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An approach to quantum random number generation based on unambiguous quantum state discrimi-

nation is developed. We consider a prepare-and-measure protocol, where two nonorthogonal quantum

states can be prepared, and a measurement device aims at unambiguously discriminating between them.

Because the states are nonorthogonal, this necessarily leads to a minimal rate of inconclusive events whose

occurrence must be genuinely random and which provide the randomness source that we exploit. Our

protocol is semi-device-independent in the sense that the output entropy can be lower bounded based on

experimental data and a few general assumptions about the setup alone. It is also practically relevant, which

we demonstrate by realizing a simple optical implementation, achieving rates of 16.5 Mbits=s. Combining

ease of implementation, a high rate, and a real-time entropy estimation, our protocol represents a promising

approach intermediate between fully device-independent protocols and commercial quantum random

number generators.

DOI: 10.1103/PhysRevApplied.7.054018

I. INTRODUCTION

Many tasks in modern science and technology make use
of random numbers, including Monte Carlo simulation,
statistical sampling, cryptography, and gaming applications
[1]. In general, a good random number generator is desired
to produce an output with a high entropy and at a high rate.
For applications requiring security, such as cryptography
and gambling, the randomness must be certified relative to
any untrusted parties. Because of the inherent randomness
in quantum physics, in recent years, intense effort has been
devoted to extracting randomness from quantum systems,
and quantum random number generation (QRNG) devices
are now commercially available [2,3].
QRNG can be implemented in a simple setup, exploiting

the randomness in a quantum measurement. For example,
one may send a single photon onto a balanced beam splitter
and detect the output path [4–6]. Other variants measure the
arrival time of single photons [7–10], the phase noise of a
laser [11–13], vacuum fluctuations [14,15], and shot noise
in mobile-phone cameras [16]. However, the principle is
essentially the same. The device produces a string of raw
bits, which, in general, contains some amount of random-
ness but is not perfectly random. In order to extract a final
(almost) perfectly random bit string, one uses a randomness
extractor [17]. The correct use of such extractors requires a
good estimate of the entropy of the raw data. This can be
obtained via a detailed theoretical modeling of the setup
[18,19], but this is usually cumbersome and challenging.
Moreover, any mismatch between the model and the

implementation or the instability of the device may
jeopardize the security of the protocol.
It turns out that these problems can be circumvented via

the so-called device-independent (DI) approach to random-
ness certification. In a setup violating a Bell inequality, the
entropy of the output data can be certified without any
detailed knowledge of the physical implementation [20,21];
see Ref. [22] for a review. This provides a highly reliable
and secure form of randomness, as it allows the physical
devices to be completely untrusted and is thus robust
against imperfections in the implementation. However, it
is technologically extremely challenging to realize, as it
requires Bell-inequality violation with no postselection.
So far, only proof-of-principle experiments have been
reported [21,23], achieving very low bit rates.
More recently, an intermediate approach termed semi-DI

has been discussed, exploring the trade-off between ease of
implementation and strong security [24–28]. Usually based
on a prepare-and-measure setup (hence avoiding the
complication of a Bell test), these schemes gain ease of
implementation by introducing some level of trust in the
devices used. Still, they require only general assumptions
about the physical implementation, such as a bounded
dimension [29–31], trusted measurement devices [32–35],
or a trusted source [36]. While significant progress has
been achieved, it is fair to say that the right balance
between simplicity, performance, and security has yet to
be identified.
Here, we explore an approach to quantum random

number generation, based on unambiguous quantum state
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discrimination (USD). Specifically, a quantum system is
prepared in one out of two quantum states which are
nonorthogonal and hence cannot be distinguished with
certainty. However, by performing a USD measurement,
the two states can be unambiguously distinguished (i.e.,
without false positives), at the price of having a certain
minimal rate of inconclusive events [37–39]; see also
Refs. [40,41]. The occurrence of these inconclusive events
must be genuinely random (if not, the states could be
distinguished better), and this is the source of quantum
randomness that we use. Our protocol is semi-DI in the
sense that the output entropy can be lower bounded based
on experimental data and a few general assumptions about
the setup. The concept is general and can thus be
implemented in a variety of physical systems. We have
implemented the protocol in a simple optical setup using
time-bin or photon-number encoding. Our setup features
only standard components and achieves a rate of
16.5 Mbits=s, comparable with commercial QRNGs.
Hence, our protocol combines high performance and ease
of implementation with the possibility for the user to
verify the generation of certified quantum randomness in
real time.

II. PROTOCOL

The conceptual scheme is illustrated in Fig. 1. The
protocol consists in three steps: (1) data collection from
measurements on quantum states, (2) estimation of the
genuinely quantum entropy in the data, and (3) randomness
extraction.
In step (1), a preparation device takes a binary input

x ∈ f0; 1g and emits a quantum system in state jψxi. The
central assumption of the protocol is that the overlap of the
two possible states is lower bounded, jhψ0jψ1ij ≥ δ. In
other words, we assume that the states are nonorthogonal
and hence not deterministically distinguishable. However, a
detailed description of the states is not required. For
simplicity, we keep the states pure for now. At the end
of this section, we discuss the precise assumptions on
which our protocol is based.
The state is sent to a measurement device, which provides

a ternary output b ∈ f0; 1;Øg. The main idea of our
protocol is that the measurement device performs USD.
The goal is thus to maximize the probability of identifying
which state has been prepared without errors, i.e., maximize
pðb ¼ xÞ while ensuring that pðb ¼ ¬xÞ ¼ 0. While quan-
tum theory allows for such a measurement, it imposes a
minimal rate of inconclusive events pðb ¼ ØÞ ≥ δ [41].
Note that this is a fundamental limit of quantum theory; if a
better measurement were possible, this would have dramatic
consequences, e.g., instantaneous transmission of informa-
tion. Importantly, it is not possible to predict in advance
whether a particular round of the experiment will be
conclusive or inconclusive. Clearly, if that were possible,
then a better measurement could be implemented. Therefore,

the occurrence of inconclusive events is a genuinely random
quantum phenomenon.
The protocol exploits this randomness source in order to

generate a final random bit string. In each round of the
protocol, we thus define a bit c which encodes whether this
round was conclusive or not, i.e., c ¼ 0 if b ¼ 0, 1 and
c ¼ 1 if b ¼ Ø. The value of b when the measurement is
conclusive (i.e., b ¼ 0 or b ¼ 1) will not be directly used
for extracting randomness. This value is, however, impor-
tant and will be used in order to estimate the entropy in the
data. One can understand this as verifying that the
measurement device is indeed performing a USD meas-
urement, i.e., self-testing of the device.
Our goal is now to bound the amount of randomness in c

given the overlap δ and the observed pðbjxÞ, that is, the
probability of obtaining output b given preparation x. To see
that the idea makes sense, consider first the ideal case in
which the preparation device emits two states jψxi with
overlap jhψ0jψ1ij ¼ δ and the measurement device
implements a perfect USD. Here we have that pð0j0Þ ¼
pð1j1Þ ¼ 1 − δ, no errors pð0j1Þ ¼ pð1j0Þ ¼ 0, and
pðØj0Þ ¼ pðØj1Þ ¼ δ. Hence, the probability of guessing
c is pg ¼ δ. In particular, for the choice δ ¼ 1=2, a perfectly

random bit can thus be certified.

FIG. 1. Steps of our QRNG protocol. (1) Data are generated in a
prepare-and-measure setup. The prepared states are known to have
a certain minimal overlap, and hence the preparation device is a
“gray box,” while nothing is assumed about the measurement
device, which is a “black box.” (2) From the collected data, a
conditional probability distribution for outputs given inputs is
estimated, and, from this, a bound on the entropy in the output data
is evaluated. (3) Based on the entropy bound, a string of certified
perfectly random bits is extracted from the output data.
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Now consider the general case, where the statistics are
not assumed to originate from a perfect USD measurement,
for instance, due to unavoidable technical imperfections.
Given the probabilities pðbjxÞ and a bound on the overlap
δ, we show how to bound the probability pg of guessing c

for an observer with complete knowledge of the inner
workings of the device, the input states, and the details of
the measurement, which may vary from run to run. We
label the measurement strategies by λ. The guessing
probability averaged over inputs and measurement strate-
gies, occurring with probabilities pðxÞ and pðλÞ, respec-
tively, is then given by

pg ¼
X

x

pðxÞ
X

λ

pðλÞmaxfTr½ρxΠλ
Ø�; 1 − Tr½ρxΠλ

Ø�g; ð1Þ

where ρx ¼ jψxihψxj and Π
λ
b are the elements of a three-

outcome positive-operator-value measure (POVM) describ-
ing the measurement. To certify randomness, we need to
upper bound pg over all possible measurement strategies

which are consistent with the observed experimental data.
Because the trace is invariant under unitary transforma-
tions, only the overlap of the input states matters, and not
the states themselves. As we explain in the Appendix,
upper bounds on pg can be established by means of

semidefinite programing (SDP). Specifically,

pg ≤ p�
g ¼

X

b;x

νbxpðbjxÞ ð2Þ

for any numbers νbx which fulfill that there exists four 2 × 2

Hermitian matrices Hλ0;λ1 , with λ0, λ1 ¼ 0, 1 such that

X

x

ρx

�

1

2
δλx;0δb;Ø þ 1

2
δλx;1ð1 − δb;ØÞ − νbx

�

þHλ0;λ1 −
1

2
Tr½Hλ0;λ1 �1 ≤ 0: ð3Þ

Coefficients νbx that are optimal for particular data pðbjxÞ
can be found by SDP. However, given valid νbx and fixed δ,
the bound (2) holds for any pðbjxÞ. This implies that it is
not necessary to run an SDP every time pðbjxÞ is updated.
One only needs to evaluate (2), which is a simple, linear
function of the data, using fixed values of νbx (or a few
tabulated values and take the tightest bound). This enables
fast QRNG and the simple incorporation of finite-size
effects. Note that, for a perfect USD of states with overlap
δ, we find (numerically, using SDP to optimize νbx) that our
bound certifies pg ≤ δ [42].

In step (2) of the protocol, from the experimental data of
a number of runs, the input-output probability distribution
pðbjxÞ is estimated, and the bound (2) is evaluated. This
also provides a bound on the genuinely quantum entropy in
the string of raw bits c, given by the min-entropy

Hmin ¼ − log2ðpgÞ: ð4Þ

The min-entropy quantifies the number of certified random
bits that can be extracted per bit of the raw data [43]. The
final step (3) of the protocol consists in extracting a final
random bit string via a randomness extraction procedure,
based on the bound on Hmin.
Finally, we discuss all assumptions required in our

protocol. First, we assume that the input x is generated
independently from the devices; in particular, x should be
independent from λ. In our experimental implementation, x
will be generated from a classical RNG (e.g., a pseudor-
andomness generator). The second assumptions concerns
the overlap of the two prepared states. We assume that, in
each round of the protocol, the two prepared states cannot
be perfectly distinguished (using any possible quantum
measurement procedure). If the two states are pure, it is
possible to discriminate them without any error, at the price
of having a minimal rate of inconclusive rounds, given by
the overlap between the two states. Note that, if the states
are mixed, with overlapping support, then they cannot be
distinguished unambiguously anymore. We assume that the
two prepared states ρ0 and ρ1 fulfill Fðρ0; ρ1Þ ≥ δ, where F
is the fidelity. This condition must hold with respect to any
observer, in particular, from the point of view of the
measuring device. No additional information is available
which allows picking out specific terms in any decom-
position of the states. This ensures that ρ0 and ρ1 have a
minimal indistinguishability from the point of view of the
measuring device. Hence, no measurement procedure
allowed in quantum theory would allow one to distinguish
the two states better. In particular, no fault in the imple-
mentation of the measuring device can make the states
more distinguishable. Since, without additional informa-
tion, going from pure to mixed states with the same fidelity
cannot help in distinguishing the states, taking ρ0 and ρ1
pure is the most conservative choice when bounding the
guessing probability, and hence our bound above is general
under this assumption. We note that our requirement is
similar to assuming that the prepared states in different
rounds are independent and identically distributed with
respect to all observers; however, it is strictly weaker, as we
do not need the states in every round to be the same, only
that their relative fidelity is bounded [44]. We also stress
that there are no assumptions on the measurement device
whatsoever.

III. IMPLEMENTATIONS

We now discuss different possible implementations of
our protocol. In the next section, we report the experi-
mental realization of two of these schemes, thus demon-
strating practical relevance in situations involving loss and
imperfections.
Implementation 1.—A first implementation uses a time-

bin encoding; see Fig. 2(a). Here the two states are encoded
by weak coherent pulses emitted in pairs of time bins
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jψ0i ¼ jαij0i; jψ1i ¼ j0ijαi; ð5Þ

where j0i denotes the vacuum and jαi ¼
expf−½jαj2�=2g

P

∞
n¼0

ðαn=n!Þjni a coherent state with

mean photon number jαj2. The overlap of these states is

directly related to jαj2, namely,

δ ¼ jhψ0jψ1ij ¼ expð−jαj2Þ: ð6Þ

For weak pulses (α < 1), the overlap is significant. Note
that this encoding is reminiscent of the coherent one-way
(COW) quantum key distribution protocol [45].
A practical advantage of this implementation is the

simplicity of realizing the (optimal) USD measurement,
which simply requires a single-photon detector with a
timing resolution sufficient to distinguish the two time bins.
If a click is registered in the early (late) time bin, the system
outputs b ¼ 0 (b ¼ 1), while if no click is registered, the
outcome is inconclusive b ¼ Ø. It is straightforward to
check that, in the absence of losses and noise,

pðb ¼ ØÞ ¼ expð−jαj2Þ, and, hence, the measurement
achieves the minimal rate of inconclusive outcomes while
giving no errors.
In practice, the measurement does not achieve the

optimal USD exactly. Typically, detector inefficiency
increases the inconclusive rate above that of the perfect
USD, while detector dark counts increase the error rate.
Nevertheless, randomness can still be extracted, as our
protocol is sufficiently robust.
Implementation 2.—Another possible implementation

consists in using only a single weak coherent pulse; see
Fig. 2(b). The two nonorthogonal states are now simply

jψ0i ¼ j0i; jψ1i ¼ jαi: ð7Þ

This corresponds to an encoding in the photon number
degree of freedom. The overlap between the two states
is δ ¼ jhψ0jψ1ij ¼ exp½−ðjαj2Þ=2�.
As above, we use as a measurement a simple single-

photon detector. If a click is registered, the output is b ¼ 1,
while if no click is registered, the output is b ¼ Ø. The
output b ¼ 0 thus never occurs. Note that the measurement
is now effectively binary and corresponds to a partial USD
measurement, in the sense that it is only the state jψ1i that is
identified unambiguously; hence, c ¼ b. So, the random-
ness is effectively generated from the state jψ1i, while the
state jψ0i is used to test that the device correctly performs
the USD. Similarly to quantum key distribution protocols,
it will then be advantageous to bias the input probability,
i.e., setting pðx ¼ 1Þ > pðx ¼ 0Þ, in order to increase the
output entropy. This will be discussed in the next section
where we implement this protocol.
Further implementations.—Our approach can be imple-

mented using more general encodings. For instance, a
polarization encoding also represents a practical solution.
Given two nonorthogonal states of polarization, the optimal
USD measurement can be realized using a partial polarizer
(i.e., polarization-dependent losses) [46]. Encodings using
frequency or spatial modes could also be considered.

IV. EXPERIMENTS

We have experimentally realized our QRNG based on
USD, using the two main implementations discussed
above, namely, based on time bins (two pulses) and
photon-number encodings (single pulse). Both implemen-
tations are essentially based on the same setup, with only
minor modifications.
We first discuss the time-bin implementation. In order to

generate the two nonorthogonal states (5), a field-program-
mable gate array (FPGA) triggers a fibered laser diode at a
rate of 50 MHz, as presented in Fig. 3. A pseudorandom
generator generates the input x. If x ¼ 1, the electronic
pulse is delayed by 10 ns, while nothing happens if x ¼ 0.
This generates the states jψ1i and jψ0i, respectively. At
each trigger signal, the laser diode emits light pulses of
40 ps at 655 nm. To set the appropriate light intensity, two
adjustable attenuators are placed at the output of the laser
after a 50∶50 beam splitter (BS). The second port of the BS
is connected to a calibrated power meter which monitors
the laser power, and the attenuation is adjusted based on
this reading.
At the output of the source, the light is detected by a

silicon avalanche photodiode single-photon detector
(PerkinElmer SPCM-AQR) with an efficiency of 77%
and a temporal jitter smaller than 1 ns, which is enough
to temporally discriminate the pulses separated by 10 ns.
The detector has around 300 Hz of dark counts and a dead
time of 50 ns. All the detection events are recorded by the

(a)

(b)

FIG. 2. Implementations with weak coherent states encoded in
time bins. (a) Two-pulse scheme. For each pair of time bins, a
laser emits a weak pulse in either the early or the late slot,
corresponding to the states jψ0i ¼ jαij0i and jψ1i ¼ j0ijαi. Each
bin is measured by a single-photon detector. If a click is registered
in the early or late bin, the system outputs b ¼ 0 or b ¼ 1,
respectively, while if no click is registered, an inconclusive output
is produced, b ¼ Ø. (b) Single-pulse scheme. The states are
encoded in single pulses of weak coherent states or vacuum,
jψ0i ¼ j0i and jψ1i ¼ jαi. When a click is registered, the output
is b ¼ 1, while no click is treated as inconclusive b ¼ Ø.
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FPGA. Every second, after taking data, the conditional
probabilities pðbjxÞ are evaluated. This generates 50 M of
raw bits, the entropy of which will be estimated via our
protocol. The estimation of the probabilities pðbjxÞ is made
from a finite number of trials N. To take into account the
error on the estimation of these probabilities due to the
finite statistics effect, we use the Chernoff-Hoeffding tail
inequality [47], which provides an upper (lower) bound on
the probability that the sum of random variables deviates
from its expected value. From the experimental statistics
ξðbjxÞ ¼ ðnb;x=

P

bnb;xÞ, where nb;x denote the number of
events with outcome b and input x, we get

ξðbjxÞ− t

�

ϵ;
X

b

nb;x

�

≤pðbjxÞ≤ ξðbjxÞþ t

�

ϵ;
X

b

nb;x

�

ð8Þ

with tðϵ; NÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logð1=ϵÞ=ð2NÞ
p

. Here, ϵ is the confidence

index, which represents the probability that the above
relation is not satisfied. In our experiments, we choose

ϵ ¼ 10−9. From this, we can lower bound the relation of
Eqs. (2) by

p�
g ≤ pN

g ¼
X

b;x

νbxξðbjxÞ þ
X

b;x

jνbxjt
�

ϵ;
X

b

nb;x

�

: ð9Þ

Note that the above bound is conservative but essentially
optimal when tðϵ;Pb nb;xÞ is very small; a tighter bound

can be obtained by further imposing that the distribution
pðbjxÞ is normalized. To generate the final bit string with
quasiperfect entropy, an extractor is applied to the raw bit
string, with a compression factor which depends on the
target entropy and the min-entropy contained in the raw

data, Hmin ¼ − log2ðpN
g Þ. Hence, the final bit rate of the

QRNG is adapted in such a way that the min-entropy per
output bit is constant.
In our configuration, the light-pulse energy is the only

adjustable parameter that can be tuned to optimize the min-
entropy per raw bit. Figure 4 (left) represents the min-
entropy as a function of jαj2 which is directly related to the
overlap between the two states through (6). The upper red
curve represents the theoretical prediction taking into
account the finite statistic effect when we consider single-
photon detection with an efficiency of 77% (i.e., matching
our experimental value but without saturation effects) [48].
The dead-time effect can be modeled by applying the
correction factor cd ¼ ðNdet=1þ t�dNdetÞ on the detection

probabilities, where Ndet and t�d correspond to the total

number of detection and the effective dead time of the
detector, respectively. This model is usually employed with
a uniform and continuous source of photons, and td will
correspond to the detector dead time. In a pulsed regime,
we can use the same model with an effective dead time
which depends on the dead time of the detector and the
repetition rate of the laser. In our configuration, we estimate
that t�d is equal to 34 ns. Taking experimental imperfections

into account, we see that a maximal entropy of 0.22 is

obtained for a pulse energy of jαj2 ¼ 0.3, which allows us

FIG. 3. Experimental implementation of the QRNG. The
preparation device corresponds here to the two-pulse protocol.

FIG. 4. Min-entropy per raw bit generated by the QRNG as a function of the energy per pulse jαj2. The left plot represents the protocol
with time-bin encoding (two pulses), while the right plot considers the photon-number protocol (single pulse). In both plots, the red
curve corresponds to the theoretical prediction obtained for a perfect single-photon detector with an efficiency of 77% (corresponding to
our experimental value) but without considering dead time. The blue curve considers the effect of detector dead time and shows good
agreement with experimental data (black points).
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to generate 11 MHz of final random bits after the

extraction. Here the error rate is typically around 4 × 10−4.
Let us now move to the second implementation, using

the photon number as a degree of freedom. In this single-
pulse approach, the only difference is the configuration of
the FPGA. Indeed, instead of delaying or not the optical
pulse, the FPGA now sends or not the pulse (hence, the
emitted state is the vacuum) with a probability
pðx ¼ 0Þ ¼ 1=8. This probability bias is optimal when
we consider a block size of 50 Mbits. Note that the bias can
be increased for a larger block size, in order to increase the
generation rate. As shown in Fig. 4 (right), we obtain here

an entropy per bit of 0.33 for jαj2 ¼ 0.60, which allows us
to generate 16.5 MHz of final random bits after the
extraction.
Finally, let us comment on the justification of the

assumptions required in our protocol. These are essentially
the same in both configurations. The first assumption
concerns the fact that the generation of the input x must
be independent from the devices. This is easily realized,
since x is generated by the FPGA. The second assumption
is the crucial one. Here we must ensure that the pulse
energy of the source is well characterized, in order to satisfy
the assumption that the overlap of the two states is at least δ.
Importantly, the overlap must be bounded in each round of
the protocol, which can be delicate if the source features
non-negligible power fluctuations, e.g., due to instabilities
in the laser itself or in the attenuator in Fig. 3. When the
energy per pulse becomes higher, the overlap of the output
states decreases; hence, if such fluctuations are not
accounted for, the overlap may decrease below δ, violating

the assumption. There are several possibilities to address
this point. First, one can choose δ in a conservative manner
and not based directly on the (mean) power of the source

jαj2 but rather with respect to a maximal energy per pulse

jαmaxj2. That is, the protocol can be run under the
assumptions of a given overlap δ (corresponding to

jαmaxj2), while the mean pulse energy of the source jαj2
corresponds, in fact, to a much larger overlap, i.e.,
jhψ0jψ1ij ≫ δ. This will decrease the entropy per bit, as
shown in Fig. 5, but final randomness can nevertheless still
be certified, given that power fluctuations are not too large.
Another possibility would be to use an optical fuse [49],
i.e., an optical channel breaking down above a certain
threshold intensity.

V. CONCLUSION

We propose an approach to quantum random number
generation based on USD measurements. The protocol is in
a prepare-and-measure configuration and based on the fact
that the occurrence of inconclusive events in unambiguous
state discrimination must be genuinely random. Our pro-
tocol offers semi-DI security, in the sense that the amount
of trust in the physical implementation is low. Specifically,
the main assumption is a bound on the overlap of the
prepared states, but no assumption about the measurement
device is needed. At the same time, the protocol is practical,
which we demonstrate by implementing it using a simple
optical setup. We achieve a random bit rate of 16.5 MHz,
which is comparable to commercial QRNGs [50]. Our
approach thus combines strong security, allowing the user
to monitor the entropy of the output in real time, as well as
ease of implementation and high rates.
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Note added.—The setup of the single-pulse protocol is
independently discussed by the authors of Ref. [51] but
analyzed under different technical and security assumptions.

APPENDIX: BOUNDING pg BY

SEMIDEFINITE PROGRAMING

In this Appendix, we show how the guessing probability
can be bounded via SDP. We discuss both the primal and
dual programs. We start our analysis by assuming a fixed
overlap jhψ0jψ1ij ¼ δ between the two prepared states and
show in the end that this is general, i.e., that the case
jhψ0jψ1ij ¼ Δ > δ is covered.

FIG. 5. Bound on the entropy when taking possible power
fluctuations of the source into account. The min-entropy is
plotted as a function of the ratio jαmaxj2=jαj2, where jαmaxj2 is

the maximal energy per pulse and jαj2 is the average pulse energy
of the source. For both protocols, we plot the min-entropy in blue
and the corresponding average energy per pulse of the source in
red. Note that, even when the maximal pulse energy is assumed to
be as high as 5 times larger than the mean energy, a reasonable
amount of entropy can still be certified.
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1. Primal

For a fixed overlap jhψ0jψ1ij ¼ δ and given data pðbjxÞ,
the guessing probability is bounded by the maximization
over all measurement strategies and their distribution,
reproducing the data. Assuming that the inputs are bal-
anced, pðxÞ ¼ 1=2, and denoting the distribution of meas-
urement strategies by qλ ¼ pðλÞ and the density matrices
ρx ¼ jψxihψxj, we have that

pg ≤
1

2
max
qλ;Π

λ
b

X

1

x¼0

X

λ

qλmaxfTr½ρxΠλ
Ø�;1−Tr½ρxΠλ

Ø�g; ðA1Þ

with the constraint that the data are reproduced, i.e., that
P

λqλTr½ρxΠλ
Ø� ¼ pðbjxÞ. We note that, although it looks

like the above expression depends on the states ρx, this is
not actually the case, as the trace is invariant under unitary
transformations. Furthermore, since there are just two
states, we can restrict to a two-dimensional Hilbert space
without loss of generality. Hence, we can take the two states

to be jψ0i ¼ j0i and jψ1i ¼ δj0i þ
ffiffiffiffiffiffiffiffiffiffi

1 − δ
p

j1i in some
basis fj0i; j1ig. It is then clear that the maximum depends
only on δ and the observed data pðbjxÞ.
A priori, the number of measurement strategies is

unbounded. However, following Ref. [52], all strategies
for which the inner maximization occurs for the same term
can be grouped together. It is then sufficient to consider
four different measurement strategies corresponding to the
max occurring for the first or second term for each x,
and one can remove the inner maximization without loss of
generality. We label these strategies by ðλ0; λ1Þ, where λx
determines which term is maximal for the input x. We

thus have four POVMs with elements Π
λ0;λ1
b . Defining

~Π
λ0;λ1
c ¼ δc;0Π

λ0;λ1
Ø þ δc;1ð1 − Π

λ0;λ1
Ø Þ, the bound can be

written

pg ≤
1

2
max

qλ0 ;λ1 ;Π
λ0 ;λ1
b

X

1

x¼0

X

1

λ0;λ1¼0

qλ0;λ1Tr½ρx ~Π
λ0;λ1
λx

�: ðA2Þ

Finally, we absorb the weights qλ0;λ1 into the POVM

elements and define M
λ0;λ1
b ¼ qλ0;λ1Π

λ0;λ1
b and ~Mλ0;λ1

c ¼
δc;0M

λ0;λ1
Ø þ δc;1ð1 −M

λ0;λ1
Ø Þ. With this, we arrive at a

bound pg ≤ p̄g which can be computed by semidefinite

programing:

p̄g ¼
1

2
max
M

λ0 ;λ1
b

X

1

x¼0

X

1

λ0;λ1¼0

Tr½ρx ~Mλ0;λ1
λx

�; ðA3Þ

subject to the constraints that the M
λ0;λ1
b be Hermitian,

positive semidefinite, sum to the identity, that they form a
valid, subnormalized measurement for each ðλ0; λ1Þ, and
that the data are reproduced. That is,

M
λ0;λ1
b ¼ ðMλ0;λ1

b Þ†; ðA4Þ

M
λ0;λ1
b ≥ 0; ðA5Þ

X

b

M
λ0;λ1
b ¼ 1

2
Tr

�

X

b

M
λ0;λ1
b

�

1; ðA6Þ

X

λ0;λ1

Tr½ρxMλ0;λ1
b � ¼ pðbjxÞ: ðA7Þ

Note that the normalization of ρx and pðbjxÞ
together with conditions (A6) and (A7) implies that
P

b;λ0;λ1
Tr½Mλ0;λ1

b � ¼ 2. Since (A3) is linear in the M
λ0;λ1
b

and the constraints are semidefinite, the maximization
defines an SDP and can be solved efficiently, providing
optimal bounds on pg for every given state overlap and

observed data.

2. Dual

While the primal SDP above gives optimal bounds on the
guessing probability for given observed data and a fixed
state overlap, it is not practical to incorporate directly into
the QRNG for several reasons. The first is speed. Every
time the distribution pðbjxÞ is updated based on the raw
data, the SDP must be evaluated to update the bound. This
evaluation typically takes on the order of a second,
potentially slowing down the bit rate significantly.
Second, experimentally the state overlap is not known
exactly, but a lower bound can be established with a high
certainty. Hence, one would like a bound which is valid for
any larger overlap. Third, since pðbjxÞ is estimated from
finite raw data, finite-size effects must be accounted for in
the bound. It is not obvious how to incorporate this into the
primal SDP in an efficient manner.
Fortunately, all of these concerns can be addressed by

using the dual SDP. A solution of the dual provides an
upper bound on the solution of the primal and, hence, on
pg. When the data pðbjxÞ change, a new bound can be

found by evaluating a simple, linear function of pðbjxÞwith
no need to run the full SDP as long as δ is fixed.
Furthermore, because the function is linear, finite-size
effects can be incorporated straightforwardly. The bound
can be shown to hold for any overlap Δ ≥ δ, as discussed at
the end of this section.
We now derive the dual SDP in a manner which makes it

clear that it upper bounds the primal. For each of the
constraints in (A5)–(A7), we introduce Lagrangian multi-

pliers, respectively, Hermitian 2 × 2 matrices G
λ0;λ1
b , Hλ0;λ1 ,

and real scalars νbx. We define a Lagrangian function of the
primal SDP variables and these new variables, given by
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L ¼ 1

2

X

1

x¼0

X

1

λ0;λ1¼0

Tr
n

ρx½δλx;0M
λ0;λ1
Ø þ δλx;1ð1 −M

λ0;λ1
Ø Þ�

o

þ
X

b;λ0;λ1

Tr½Gλ0;λ1
b M

λ0;λ1
b �

þ
X

λ0;λ1

Tr

�

Hλ0;λ1
X

b

�

M
λ0;λ1
b −

1

2
Tr½Mλ0;λ1

b �1
��

þ
X

x;b

νbx

�

X

λ0;λ1

Tr½ρxMλ0;λ1
b � − pðbjxÞ

�

: ðA8Þ

We further define S to be the supremum of the Lagrangian
over the primal SDP variables. That is,

S ¼ sup
M

λ0 ;λ1
b

L: ðA9Þ

For any particular solution M
λ0;λ1
b of the primal SDP

(A3)–(A7), the two last terms in the Lagrangian (A8)
vanish, because the solution fulfills the constraints (A6) and
(A7). Similarly, because of (A5), the second term in the

Lagrangian is positive if the G
λ0;λ1
b are restricted to be

positive. The first term of the Lagrangian is the target
function of the primal (A3). It follows that S is an upper

bound on the value of the primal, S ≥ p̄g, when G
λ0;λ1
b ≥ 0,

and thus also an upper bound on the guessing probabil-
ity S ≥ pg.

To get good bounds, we should minimize S over the
Lagrangian multipliers. To this end, we first rewrite S in a
more convenient form. We collect all terms which multiply
the primal variables:

S ¼ sup
M

λ0 ;λ1
b

X

b;λ0;λ1

Tr½Mλ0;λ1
b K

λ0;λ1
b � −

X

b;x

νbxpðbjxÞ; ðA10Þ

where

K
λ0;λ1
b ¼

X

x

ρx

�

1

2
δλx;0δb;Ø þ 1

2
δλx;1ð1 − δb;ØÞ þ νbx

�

þ G
λ0;λ1
b þHλ0;λ1 −

1

2
Tr½Hλ0;λ1 �1: ðA11Þ

Since here theM
λ0;λ1
b are not restricted to being positive, we

see that the supremum in (A10) will be infinite, unless

K
λ0;λ1
b vanishes. Hence, to get good bounds on pg we must

impose that K
λ0;λ1
b ¼ 0. Since the operators G

λ0;λ1
b are

positive semidefinite but not otherwise restricted, this is

equivalent to dropping G
λ0;λ1
b from (A11) and requiring that

the remaining expression is negative semidefinite. Using
this, we finally arrive at our dual SDP

p�
g ¼ min

Hλ0 ;λ1 ;νbx

−

X

bx

νbxpðbjxÞ ðA12Þ

subject to

Hλ0;λ1 ¼ ðHλ0;λ1Þ†;
X

x

ρx

�

1

2
δλx;0δb;Ø þ 1

2
δλx;1ð1 − δb;ØÞ þ νbx

�

þHλ0;λ1 −
1

2
Tr½Hλ0;λ1 �1 ≤ 0: ðA13Þ

From the above, it should be clear that pg ≤ p̄g ≤ p�
g. We

also see that the data pðbjxÞ do not appear in the dual
constraints (A13) and (A14). This means that, given one

feasible dual solution (a set of Hλ0;λ1 and νbx fulfilling the
constraints), valid bounds on pg can be computed for any

data pðbjxÞ by evaluating the right-hand side of (A12). This
is a simple linear function and can be evaluated very fast in
practice. Furthermore, this form allows us to treat finite-size
effects easily, as explained in the main text; see Eq. (9).
The dual bound p�

g also remains valid when the overlap
of the input states increases. To see this, consider the space
of conditional distributions pðbjxÞ thought of as vectors p.
A bound of the form

pg ≤

X

bx

νbxpðbjxÞ ¼ LðpÞ ðA14Þ

for fixed numbers pg, νbx defines a hyperplane in this

space, with all distributions pðbjxÞ fulfilling the bound
lying in one of the corresponding half spaces. Let us denote
the set of all distributions which can be generated from a
pair of pure states with overlap δ by Sδ. It is easy to see that
this set must be convex. We then have a picture as in Fig. 6.
Since the bound on pg holds for all points in Sδ, to show

that it also holds for all Δ > δ, it is sufficient to show that
SΔ⊆Sδ, i.e., that any distribution which can be obtained

FIG. 6. Larger set: Space of all conditional distributions pðbjxÞ.
Set Sδ: Distributions obtainable from states with overlap δ. Set
SΔ: Distributions obtainable from states with overlap Δ > δ. A
bound obtained from the dual SDP using overlap δ defines a
hyperplane (dashed line) with Sδ on one side. To see that the
bound holds for all Δ > δ, it is sufficient to realize that SΔ⊆Sδ.
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from two states with overlap Δ can also be obtained from
two states with smaller overlap δ.
This can be shown as follows. Consider two pure

states jψ0i, jψ1i with overlap Δ. We add an ancilla system
and define states jϕxi ¼ jψxij0i and jφ0i ¼ jψ0ij0i,
jφ1i ¼ jψ1ijsi, where j0i is some fixed state and jsi a
different state. Then jhϕ0jϕ1ij ¼ Δ and jhφ0jφ1ij ¼
Δjh0jsij ¼ δ, where δ can be set to any value ≤ Δ by
adjusting the overlap of the ancilla states jh0jsij.
Now, any distribution pðbjxÞ ¼ Tr½Mbjψxihψxj� which

can be obtained from the states jψxi can clearly also be
obtained from jϕxi by extending the POVM trivially:
pðbjxÞ ¼ Tr½ðMb ⊗ 1Þjϕxihϕxj�. However, the same
POVM acting on the states jφxi will give the same
distribution, because it is acting trivially on the ancilla,
pðbjxÞ ¼ Tr½ðMb ⊗ 1Þjφxihφxj�. Hence, for any distribu-
tion obtained from a POVM on a pair of pure states with
overlap Δ, there exists another pair of pure states with
overlap δ and a POVM reproducing the distribution.
Finally, we observe that, since we are working only with

pairs of states, the ancilla is in fact unnecessary. Any pðbjxÞ
obtained from a pair of pure states can be obtained from a
pair of qubit states (with the same overlap). Also, since any
pair of pure qubit states is unitarily related to any other pair
with the same overlap, it follows that any pair with overlap
δ can reproduce the measurement statistics from any pair
with overlap Δ ≥ δ.
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