

on DIW data.

achieve much better visual quality compared to other non-

KITTI datasets, and our predictions can reasonably capture

nearby objects such as traffic signs, cars, and trees, due to

our ordinal depth loss.

DIW. Finally, we test our network on DIW dataset [4]. DIW,

like our dataset, consists of Internet photos with more gen-

eral scene structures. Each image in DIW has just a single

pair of points with human-annotated ordinal depth relation-

ship. As with Make3D and KITTI, we do not use data from

DIW during training. For DIW, results are evaluated using

the Weighted Human Disagreement Rate (WHDR), which

measures the frequency of disagreement between predicted

depth maps and human annotations on a test set. Numerical

results are shown in Table 6. Our MD-trained network again

has the best performance among all non-DIW trained mod-

els, and achieves performance comparable to that of Chen et

al. [4], which is directly trained on DIW. Figure 9 visualizes

our predictions and those of other non-DIW-trained networks

on DIW test images. Our predictions achieve visually better

depth relationships. Our method even works reasonably well

for challenging scenes such as offices and close-ups.

6. Conclusion

We presented a new use for Internet-derived SfM+MVS

data: generating large amounts of training data for single-

view depth prediction. We demonstrated that this data can

be used to predict state-of-the-art depth maps for locations

never observed during training, and generalizes very well

to other datasets. However, our method also has a number

of limitations. MVS methods still do not perfectly recon-

struct even static scenes, particularly when there are oblique

surfaces (e.g., ground), thin or complex objects (e.g., lamp-

posts), and difficult materials (e.g., shiny glass). Our method

does not predict metric depth; future work in SfM could use

learning or semantic information to correctly scale scenes.

Our dataset is currently biased towards outdoor landmarks,

though by scaling to much larger input photo collections

we will find more diverse scenes. Despite these limitations,

our work points towards the Internet as an intriguing, useful

source of data for geometric learning problems.
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