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MEGAN analysis of metagenomic data
Daniel H. Huson,1,3 Alexander F. Auch,1 Ji Qi,2 and Stephan C. Schuster2,3

1Center for Bioinformatics, Tübingen University, Sand 14, 72076 Tübingen, Germany; 2Center for Comparative Genomics

and Bioinformatics, Center for Infectious Disease Dynamics, Penn State University, University Park, Pennsylvania 16802, USA

Metagenomics is the study of the genomic content of a sample of organisms obtained from a common habitat using

targeted or random sequencing. Goals include understanding the extent and role of microbial diversity. The

taxonomical content of such a sample is usually estimated by comparison against sequence databases of known

sequences. Most published studies use the analysis of paired-end reads, complete sequences of environmental fosmid

and BAC clones, or environmental assemblies. Emerging sequencing-by-synthesis technologies with very high

throughput are paving the way to low-cost random “shotgun” approaches. This paper introduces MEGAN, a new

computer program that allows laptop analysis of large metagenomic data sets. In a preprocessing step, the set of

DNA sequences is compared against databases of known sequences using BLAST or another comparison tool.

MEGAN is then used to compute and explore the taxonomical content of the data set, employing the NCBI

taxonomy to summarize and order the results. A simple lowest common ancestor algorithm assigns reads to taxa

such that the taxonomical level of the assigned taxon reflects the level of conservation of the sequence. The software

allows large data sets to be dissected without the need for assembly or the targeting of specific phylogenetic markers.

It provides graphical and statistical output for comparing different data sets. The approach is applied to several data

sets, including the Sargasso Sea data set, a recently published metagenomic data set sampled from a mammoth bone,

and several complete microbial genomes. Also, simulations that evaluate the performance of the approach for

different read lengths are presented.

[MEGAN is freely available at http://www-ab.informatik.uni-tuebingen.de/software/megan.]

The genomic revolution of the early 1990s targeted the study of

individual genomes of microorganisms, plants, and animals.

While this type of analysis has almost become routine, the ge-

nomic analysis of complex mixtures of organisms remains chal-

lenging. Metagenomics has been defined as “the genomic analy-

sis of microorganisms by direct extraction and cloning of DNA

from an assemblage of microorganisms” (Handelsman 2004),

and its importance stems from the fact that 99% or more of all

microbes are deemed to be unculturable. Goals of metagenomic

studies include assessing the coding potential of environmental

organisms, quantifying the relative abundances of (known) spe-

cies, and estimating the amount of unknown sequence informa-

tion (environmental sequences) for which no species, or only

distant relatives, have yet been described. It is useful to extend

Handelsman’s definition to also include sequences from higher

organisms as well as just microorganisms, thus opening the door

to “environmental forensics.” By vastly extending the currently

available sequences in databases, metagenomics promises to lead

to the discovery of new genes that have useful applications in

biotechnology and medicine (Steele and Streit 2005).

Early metagenomics projects (Béja et al. 2000, 2001) were

plagued by potential biases that are due to DNA extraction and

cloning methods (Martiny et al. 2006). Clone libraries were con-

structed from environmental DNA using fosmid and BAC vectors

as vehicles for DNA propagation and amplification. The libraries

were subsequently screened for specific phylogenetic markers,

and paired-end sequencing was undertaken on clones of interest.

Overlapping clones, sequenced in their entity, were scaffolded

into super-contigs, giving a snapshot of an organism’s genomic

features, such as GC content, codon usage, or coding density.

This strategy was soon complemented by whole (meta)-genome

sequencing using a “shotgun” approach (Venter et al. 2004) that

employs cloning and paired-end sequencing of plasmid libraries.

Recent projects based on these methodologies include data sets

from an acid mine biofilm (Tyson et al. 2004), seawater samples

(Venter et al. 2004; DeLong et al. 2006), deep-sea sediment (Hal-

lam et al. 2004), or soil and whale falls (Tringe et al. 2005).

These projects all use “Sanger sequencing,” based on clon-

ing, fluorescent dideoxynucleotides, and capillary electrophore-

sis (Meldrum 2000a,b). Recently, a new “sequencing-by-

synthesis” strategy was published (Margulies et al. 2005; Zhang et

al. 2006). This approach uses emulsion-based PCR amplification

of a large number of DNA fragments and parallel pyro-

sequencing with high throughput. In a single sequencing run,

>20 million base pairs of sequence can be generated, at a lower price

per base than Sanger-based methods. The current drawbacks of the

method are short read lengths of ∼100 bp, in contrast to ∼800 bp

using Sanger sequencing, a slightly higher sequencing error rate due

to difficulties determining base pair counts in homopolymer

stretches, and a substantial reduction of read length when sequenc-

ing pair-ended reads. The most important advantage of the new

sequencing approach for metagenomics is that it does not require

cloning of the target DNA fragments and therefore avoids cloning

biases resulting from toxic sequences killing their cloning hosts.

In this study, we present a new approach to the initial analy-

sis of a metagenomic data set that avoids the problems associated

with environmental assemblies or the use of a limited number of

phylogenetic markers. Our strategy can be applied to DNA reads

collected within the framework of any metagenomics project,

regardless of the sequencing technology used, and thus provides

an easily deployable alternative to other types of analysis. We

provide a new computer program called MEGAN (Metagenome

Analyzer) that allows analysis of large data sets by a single scien-

tist. In a pre-processing step, the set of DNA reads (or contigs) is
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compared against databases of known sequences using a com-

parison tool such as BLAST (see Fig. 1). MEGAN is then used to

estimate and interactively explore the taxonomical content of

the data set, using the NCBI taxonomy to summarize and order

the results. The program uses a simple algorithm that assigns

each read to the lowest common ancestor (LCA) of the set of taxa

that it hit in the comparison (see Fig. 2). As a result, species-

specific sequences are assigned to taxa near the leaves of the

NCBI tree, whereas widely conserved sequences are assigned to

high-order taxa closer to the root.

We first illustrate this approach by applying it to a subset of

the Sargasso Sea data set (Venter et al. 2004), which was obtained

by Sanger sequencing. We then apply it to a set of ∼300,000 reads

obtained from a sample of mammoth bone (Poinar et al. 2006),

which used the “sequencing-by-synthesis” approach. Finally, we

address the question of whether species can be identified with

confidence from individual short reads, using the genome se-

quences of Escherichia coli and Bdellovibrio bacteriovorus.

Ease of use is a main design criterion of MEGAN. An analysis

is initiated by simply opening the output file of any member of

the BLAST family of programs, or from some other sequence

comparison tool, and is then performed interactively via a

graphical user interface. The program was carefully engineered to

run quickly and responsively on a laptop, even when processing

large data sets. For maximum portability, the program is written

in Java, and installers for Linux/Unix, MacOS and Windows are

freely available to the academic community from http://www-

ab.informatik.uni-tuebingen.de/software/megan.

Results

The MEGAN processing pipeline

Figure 1 illustrates a typical processing pipeline in which MEGAN

is used to perform the initial analysis of a metagenomic sample.

Firstly, reads are collected from the sample using any random

shotgun protocol. Secondly, a sequence comparison of all reads

against one or more databases of known reads is performed, us-

ing BLAST or a similar comparison tool. Thirdly, MEGAN pro-

cesses the results of the comparison to collect all hits of reads

against known sequences and assigns a taxon ID to each se-

quence based on the NCBI taxonomy. This produces a MEGAN

file that contains all information needed for analyzing and gen-

erating graphical and statistical output. Fourthly, the user inter-

acts with the program to run the lowest common ancestor (LCA)

algorithm (see Fig. 2), to analyze the data, to inspect the assign-

ment of individual reads to taxa based on their hits, and to pro-

duce summaries of the results at different levels of the NCBI

taxonomy (see Figs. 3 and 5–8 below).

As different metagenomics projects need to use different

alignment tools and databases, we have designed MEGAN in

such a way that gives users unrestricted choice in this matter. In

our studies, we used BLAST comparisons (Altschul et al. 1990)

against the NCBI-NR, NCBI-NT, NCBI-ENV-NR, and NCBI-ENV-

NT databases (Benson et al. 2006), and additional genome-

specific databases, where appropriate.

Although well established and trivial to carry out, sequence

comparison is the main computational bottleneck in metage-

nomic analysis and will become increasingly critical, as the size

of data sets and databases continues to grow. There is a tradeoff

to be considered: Whole-genome approaches are easier to ex-

ecute and potentially provide better taxonomical resolution than

projects that target specific phylogenetic markers, but the addi-

tional computational burden can be immense.

Re-analysis of the Sargasso Sea data set

In the Sargasso Sea project (Venter et al. 2004), samples of sea-

water were collected, and organisms of size 0.1–3 µm were ex-

tracted to produce a metagenomic data set. From four individual

sampling sites, ∼1.66 million reads of average length 818 bp were

determined using Sanger sequencing. The biological diversity

and species richness was measured using environmental assem-

blies, and also by analyzing six specific phylogenetic markers

(rRNA, RecA/RadA, HSP70, RpoB, EF-Tu, and Ef-G). The species

profile of 16 taxonomical groups generated by this approach

shows a prevalence of Alphaproteobacteria and Gammaproteo-

bacteria by a factor of 2–4 over the remaining 14 taxonomic

groups, with only the Cyanobacteria being notably more fre-

quent than the remaining taxa.

The Venter et al. (2004) study pioneered random genome

sequencing of environmental samples. Their analysis of the data

relies on the frequency of individual species to their contribution

of scaffolds and contigs or matches to six established phyloge-

netic markers. The analysis performed by MEGAN uses an inde-

pendent statistical approach, arriving at a very similar result for

the species distribution. In Figure 3, A and B, we present the

result of a MEGAN analysis for Sample 1 and pooled Samples 2–4,

respectively, based on two subsets of 10,000 reads per data set.

These results closely resemble the species distribution reported in

Venter et al. (2004). In Figure 4, we report the averaged weighted

percentage of the six phylogenetic mark-

ers for each of the 16 taxonomic groups,

as estimated from Venter et al. (2004),

and compare the result to the corre-

sponding values produced by MEGAN.

Figure 3 demonstrates that MEGAN

can easily detect a sampling bias be-

tween Sample 1 and pooled Samples 2–4,

despite the fact that only a small fraction

(20,000 reads, ∼1% of the total data set)

was analyzed. This discrepancy, referred

to as “microheterogeneity” by Venter et

al. (2004), concerns an over-representa-

tion of members of the proteobacteria

groups Shewanella and Burkholderia in

Sample 1 (DeLong 2005). Both bacteria

are not expected to be present in pelagic

Figure 1. For a given sample of organisms, a randomly selected collection of DNA fragments is
sequenced. The resulting reads are then compared with one or more reference databases using an
appropriate sequence comparison program such as BLAST (Altschul et al. 1990). The resulting data are
processed by MEGAN to produce an interactive analysis of the taxonomical content of the sample.
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marine samples, as they live either in aquatic, nutrient-rich en-

vironments (Shewanella) or are found in terrestrial settings (Burk-

holderia) (Hicks et al. 2000; Nealson and Scott 2003; DeLong

2005).

To describe our process in more detail, firstly, we down-

loaded the complete set of Sargasso Sea Samples 1–4 from DDBJ/

EMBL/GenBank (accession no. AACY0100000). We then selected

the first 10,000 reads from Sample 1 and randomly selected a

pooled set of 10,000 reads from Samples 2–4. On both data sets,

we ran a BLASTX comparison against the NCBI-NR database, us-

ing default parameters. For the Sample 1 data set, only 1% of the

reads had no hits (13) or remained unassigned (1051). Similarly,

for the Sample 2–4 data set, <3% of the reads had no hits (69) or

remained unassigned (2778).

We performed a MEGAN analysis of both data sets using a

bit-score threshold of 100 (min-score filter; see Methods for more

details on these parameters) and retaining only those hits whose

bit scores lie within 5% of the best score (top-percent filter). In

addition, all isolated assignments (that is, taxa that were hit by

only one read) were discarded (min-support filter). For Sample 1,

∼83% (8336) of all reads were assigned to taxa that were more

specific than the kingdom level, a majority of which (8298) were

assigned to bacterial groups. For Samples 2–4, ∼59% (5195) of all

reads were assigned to taxa that are more specific than the king-

dom level, a majority of which (5709) were assigned to bacterial

groups. In both cases, the numbers of reads assigned to eukary-

otes and viruses are very small, which is readily explained by the

size filtering used. However, size filtering does not explain why

the number of Archaea is 100 times smaller than the number of

Bacteria in the pelagic environment sampled. The observed dif-

ference in frequency may in part be explained by the fact that

there is at least 10 times as much bacterial sequence information

in the public databases as there is archaeal. Whether the remain-

ing 10-fold difference reflects the true situation in the environ-

ment is currently an open question.

The analysis of the 16 taxonomic groups performed in Ven-

ter et al. (2004) does not provide an estimation of the absolute

numbers of reads allowing assignment to a taxonomic group.

MEGAN can readily produce such statistics because the LCA al-

gorithm explicitly assigns every individual read, for which data-

base hits are available, to some taxon in the NCBI taxonomy,

regardless of the read’s suitability as a phylogenetic marker. As an

example of the quantification of assigned reads, out of the 10,000

reads of Sample 1, a total of 8743 reads are assigned to the node

labeled “Bacteria,” or to one of the descendants of this node.

Furthermore, 7445 reads are assigned to Proteobacteria, of which

1774, 2885, 2417, 21, 2, and 3 are more specifically assigned to

Alpha-, Beta-, Gamma-, Delta-, Epsilon-, and unclassified Proteo-

bacteria, respectively (see Fig. 3A).

Analysis of the mammoth data set

In (Poinar et al. 2006), we used Roche GS20 sequencing technol-

ogy (Margulies et al. 2005) to randomly sequence DNA from a

sample of 1 g of bone taken from a mammoth that was preserved

in permafrost for 28,000 yr. We obtained 302,692 reads of mean

length 95 bp. We refer to this as the “mammoth data set.” As

similar specimens were shown to contain large amounts of en-

vironmental sequences in addition to host DNA, the study was

designed as a metagenomics project.

To identify those reads that come from the mammoth ge-

nome, we performed BLASTZ (Schwartz et al. 2003) comparisons

against genome sequences for elephant, human, and dog, down-

loaded from http://www.genome.ucsc.edu. As a result of this

computation, we estimate that at least 45.4% of the reads repre-

sent mammoth DNA (Poinar et al. 2006). The remaining portion

of reads was likely to be derived from environmental organisms,

such as bacteria, fungi, amoeba, and nematodes. These organisms

are likely to have lived on the carcass of the mammoth and may

have contributed to the putrification process.

To determine the distribution of environmental sequences

in the sample, we first used BLASTX to compare all reads against

the NCBI-NR (“non-redundant”) protein database (Benson et al.

2006), which does not contain any sequence information from

the elephant genome project. This computation resulted in a file

of size 1.4 GB containing 2,911,587 local alignments of reads to

sequences in the database. Of the 302,692 reads, 52,179 resulted

in one or more alignments (17.2%). We then loaded the results of

Figure 2. On the right, we list the three BLASTX matches obtained for a specific read r from the mammoth data set, to sequences representing
Campylobacter lari, Helicobacter hepaticus, and Wolinella, respectively. The LCA-assignment algorithm assigns r to the taxon Campylobacterales, shown
on the left, as it is the lowest-common taxonomical ancestor of the three matched species.

Species identification from metagenomic data
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Figure 3. (Legend on next page)
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the BLASTX search into a prelimary version of MEGAN and ap-

plied the LCA algorithm to compute an assignment of reads to

taxa, thus obtaining an estimation of the taxonomical content of

the sample.

Here we provide details of the MEGAN analysis, using a

bit-score threshold of 30 and discarding any isolated assign-

ments, that is, any taxon that has only a single read assigned to

it. The LCA algorithm assigned 50,093 reads to taxa, and 2086

remained unassigned either because the bit-score of their

matches fell below the threshold or because they gave rise to an

isolated hit.

A total of 19,841 reads were assigned to Eukaryota, of which

7969 were assigned to Gnathostomata (jawed vertebrates) and

thus presumably derive from mammoth sequences. Furthermore,

a total of 16,972 reads were assigned to Bacteria, 761 to Archea,

and 152 to Viruses, respectively. These numbers are marginally

lower than those reported in Poinar et al. (2006) because of our

new filters, thus underlining the intrinsic robustness of the LCA

approach.

Figures 5 and 6 demonstrate the ability of MEGAN to sum-

marize results at different levels of the NCBI taxonomy. A dis-

tinctive feature of the program is that such summaries are com-

puted dynamically on-the-fly, as the user changes parameters of

the LCA algorithm or expands or collapses parts of the tax-

onomy. The relative abundance of reads at a certain node or leaf

is indicated visually by the size of the circle representing the

node, or by numerical labels. The cladograms produced by

MEGAN can be considered “species profiles” and can be pro-

duced as tables, for example, for side-by-

side comparisons of series of samples

(see Fig. 4).

Species identification from short reads

Several companies are developing new

sequencing technologies that promise to

produce high-throughput sequencing at

substantially reduced cost, albeit with

reads as short as 35 bp. The average

length of reads produced using current

Roche GS20 sequencing technology, in-

troduced last year (Margulies et al.

2005), is ∼100 bp, and reads obtainable

by current Sanger sequencing are ∼800

bp in length (Franca et al. 2002). The

question therefore arises what read

length is required to identify species in a

metagenomic sample reliably.

A simple approach to addressing

this is to collect a set of reads from a

known genome, to process the data as a

metagenomic data set (as described

above), and then to evaluate the accu-

racy of the assignments. For this pur-

pose, the genome sequence of the two

organisms E. coli K12 and B. bacteriovorus HD100 were used. We

chose E. coli as it is used as a cloning host in most clone-based

sequencing projects and is thus likely to occur in several different

database sequences by mistake. The second test organism, B. bac-

teriovorus, is very distinctive in its sequence from other Proteo-

bacteria and has no close relatives that are currently represented

in the sequence databases. Its metagenomic analysis should there-

fore result in a much better signal/noise ratio than for E. coli.

We show the results of simulation studies for the two ge-

nomes in Tables 1 (E. coli) (Blattner et al. 1997) and 2 (B. bacter-

iovorus) (Rendulic et al. 2004). For each genome, we use sequence

intervals of length 35 bp, 100 bp, 200 bp, and 800 bp, as these

lengths correspond to upcoming or existing sequencing technol-

ogy. We simulated 5000 random shotgun reads for each data-

point, compared them to the NCBI-NR database using BLASTX,

and then processed the reads with MEGAN, using a bit-score

threshold of 35, retaining only those hits that are within 20% of

the best hit for a read, and discarding all isolated assignments.

The percentage of reads classified as Enterobacteriaceae ranged

from 22% to 85%, Gammaproteobacteria from 24% to 94%, and

Proteobacteria from 25% to 96% in the case of E. coli. The num-

ber of false-positive assignments of reads was 0%. In the case of B.

bacteriovorus, the percentage of reads classified as B. bacteriovorus

ranges from 25% to 98%, Deltaproteobacteria from 26% to 99%,

and Proteobacteria from 26% to ∼100%. No false-positive hits

were detected. The result demonstrates that short reads in gen-

eral can be used for metagenomic analysis, albeit at the cost of a

high rate of under-prediction.

Figure 4. The distribution of reads from Sample 1, pooled Samples 2–4, and the weighted average
of these two data sets, over 16 major phylogenetic groups, as computed by MEGAN. For the sake of
comparison, the diagram also shows the relative contribution of organisms to these groups, as esti-
mated from Venter et al. (2004) by averaging over the values for all six genes that are reported there.

Figure 3. Phylogenetic diversity of the Sargasso Sea sequences computed by MEGAN. The microheterogeneity of Sample 1 was investigated by
comparing it to pooled Samples 2, 3, and 4 (Venter et al. 2004). (A) Analysis of 10,000 reads randomly chosen from Sample 1. (B) Analysis of 10,000
reads randomly chosen from Sample 2. (C,D) A more detailed view of Sample 1 and Samples 2–4, respectively, illustrating a significant difference of
relative frequencies of Shewanella and Burkholderia species in the two data sets. In all such figures, each circle represents a taxon in the NCBI taxonomy
and is labeled by its name and the number of reads that are assigned either directly to the taxon, or indirectly via one of its subtaxa. The size of the circle
is scaled logarithmically to represent the number of reads assigned directly to the taxon.
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Using Roche GS20 sequencing technology, we sequenced a

test set of 2000 reads from random positions in the E. coli K12

genome of length ∼100 bp. Figure 7 shows the details of a

MEGAN analysis of these data, which is based on a BLASTX com-

parison of the reads against the NCBI-NR database, using the

same parameters as above. Of the 2000 reads, ∼25% (432) have no

hits, and 110 reads are not assigned. Of the remaining 1458

reads, ∼75% (1052) are assigned to Enterobacteriaceae, thus mak-

ing a correct assignment up to the taxonomic level of family. All

other reads, except two, are assigned to super-taxa, thus produc-

ing correct, if increasingly weak, predictions.

The two false-positive assignments to Haemophilus somnus

appear to be due to false entries in the NCBI-NR database: the two

database sequences are labeled “hypothetical proteins”; however,

one is identical to the 16S rRNA sequence in E. coli, and the other

is identical to the 23S rRNA sequence in E. coli.

In a second experiment, we considered 2000 reads of length

∼100 bp randomly collected from B. bacteriovorus HD100 using

the same sequencing technology. In Figure 8A, we show the re-

sulting MEGAN analysis, which is based on a BLASTX compari-

son of the reads against the NCBI-NR database, using the same

parameters as above. Of the 2000 reads, ∼20% (397) have no hits,

and 5% (106) are not assigned. Of the remaining 1498 reads,

∼70% (1360) are assigned to B. bacteriovorus HD100. All other

reads are assigned to super-taxa, once again producing correct, if

increasingly weak, predictions. There are no false-positive predic-

tions.

In Figure 8B, we show a similar MEGAN analysis obtained

when using a copy of the NCBI-NR database from which all se-

quences representing the B. bacteriovorus HD100 genome have

been removed. This mimics the case in which reads are obtained

from a genome that is not yet represented in the database. Of the

2000 reads, ∼65% (1361) have no hits, and ∼13% (253) are not

assigned. A small number of false positives occur up to the level

of Bacteria.

While these two experiments conducted with organisms of

known phylogenetic distance demonstrate the robustness of the

LCA algorithm, its performance on unknown, more distantly re-

lated sequences can only be estimated. Given the logical struc-

ture of the LCA algorithm, however, we predict a low rate of

false-positive assignments at the price of producing fairly large

numbers of unspecific assignments or no hits. Independent of

MEGAN’s design, the outcome of each analysis will be biased by

the content of the database used and will only improve as se-

quence databases become more complete. In addition to the gen-

eration of more sequence data, new algorithms will be required

to structure databases of environmental content, as currently the

taxon frequencies of unknown organisms cannot be assessed.

Species and strain identification through species–specific genes

For in-depth metagenomic analysis, it is of particular interest to

resolve the taxonomical tree down to the species level, as illus-

trated in Figure 7. The analysis of random reads allows one to

distinguish between closely related species and strains, and thus

to obtain a level of resolution that is not possible using phylo-

genetic markers. This is due to the fact that random sequencing

also targets species- and strain-specific genes that are not usually

used in a phylogenetic analysis. Furthermore, in many cases the

diffentiation between a pathogenic and a nonpathogenic strain

can only be based on gene content and not on the similarity of

shared genes. The presence of reads that clearly distinguish

pathogenic variants from mutualistic ones will contribute toward

the understanding of potential pathogens in the environment.

To this end, species or taxa of interest can be searched for using

a Find tool (Fig. 9A), and the distribution of reads over known

Figure 6. A low level view of the MEGAN analysis of the mammoth
data set.

Figure 5. High-level summary of a MEGAN analysis of the mammoth
data set, based on a BLASTX comparison of the 302,692 reads against the
NCBI-NR database.
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strains of a species can be viewed (Fig. 9B). Underlying sequence

alignments can be manually inspected (Fig. 9C), and individual

sequences can be extracted for evaluation with other tools.

Discussion

Early metagenomic studies resorted to screening of environmen-

tal libraries for the presence of known phylogenetic markers and

subsequent sequencing of clones of interest (Béja et al. 2000,

2001; Rondon et al. 2000; Quaiser et al. 2003; Treusch et al.

2004). Venter et al. (2004) pioneered random genome sequenc-

ing of environmental samples, producing data on a much larger

scale, and shifted the focus from short scaffolds to high coverage

contigs of dozens of kilobases long. Sequence information of this

type allows for a rough annotation of the metabolic capacity of a

microbial community of interest, and the statistics of such as-

semblies can be used in a population genetics context to distin-

guish between discrete species and populations of closely related

biotypes.

The problem of species identification in a mixture of organ-

isms has been addressed using proven phylogenetic markers,

such as the ribosomal genes (16S, 18S, and 23S rRNA) or coding

sequences of genes involved in the transcription or translation

machinery of the cell (e.g., recA/radA, hsp70, EF-Tu, Ef-G, rpoB).

By definition, such markers are based on slow-evolving genes and

aim at distinguishing between species at large evolutionary dis-

tances, and are thus unsuitable for resolving closely related or-

ganisms.

MEGAN deviates from the analytical pattern of previous

metagenomic analysis pipelines and builds on the statistical

power of comparing random sequence intervals with unspecified

phylogenetic properties against databases of known sequences.

This study demonstrates that even given the current incomplete

and biased state of the DNA-, protein-, and environmental data-

bases, a meaningful categorization of random reads is possible as

a useful first phylogenetic analysis of metagenomic data. The

ability to identify species depends, of course, on the presence or

absence of closely related sequences in the databases, as demon-

strated in Figure 8. Removal of the source genome B. bacteriovorus

HD100 from the database results in a threefold increase of com-

pletely unassigned reads, while producing only a small number

of false-positive identifications above the level of Proteobacteria.

This underlines the fact that MEGAN takes a conservative ap-

proach to taxon identification. Lack of data may result in severe

under-prediction or large numbers of unassigned reads, but will

not result in a significant amount of over-prediction.

Laptop analysis

Early approaches to metagenomic analysis frequently involved

large teams of bioinformaticians who generated intricate analysis

pipelines with complex outputs.

MEGAN can be used to analyze DNA reads collected within

the framework of any metagenomics project, regardless of the

sequencing technology used. In a pre-processing step, the set of

DNA reads (or contigs) is compared against databases of known

sequences using BLAST or other comparison tools. This compu-

tationally demanding task will usually be performed on a high-

performance computer cluster. Once completed, the resulting

files can be downloaded onto a laptop or workstation and then

interactively analyzed using MEGAN.

Assuming that the reads are randomly selected from the

metagenomic sample, MEGAN analysis can be viewed as a statis-

tical approach with several attractive features. Because the reads

are independently sampled from random regions of the genomes

that can have very different levels of conservation, this type of

analysis will show better resolution at all levels of the taxonomy,

and particularly at the species and strain level, than an analysis

based on a small set of phylogenetic markers, as their rate of

evolution is slower than average. Because the analysis does not

require an assembly of the reads into contigs, all problems asso-

ciated with assembling data from a mixture of potentially very

similar genomes are avoided.

The software is easy to deploy as it operates on data pro-

duced by existing and widely available bioinformatics software

tools for alignments (such as BLAST, BLASTZ, and other compari-

son tools) and publicly accessible data resources (sequence data-

bases and the NCBI taxonomy). As sequence comparisons are

computationally intensive and time-consuming, they should be

performed only once with sufficiently relaxed alignment param-

eters. MEGAN provides filters to adjust the level of stringency

later to an appropriate level. An investigator can perform a de-

tailed analysis of a large metagenomic data set and manually

inspect the correctness of each classification without needing to

rerun the sequence comparison at various cutoff levels.

Figure 7. MEGAN analysis of 2000 reads collected from E. coli K12
using Roche GS20 sequencing, based on a BLASTX comparison with the
NCBI-NR database.

Table 1. Results for E. coli simulation

35 bp 100 bp 200 bp 800 bp

Enterobacteriaceae 22% 64% 73% 85%
Gammaproteobacteria 24% 77% 86% 94%
Proteobacteria 25% 83% 89% 96%

For average read lengths of 35, 100, 200, and 800 bp, we sampled 5000
sequence intervals from random locations in the complete genome se-
quence of E. coli K12 and then processed the reads with MEGAN. Here we
report the percentage of reads classified as Enterobacteriaceae, Gamma-
proteobacteria, and, even more generally, Proteobacteria. The number of
false-positive assignments of reads was ∼0%.

Table 2. Results for B. bacteriovorus simulation

35 bp 100 bp 200 bp 800 bp

B. bacteriovorus 25% 88% 94% 98%
Deltaproteobacteria 26% 89% 95% 99%
Proteobacteria 26% 90% 97% ∼100%

For average read lengths of 35, 100, 200, and 800 bp, we sampled 5000
sequence intervals from random locations in the complete genome se-
quence of B. bacteriovorus HD100 and then processed the reads with
MEGAN. Here, we report the percentage of reads classified as B. bacte-
riovorus, Deltaproteobacteria, and, even more generally, Proteobacteria.
The number of false-positive assignments of reads was ∼0%.
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Intrinsic biases of current metagenomic analysis

The three key elements in the analysis pipeline are the sequence

database, the alignment software for sequence comparison, and a

generally accepted taxonomy of known organisms. The first ele-

ment consists of public sequence databases, which are curated by

NCBI, EBI, and DDBJ. The content of such databases is heavily

biased by an anthropocentric research focus, and only poorly

reflects the biological diversity of this planet. This fact introduces

the largest bias in any metagenomic analysis, which presently

cannot be circumvented. The second component, the sequence

alignment tool, is the most critical with regard to the computa-

tional cost of an analysis. As sequence databases continue to

grow and metagenomic projects increase in size, the computa-

tional cost will also increase. However, as databases begin to pro-

vide a better coverage of the diversity of life, the computational

cost of performing these analyses may actually begin to sink

again, as more stringent global alignments will begin to replace

less stringent (and thus more costly) local comparisons.

The third component is the taxonomical classification of

species used. Our approach is based on the NCBI taxonomic sys-

tem, which is maintained and updated by a team of taxonomy

experts, who incorporate both sequence-based and non-

sequence-based taxonomic information. However, MEGAN al-

lows for the integration of other taxonomic systems as well.

Current issues and future extensions

MEGAN is designed to post-process the results of a set of se-

quence comparisons against one or more databases and places no

explicit restrictions on the type of reads, the sequence compari-

son method, or databases used. Hence, we anticipate that our

approach will remain valid even when innovations are intro-

duced in any of these areas.

The current LCA assignment algorithm bases its decision

solely on the presence or absence of hits

between reads and taxa. We are cur-

rently contemplating a more sophisti-

cated approach that will not only take

the presence or absence of hits into ac-

count, but will also make use of the qual-

ity of the matches and the levels of simi-

larity that are typical for given genes in a

given clade of sequences.

It is intriguing to see how robust

and correct the taxonomical assign-

ments based on local alignments per-

formed with either BLASTN or BLASTX

can be. While these tools create align-

ments of variable length from sequence

intervals of unspecified phylogenetic rel-

evance, potential problems are over-

come by the power of statistics. By de-

fault, MEGAN requires that at least two

reads are assigned to a taxon before that

taxon is deemed to be present, and this

helps to prevent false positives. More-

over, by design, short, highly conserved

domains will lead to an unspecific as-

signment, rather than to a false one.

The analysis of any metagenomic

data set will produce a significant set of

sequences that cannot be assigned to

any known taxon, and the question arises how to estimate the

number of unknown species. In our experience (data not shown),

anywhere between 10% and 90% of all reads may fail to produce

any hits when compared with BLASTX against NCBI-NR. To es-

timate how many of these reads actually come from unknown

species, one must take into account that most known species are

only partially represented in current databases. If, for example,

only 10% of the genome of a species is present in the databases,

then for every correctly identified read, there will be as many as

nine that do not produce a hit. As there is insufficient informa-

tion on the size of genomes to make such estimations in a precise

way, such calculations have not yet been implemented in

MEGAN.

Can short sequence intervals identify a species?

The currently available sequencing technologies provide se-

quencing reads from 35 bp (upcoming sequencing-by-synthesis

approaches) to ∼800 bp (Sanger sequencing). Assignments based

on very short reads of less than ∼50 bp will suffer from low con-

fidence values (such as bit scores in the case of BLAST), whereas

reads of length ∼100 bp can be assigned with a reasonable level of

confidence (BLASTX bit-scores of 30 and higher). As shown in

Tables 1 and 2, MEGAN analysis correctly assigns fragments as

short as 35 bp. However, short read lengths result in severe un-

der-prediction, which will reduce the cost efficiency of the new

technologies. While our work indicates that reads of length 35 bp

and 100 bp are long enough to identify a species, the hit statistics

from Tables 1 and 2 suggest that 200 bp might constitute an

optimal tradeoff between the rate of under-prediction and the

production cost of such reads.

While new developments in sequencing technology will

continue to impact metagenomic projects in terms of cost and

throughput, we believe that MEGAN analysis will remain a valu-

able tool for analyzing the new data and will help scientists to

Figure 8. MEGAN analysis of 2000 reads collected from B. bacteriovorus HD100 using Roche GS20
sequencing. (A) Analysis based on a BLASTX comparison with NCBI-NR. (B) The same analysis, but with
all hits matching database sequences representing the B. bacteriovorus HD100 genome removed, mimick-
ing the situation in which the reads originate from a genome that is not represented in NCBI-NR.
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dissect the sequence information of their environmental

samples.

Methods

Sequence comparisons

In our studies, we performed sequence comparisons against the

NCBI-NR database of nonredundant protein sequences using

BLASTX with the default settings, the NCBI-NT database on

nucleotide sequences using BLASTN with the default settings,

and against whole-genome sequences obtained from dog, el-

ephant, and human, using BLASTZ. Sequence comparison is a

computationally challenging task that is likely to grow even

more demanding as databases continue to grow and larger meta-

genome data sets are analyzed. For example, comparing the

mammoth data set against NCBI-NR took almost 180 h real time

on a cluster of 64 CPUs. We estimate that performing the same

computation on the 1.6 million reads of the complete Sargasso

Sea data set would require ∼1000 h real time on our system.

Analysis using MEGAN

At the startup, MEGAN loads the complete NCBI taxonomy, cur-

rently containing >280,000 taxa, which can then be interactively

explored using customized tree-navigation features. However,

the main application of MEGAN is to process the results of a

comparison of reads against a database of known sequences. The

program parses files generated by BLASTX, BLASTN, or BLASTZ,

and saves the results as a series of read–taxon matches in a pro-

gram-specific metafile. (Additional parsers may be added to pro-

cess the results generated by other sequence comparison meth-

ods.)

The program assigns reads to taxa using the LCA algorithm

and then displays the induced taxonomy. Nodes in the tax-

onomy can be collapsed or expanded to produce summaries at

different levels of the taxonomy. Additionally, the program pro-

vides a search tool to search for specific taxa, and an Inspector

tool to view individual BLAST matches (see Fig. 9).

The approach uses several thresholds. First, the min-score

filter sets a threshold for the score that an alignment must

achieve to be considered in the calculations. For reads of length

∼100 bp and using BLASTX to compare against NCBI-NR, a min-

score of 35 or higher is recommended; while for reads of length

∼800 bp, a min-score of 100 is more suitable. Second, to help

distinguish between hits due to sequence identity and those due

to homology, the top-percent filter is used to retain only those hits

for a given read r whose scores lie within a given percentage of

the highest score involving r. (Note that this is not the same as

keeping a certain percentage of the hits.) The smaller the set

value is, the more specific a calculated assignment will be, but

also the greater the chance of producing an over-prediction, that is,

a false prediction due to the absence of the true taxon in the

database. A useful range of values is 10%–20%. Third, a win-score

threshold can be set such that, for any given read, if any match

scores above the threshold, then for that read, only those matches

are considered that score above the threshold. Fourth, to help

reduce false positives, the min-support filter is used to set a

threshold for the minimum number of reads that must be as-

signed to a taxon t, or to any of its descendants in the taxonomi-

cal tree. After the main computation, all reads that are assigned

to a taxon that does not meet this requirement are reassigned to

the special taxon “Not Assigned.” By default, this parameter is set

to 2.

The result of the LCA algorithm is presented to the user as

the partial taxonomy T that is induced by the set of taxa that

have been identified (see Fig. 5). The program allows the user to

explore the results at many different taxonomical levels, by pro-

viding methods for collapsing and expanding different parts of

the taxonomy T. Each node in T represents a taxon t and can be

queried to determine which reads have been assigned directly to

t, and how many reads have been assigned to taxa below t. Ad-

ditionally, the program allows the user to view the sequence align-

ments upon which specific assignments are based (see Fig. 9).

Figure 9. (A) MEGAN provides a Find tool to search for specific taxa of
interest. (B) The result of a search is highlighted in a detailed summary of
the analysis. (C) MEGAN provides an Inspector tool to view the individual
sequence comparisons upon which the assignment of a particular read to
a particular taxon is based.
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