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Abstract

We present MegaPipe, a new API for efficient, scalable

network I/O for message-oriented workloads. The design

of MegaPipe centers around the abstraction of a channel –

a per-core, bidirectional pipe between the kernel and user

space, used to exchange both I/O requests and event noti-

fications. On top of the channel abstraction, we introduce

three key concepts of MegaPipe: partitioning, lightweight

socket (lwsocket), and batching.

We implement MegaPipe in Linux and adapt mem-

cached and nginx. Our results show that, by embracing a

clean-slate design approach, MegaPipe is able to exploit

new opportunities for improved performance and ease

of programmability. In microbenchmarks on an 8-core

server with 64 B messages, MegaPipe outperforms base-

line Linux between 29% (for long connections) and 582%

(for short connections). MegaPipe improves the perfor-

mance of a modified version of memcached between 15%

and 320%. For a workload based on real-world HTTP

traces, MegaPipe boosts the throughput of nginx by 75%.

1 Introduction

Existing network APIs on multi-core systems have diffi-

culties scaling to high connection rates and are inefficient

for “message-oriented” workloads, by which we mean

workloads with short connections1 and/or small mes-

sages. Such message-oriented workloads include HTTP,

RPC, key-value stores with small objects (e.g., RAM-

Cloud [31]), etc. Several research efforts have addressed

aspects of these performance problems, proposing new

techniques that offer valuable performance improve-

ments. However, they all innovate within the confines

of the traditional socket-based networking APIs, by ei-

ther i) modifying the internal implementation but leav-

ing the APIs untouched [20, 33, 35], or ii) adding new

APIs to complement the existing APIs [1, 8, 10, 16, 29].

While these approaches have the benefit of maintain-

ing backward compatibility for existing applications, the

need to maintain the generality of the existing API –

e.g., its reliance on file descriptors, support for block-

1We use “short connection” to refer to a connection with a small

number of messages exchanged; this is not a reference to the absolute

time duration of the connection.

ing and nonblocking communication, asynchronous I/O,

event polling, and so forth – limits the extent to which

it can be optimized for performance. In contrast, a clean-

slate redesign offers the opportunity to present an API that

is specialized for high performance network I/O.

An ideal network API must offer not only high perfor-

mance but also a simple and intuitive programming ab-

straction. In modern network servers, achieving high per-

formance requires efficient support for concurrent I/O so

as to enable scaling to large numbers of connections per

thread, multiple cores, etc. The original socket API was

not designed to support such concurrency. Consequently,

a number of new programming abstractions (e.g., epoll,

kqueue, etc.) have been introduced to support concurrent

operation without overhauling the socket API. Thus, even

though the basic socket API is simple and easy to use,

programmers face the unavoidable and tedious burden of

layering several abstractions for the sake of concurrency.

Once again, a clean-slate design of network APIs offers

the opportunity to design a network API from the ground

up with support for concurrent I/O.

Given the central role of networking in modern applica-

tions, we posit that it is worthwhile to explore the benefits

of a clean-slate design of network APIs aimed at achiev-

ing both high performance and ease of programming. In

this paper we present MegaPipe, a new API for efficient,

scalable network I/O. The core abstraction MegaPipe in-

troduces is that of a channel – a per-core, bi-directional

pipe between the kernel and user space that is used to ex-

change both asynchronous I/O requests and completion

notifications. Using channels, MegaPipe achieves high

performance through three design contributions under the

roof of a single unified abstraction:

Partitioned listening sockets: Instead of a single listen-

ing socket shared across cores, MegaPipe allows applica-

tions to clone a listening socket and partition its associ-

ated queue across cores. Such partitioning improves per-

formance with multiple cores while giving applications

control over their use of parallelism.

Lightweight sockets: Sockets are represented by file

descriptors and hence inherit some unnecessary file-

related overheads. MegaPipe instead introduces lwsocket,

a lightweight socket abstraction that is not wrapped in file-
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related data structures and thus is free from system-wide

synchronization.

System Call Batching: MegaPipe amortizes system call

overheads by batching asynchronous I/O requests and

completion notifications within a channel.

We implemented MegaPipe in Linux and adapted two

popular applications – memcached [3] and the nginx [37]

– to use MegaPipe. In our microbenchmark tests on an 8-

core server with 64 B messages, we show that MegaPipe

outperforms the baseline Linux networking stack between

29% (for long connections) and 582% (for short connec-

tions). MegaPipe improves the performance of a mod-

ified version of memcached between 15% and 320%.

For a workload based on real-world HTTP traffic traces,

MegaPipe improves the performance of nginx by 75%.

The rest of the paper is organized as follows. We ex-

pand on the limitations of existing network stacks in §2,

then present the design and implementation of MegaPipe

in §3 and §4, respectively. We evaluate MegaPipe with mi-

crobenchmarks and macrobenchmarks in §5, and review

related work in §6.

2 Motivation

Bulk transfer network I/O workloads are known to be in-

expensive on modern commodity servers; one can eas-

ily saturate a 10 Gigabit (10G) link utilizing only a sin-

gle CPU core. In contrast, we show that message-oriented

network I/O workloads are very CPU-intensive and may

significantly degrade throughput. In this section, we dis-

cuss limitations of the current BSD socket API (§2.1)

and then quantify the performance with message-oriented

workloads with a series of RPC-like microbenchmark ex-

periments (§2.2).

2.1 Performance Limitations

In what follows, we discuss known sources of inefficiency

in the BSD socket API. Some of these inefficiencies are

general, in that they occur even in the case of a single

core, while others manifest only when scaling to multiple

cores – we highlight this distinction in our discussion.

Contention on Accept Queue (multi-core): As explained

in previous work [20, 33], a single listening socket (with

its accept() backlog queue and exclusive lock) forces

CPU cores to serialize queue access requests; this hotspot

negatively impacts the performance of both producers

(kernel threads) enqueueing new connections and con-

sumers (application threads) accepting new connections.

It also causes CPU cache contention on the shared listen-

ing socket.

Lack of Connection Affinity (multi-core): In Linux, in-

coming packets are distributed across CPU cores on a flow

basis (hash over the 5-tuple), either by hardware (RSS [5])

or software (RPS [24]); all receive-side processing for the

flow is done on a core. On the other hand, the transmit-

side processing happens on the core at which the appli-

cation thread for the flow resides. Because of the serial-

ization in the listening socket, an application thread call-

ing accept() may accept a new connection that came

through a remote core; RX/TX processing for the flow

occurs on two different cores, causing expensive cache

bouncing on the TCP control block (TCB) between those

cores [33]. While the per-flow redirection mechanism [7]

in NICs eventually resolves this core disparity, short con-

nections cannot benefit since the mechanism is based on

packet sampling.

File Descriptors (single/multi-core): The POSIX stan-

dard requires that a newly allocated file descriptor be the

lowest integer not currently used by the process [6]. Find-

ing ‘the first hole’ in a file table is an expensive operation,

particularly when the application maintains many connec-

tions. Even worse, the search process uses an explicit per-

process lock (as files are shared within the process), lim-

iting the scalability of multi-threaded applications. In our

socket() microbenchmark on an 8-core server, the cost

of allocating a single FD is roughly 16% greater when

there are 1,000 existing sockets as compared to when there

are no existing sockets.

VFS (multi-core): In UNIX-like operating systems, net-

work sockets are abstracted in the same way as other file

types in the kernel; the Virtual File System (VFS) [27]

associates each socket with corresponding file instance,

inode, and dentry data structures. For message-oriented

workloads with short connections, where sockets are fre-

quently opened as new connections arrive, servers quickly

become overloaded since those globally visible objects

cause system-wide synchronization cost [20]. In our mi-

crobenchmark, the VFS overhead for socket allocation on

eight cores was 4.2 times higher than the single-core case.

System Calls (single-core): Previous work has shown

that system calls are expensive and negatively impact

performance, both directly (mode switching) and indi-

rectly (cache pollution) [35]. This performance overhead

is exacerbated for message-oriented workloads with small

messages that result in a large number of I/O operations.

In parallel with our work, the Affinity-Accept project

[33] has recently identified and solved the first two is-

sues, both of which are caused by the shared listening

socket (for complete details, please refer to the paper). We

discuss our approach (partitioning) and its differences in

§3.4.1. To address other issues, we introduce the concept

of lwsocket (§3.4.2, for FD and VFS overhead) and batch-

ing (§3.4.3, for system call overhead).
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Figure 1: (a) the negative impact of connection lifespan (with 64 B messages on eight cores), (b) message size (with ten transactions

per connection on eight cores), and (c) increasing number of cores (with 64 B messages and ten transactions per connection).

2.2 Performance of Message-Oriented Workloads

While it would be ideal to separate the aforementioned in-

efficiencies and quantify the cost of each, tight coupling in

semantics between those issues and complex dynamics of

synchronization/cache make it challenging to isolate indi-

vidual costs.

Rather, we quantify their compound performance im-

pact with a series of microbenchmarks in this work. As

we noted, the inefficiencies manifest themselves primar-

ily in workloads that involve short connections or small-

sized messages, particularly with increasing numbers of

CPU cores. Our microbenchmark tests thus focus on these

problematic scenarios.

Experimental Setup: For our tests, we wrote a pair

of client and server microbenchmark tools that emulate

RPC-like workloads. The client initiates a TCP connec-

tion, exchanges multiple request and response messages

with the server and then closes the connection.2 We re-

fer to a single request-response exchange as a transac-

tion. Default parameters are 64 B per message and 10

transactions per connection, unless otherwise stated. Each

client maintains 256 concurrent connections, and we con-

firmed that the client is never the bottleneck. The server

creates a single listening socket shared by eight threads,

with each thread pinned to one CPU core. Each event-

driven thread is implemented with epoll [8] and the non-

blocking socket API.

Although synthetic, this workload lets us focus on the

low-level details of network I/O overhead without inter-

ference from application-specific logic. We use a single

server and three client machines, connected through a

dedicated 10G Ethernet switch. All test systems use the

Linux 3.1.3 kernel and ixgbe 3.8.21 10G Ethernet device

driver [2] (with interrupt coalescing turned on). Each ma-

chine has a dual-port Intel 82599 10G NIC, 12 GB of

DRAM, and two Intel Xeon X5560 processors, each of

2In this experiment, we closed connections with RST, to avoid ex-

haustion of client ports caused by lingering TIME_WAIT connections.

which has four 2.80 GHz cores. We enabled the multi-

queue feature of the NICs with RSS [5] and FlowDirec-

tor [7], and assigned each RX/TX queue to one CPU core.

In this section, we discuss the result of the experi-

ments Figure 1 labeled as “Baseline.” For comparison,

we also include the results with our new API, labeled as

“MegaPipe,” from the same experiments.

Performance with Short Connections: TCP connection

establishment involves a series of time-consuming steps:

the 3-way handshake, socket allocation, and interaction

with the user-space application. For workloads with short

connections, the costs of connection establishment are not

amortized by sufficient data transfer and hence this work-

load serves to highlight the overhead due to costly con-

nection establishment.

We show how connection lifespan affects the through-

put by varying the number of transactions per connec-

tion in Figure 1(a), measured with eight CPU cores. Total

throughput is significantly lower with relatively few (1–8)

transactions per connection. The cost of connection estab-

lishment eventually becomes insignificant for 128+ trans-

actions per connection, and we observe that throughput in

single-transaction connections is roughly 19 times lower

than that of long connections!

Performance with Small Messages: Small messages re-

sult in greater relative network I/O overhead in compari-

son to larger messages. In fact, the per-message overhead

remains roughly constant and thus, independent of mes-

sage size; in comparison with a 64 B message, a 1 KiB

message adds only about 2% overhead due to the copying

between user and kernel on our system, despite the large

size difference.

To measure this effect, we perform a second mi-

crobenchmark with response sizes varying from 64 B to

64 KiB (varying the request size in lieu of or in addition to

the response size had almost the same effects). Figure 1(b)

shows the measured throughput (in Gbps) and CPU usage

for various message sizes. It is clear that connections with
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small-sized messages adversely affect the throughput. For

small messages (≤ 1 KiB) the server does not even satu-

rate the 10G link. For medium-sized messages (2–4 KiB),

the CPU utilization is extremely high, leaving few CPU

cycles for further application processing.

Performance Scaling with Multiple Cores: Ideally,

throughput for a CPU-intensive system should scale lin-

early with CPU cores. In reality, throughput is limited by

shared hardware (e.g., cache, memory buses) and/or soft-

ware implementation (e.g., cache locality, serialization).

In Figure 1(c), we plot the throughput for increasing num-

bers of CPU cores. To constrain the number of cores, we

adjust the number of server threads and RX/TX queues

of the NIC. The lines labeled “Efficiency” represent the

measured per-core throughput, normalized to the case of

perfect scaling, where N cores yield a speedup of N.

We see that throughput scales relatively well for up to

four cores – the likely reason being that, since each pro-

cessor has four cores, expensive off-chip communication

does not take place up to this point. Beyond four cores,

the marginal performance gain with each additional core

quickly diminishes, and with eight cores, speedup is only

4.6. Furthermore, it is clear from the growth trend that

speedup would not increase much in the presence of ad-

ditional cores. Finally, it is worth noting that the observed

scaling behavior of Linux highly depends on connection

duration, further confirming the results in Figure 1(a).

With only one transaction per connection (instead of the

default 10 used in this experiment), the speedup with eight

cores was only 1.3, while longer connections of 128 trans-

actions yielded a speedup of 6.7.

3 MegaPipe Design

MegaPipe is a new programming interface for high-

performance network I/O that addresses the inefficiencies

highlighted in the previous section and provides an easy

and intuitive approach to programming high concurrency

network servers. In this section, we present the design

goals, approach, and contributions of MegaPipe.

3.1 Scope and Design Goals

MegaPipe aims to accelerate the performance of message-

oriented workloads, where connections are short and/or

message sizes are small. Some possible approaches to this

problem would be to extend the BSD Socket API or to

improve its internal implementation. It is hard to achieve

optimal performance with these approaches, as many op-

timization opportunities can be limited by the legacy ab-

stractions. For instance: i) sockets represented as files in-

herit the overheads of files in the kernel; ii) it is difficult

to aggregate BSD socket operations from concurrent con-

nections to amortize system call overheads. We leave opti-

mizing the message-oriented workloads with those dirty-

slate (minimally disruptive to existing API semantics and

legacy applications) alternatives as an open problem. In-

stead, we take a clean-slate approach in this work by de-

signing a new API from scratch.

We design MegaPipe to be conceptually simple, self-

contained, and applicable to existing event-driven server

applications with moderate efforts. The MegaPipe API

provides a unified interface for various I/O types, such as

TCP connections, UNIX domain sockets, pipes, and disk

files, based on the completion notification model (§3.2)

We particularly focus on the performance of network I/O

in this paper. We introduce three key design concepts of

MegaPipe for high-performance network I/O: partitioning

(§3.4.1), lwsocket (§3.4.2), and batching (§3.4.3), for re-

duced per-message overheads and near-linear multi-core

scalability.

3.2 Completion Notification Model

The current best practice for event-driven server pro-

gramming is based on the readiness model. Applica-

tions poll the readiness of interested sockets with se-

lect/poll/epoll and issue non-blocking I/O commands

on the those sockets. The alternative is the completion no-

tification model. In this model, applications issue asyn-

chronous I/O commands, and the kernel notifies the appli-

cations when the commands are complete. This model has

rarely been used for network servers in practice, though,

mainly because of the lack of socket-specific opera-

tions such as accept/connect/shutdown (e.g., POSIX

AIO [6]) or poor mechanisms for notification delivery

(e.g., SIGIO signals).

MegaPipe adopts the completion notification model

over the readiness model for three reasons. First, it allows

transparent batching of I/O commands and their notifi-

cations. Batching of non-blocking I/O commands in the

readiness model is very difficult without the explicit as-

sistance from applications. Second, it is compatible with

not only sockets but also disk files, allowing a unified in-

terface for any type of I/O. Lastly, it greatly simplifies the

complexity of I/O multiplexing. Since the kernel controls

the rate of I/O with completion events, applications can

blindly issue I/O operations without tracking the readiness

of sockets.

3.3 Architectural Overview

MegaPipe involves both a user-space library and Linux

kernel modifications. Figure 2 illustrates the architecture

and highlights key abstractions of the MegaPipe design.

The left side of the figure shows how a multi-threaded

application interacts with the kernel via MegaPipe chan-

nels. With MegaPipe, an application thread running on

each core opens a separate channel for communication
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Figure 2: MegaPipe architecture

between the kernel and user-space. The application thread

registers a handle (socket or other file type) to the chan-

nel, and each channel multiplexes its own set of handles

for their asynchronous I/O requests and completion noti-

fication events.

When a listening socket is registered, MegaPipe inter-

nally spawns an independent accept queue for the chan-

nel, which is responsible for incoming connections to the

core. In this way, the listening socket is not shared by all

threads, but partitioned (§3.4.1) to avoid serialization and

remote cache access.

A handle can be either a regular file descriptor or a

lightweight socket, lwsocket (§3.4.2). lwsocket provides

a direct shortcut to the TCB in the kernel, to avoid the

VFS overhead of traditional sockets; thus lwsockets are

only visible within the associated channel.

Each channel is composed of two message streams: a

request stream and a completion stream. User-level appli-

cations issue asynchronous I/O requests to the kernel via

the request stream. Once the asynchronous I/O request is

done, the completion notification of the request is deliv-

ered to user-space via the completion stream. This process

is done in a batched (§3.4.3) manner, to minimize the con-

text switch between user and kernel. The MegaPipe user-

level library is fully responsible for transparent batching;

MegaPipe does not need to be aware of batching.

3.4 Design Components

3.4.1 Listening Socket Partitioning

As discussed in §2.1, the shared listening socket causes

two issues in the multi-core context: i) contention on the

accept queue and ii) cache bouncing between RX and TX

cores for a flow. Affinity-Accept [33] proposes two key

ideas to solve these issues. First, a listening socket has

per-core accept queues instead of the shared one. Second,

application threads that call accept() prioritize their lo-

cal accept queue. In this way, connection establishment

becomes completely parallelizable and independent, and

all the connection establishment, data transfer, and appli-

cation logic for a flow are contained in the same core.

In MegaPipe, we achieve essentially the same goals

but with a more controlled approach. When an appli-

cation thread associates a listening socket to a channel,

MegaPipe spawns a separate listening socket. The new lis-

tening socket has its own accept queue which is only re-

sponsible for connections established on a particular sub-

set of cores that are explicitly specified by an optional

cpu_mask parameter.3 After a shared listening socket is

registered to MegaPipe channels with disjoint cpu_mask

parameters, all channels (and thus cores) have completely

partitioned backlog queues. Upon receipt of an incom-

ing TCP handshaking packet, which is distributed across

cores either by RSS [5] or RPS [24], the kernel finds a

“local” accept queue among the partitioned set, whose

cpu_mask includes the current core. On the application

side, an application thread accepts pending connections

from its local queue. In this way, cores no longer contend

for the shared accept queue, and connection establishment

is vertically partitioned (from the TCP/IP stack up to the

application layer).

We briefly discuss the main difference between our

technique and that of Affinity-Accept. Our technique

requires user-level applications to partition a listening

socket explicitly, rather than transparently. The downside

is that legacy applications do not benefit. However, ex-

plicit partitioning provides more flexibility for user appli-

cations (e.g., to forgo partitioning for single-thread appli-

cations, to establish one accept queue for each physical

core in SMT systems, etc.) Our approach follows the de-

sign philosophy of the Corey operating system, in a way

that “applications should control sharing” [19].

Partitioning of a listening socket may cause poten-

tial load imbalance between cores [33]. Affinity-Accept

solves two cases of load imbalance. For a short-term load

imbalance, a non-busy core running accept() may steal

a connection from the remote accept queue on a busy

CPU core. For a long-term load imbalance, the flow group

migration mechanism lets the NIC to distribute more

flows to non-busy cores. While the current implementa-

tion of MegaPipe does not support load balancing of in-

coming connections between cores, the techniques made

in Affinity-Accept are complementary to MegaPipe. We

leave the implementation and evaluation of connection

load balancing as future work.

3.4.2 lwsocket: Lightweight Socket

accept()ing an established connection is an expensive

process in the context of the VFS layer. In Unix-like op-

3MegaPipe currently does not support runtime reconfiguration of

cpu_mask after it is initially set, but we believe that this is easy to add.
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erating systems, many different types of open files (disk

files, sockets, pipes, devices, etc.) are identified by a file

descriptor. A file descriptor is an integer identifier used

as an indirect reference to an opened file instance, which

maintains the status (e.g., access mode, offset, and flags

such as O_DIRECT and O_SYNC) of the opened file. Multi-

ple file instances may point to the same inode, which rep-

resents a unique, permanent file object. An inode points to

an actual type-specific kernel object, such as TCB.

These layers of abstraction offer clear advantages. The

kernel can seamlessly support various file systems and file

types, while retaining a unified interface (e.g., read() and

write()) to user-level applications. The CPU overhead

that comes with the abstraction is tolerable for regular disk

files, as file I/O is typically bound by low disk bandwidth

or high seek latency. For network sockets, however, we

claim that these layers of abstraction could be overkill for

the following reasons:

(1) Sockets are rarely shared. For disk files, it is com-

mon that multiple processes share the same open file or

independently open the same permanent file. The layer

of indirection that file objects offer between the file ta-

ble and inodes is useful in such cases. In contrast, since

network sockets are rarely shared by multiple processes

(HTTP socket redirected to a CGI process is such an ex-

ception) and not opened multiple times, this indirection is

typically unnecessary.

(2) Sockets are ephemeral. Unlike permanent disk-backed

files, the lifetime of network sockets ends when they are

closed. Every time a new connection is established or torn

down, its FD, file instance, inode, and dentry are newly al-

located and freed. In contrast to disk files whose inode and

dentry objects are cached [27], socket inode and dentry

cannot benefit from caching since sockets are ephemeral.

The cost of frequent (de)allocation of those objects is ex-

acerbated on multi-core systems since the kernel main-

tains the inode and dentry as globally visible data struc-

tures [20].

To address the above issues, we propose lightweight

sockets – lwsocket. Unlike regular files, a lwsocket is iden-

tified by an arbitrary integer within the channel, not the

lowest possible integer within the process. The lwsocket

is a common-case optimization for network connections;

it does not create a corresponding file instance, inode, or

dentry, but provides a straight shortcut to the TCB in the

kernel. A lwsocket is only locally visible within the asso-

ciated MegaPipe channel, which avoids global synchro-

nization between cores.

In MegaPipe, applications can choose whether to fetch

a new connection as a regular socket or as a lwsocket.

Since a lwsocket is associated with a specific channel,

one cannot use it with other channels or for general sys-

tem calls, such as sendmsg(). In cases where applications

need the full generality of file descriptors, MegaPipe pro-

vides a fall-back API function to convert a lwsocket into

a regular file descriptor.

3.4.3 System Call Batching

Recent research efforts report that system calls are expen-

sive not only due to the cost of mode switching, but also

because of the negative effect on cache locality in both

user and kernel space [35]. To amortize system call costs,

MegaPipe batches multiple I/O requests and their comple-

tion notifications into a single system call. The key obser-

vation here is that batching can exploit connection-level

parallelism, extracting multiple independent requests and

notifications from concurrent connections.

Batching is transparently done by the MegaPipe user-

level library for both directions user → kernel and kernel

→ user. Application programmers need not be aware of

batching. Instead, application threads issue one request at

a time, and the user-level library accumulates them. When

i) the number of accumulated requests reaches the batch-

ing threshold, ii) there are not any more pending comple-

tion events from the kernel, or iii) the application explic-

itly asks to flush, then the collected requests are flushed to

the kernel in a batch through the channel. Similarly, appli-

cation threads dispatch a completion notification from the

user-level library one by one. When the user-level library

has no more completion notifications to feed the applica-

tion thread, it fetches multiple pending notifications from

kernel in a batch. We set the default batching threshold

to 32 (adjustable), as we found that the marginal perfor-

mance gain beyond that point is negligible.

3.5 API

The MegaPipe user-level library provides a set of API

functions to hide the complexity of batching and the in-

ternal implementation details. Table 1 presents a partial

list of MegaPipe API functions. Due to lack of space,

we highlight some interesting aspects of some functions

rather than enumerating all of them.

The application associates a handle (either a regular file

descriptor or a lwsocket) with the specified channel with

mp_register(). All further I/O commands and com-

pletion notifications for the registered handle are done

through only the associated channel. A cookie, an opaque

pointer for developer use, is also passed to the kernel with

handle registration. This cookie is attached in the comple-

tion events for the handle, so the application can easily

identify which handle fired each event. The application

calls mp_unregister() to end the membership. Once

unregistered, the application can continue to use the reg-

ular FD with general system calls. In contrast, lwsockets
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Function Parameters Description

mp_create() Create a new MegaPipe channel instance.

mp_register() channel,

fd, cookie,

cpu_mask

Create a MegaPipe handle for the specified file descriptor (either regular or lightweight) in the given

channel. If a given file descriptor is a listening socket, an optional CPU mask parameter can be used

to designate the set of CPU cores which will respond to incoming connections for that handle.

mp_unregister() handle Remove the target handle from the channel. All pending completion notifications for the handle are

canceled.

mp_accept() handle,

count,

is_lwsocket

Accept one or more new connections from a given listening handle asynchronously. The application

specifies whether to accept a connection as a regular socket or a lwsocket. The completion event will

report a new FD/lwsocket and the number of pending connections in the accept queue.

mp_read()

mp_write()

handle, buf,

size

Issue an asynchronous I/O request. The completion event will report the number of bytes actually

read/written.

mp_disconnect() handle Close a connection in a similar way with shutdown(). It does not deallocate or unregister the handle.

mp_dispatch() channel,

timeout

Retrieve a single completion notification for the given channel. If there is no pending notification event,

the call blocks until the specified timer expires.

Table 1: MegaPipe API functions (not exhaustive).

are immediately deallocated from the kernel memory.

When a listening TCP socket is registered with the

cpu_mask parameter, MegaPipe internally spawns an ac-

cept queue for incoming connections on the specified set

of CPU cores. The original listening socket (now respon-

sible for the remaining CPU cores) can be registered to

other MegaPipe channels with a disjoint set of cores – so

each thread can have a completely partitioned view of the

listening socket.

mp_read() and mp_write() issue asynchronous I/O

commands. The application should not use the provided

buffer for any other purpose until the completion event, as

the ownership of the buffer has been delegated to the ker-

nel, like in other asynchronous I/O APIs. The completion

notification is fired when the I/O is actually completed,

i.e., all data has been copied from the receive queue for

read or copied to the send queue for write. In adapting

nginx and memcached, we found that vectored I/O opera-

tions (multiple buffers for a single I/O operation) are help-

ful for optimal performance. For example, the unmodi-

fied version of nginx invokes the writev() system call to

transmit separate buffers for a HTTP header and body at

once. MegaPipe supports the counterpart, mp_writev(),

to avoid issuing multiple mp_write() calls or aggregat-

ing scattered buffers into one contiguous buffer.

mp_dispatch() returns one completion event as a

struct mp_event. This data structure contains: i) a

completed command type (e.g., read/write/accept/etc.), ii)

a cookie, iii) a result field that indicates success or failure

(such as broken pipe or connection reset) with the cor-

responding errno value, and iv) a union of command-

specific return values.

Listing 1 presents simplified pseudocode of a ping-

pong server to illustrate how applications use MegaPipe.

An application thread initially creates a MegaPipe chan-

nel and registers a listening socket (listen_sd in this ex-

ch = mp_crea t e ( )

h a n d l e = m p _ r e g i s t e r ( ch , l i s t e n _ s d , mask=0x01 )

mp_accept ( h a n d l e )

whi le t r u e :

ev = mp_d i spa t ch ( ch )

conn = ev . c o o k i e

i f ev . cmd == ACCEPT :

mp_accept ( conn . h a n d l e )

conn = new C o n n e c t i o n ( )

conn . h a n d l e = m p _ r e g i s t e r ( ch , ev . fd ,

c o o k i e =conn )

mp_read ( conn . hand le , conn . buf , READSIZE )

e l i f ev . cmd == READ:

mp_wri te ( conn . hand le , conn . buf , ev . s i z e )

e l i f ev . cmd == WRITE :

mp_read ( conn . hand le , conn . buf , READSIZE )

e l i f ev . cmd == DISCONNECT :

m p _ u n r e g i s t e r ( ch , conn . h a n d l e )

d e l e t e conn

Listing 1: Pseudocode for ping-pong server event loop

ample) with cpu_mask 0x01 (first bit is set) which means

that the handle is only interested in new connections es-

tablished on the first core (core 0). The application then

invokes mp_accept() and is ready to accept new connec-

tions. The body of the event loop is fairly simple; given an

event, the server performs any appropriate tasks (barely

anything in this ping-pong example) and then fires new

I/O operations.

3.6 Discussion: Thread-Based Servers

The current MegaPipe design naturally fits event-driven

servers based on callback or event-loop mechanisms [32,

40]. We mostly focus on event-driven servers in this work.

On the other hand, MegaPipe is also applicable to thread-

based servers, by having one channel for each thread,

thus each connection. In this case the application cannot

take advantage of batching (§3.4.3), since batching ex-

ploits the parallelism of independent connections that are
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multiplexed through a channel. However, the application

still can benefit from partitioning (§3.4.1) and lwsocket

(§3.4.2) for better scalability on multi-core servers.

There is an interesting spectrum between pure event-

driven servers and pure thread-based servers. Some

frameworks expose thread-like environments to user ap-

plications to retain the advantages of thread-based archi-

tectures, while looking like event-driven servers to the

kernel to avoid the overhead of threading. Such function-

ality is implemented in various ways: lightweight user-

level threading [23, 39], closures or coroutines [4, 18, 28],

and language runtime [14]. Those frameworks intercept

I/O calls issued by user threads to keep the kernel thread

from blocking, and manage the outstanding I/O requests

with polling mechanisms, such as epoll. These frame-

works can leverage MegaPipe for higher network I/O per-

formance without requiring modifications to applications

themselves. We leave the evaluation of effectiveness of

MegaPipe for these frameworks as future work.

4 Implementation

We begin this section with how we implemented

MegaPipe in the Linux kernel and the associated user-

level library. To verify the applicability of MegaPipe, we

show how we adapted two applications (memcached and

nginx) to benefit from MegaPipe.

4.1 MegaPipe API Implementation

As briefly described in §3.3, MegaPipe consists of two

parts: the kernel module and the user-level library. In this

section, we denote them by MP-K and MP-L, respec-

tively, for clear distinction between the two.

Kernel Implementation: MP-K interacts with MP-L

through a special device, /dev/megapipe. MP-L opens

this file to create a channel, and invokes ioctl() system

calls on the file to issue I/O requests and dispatch comple-

tion notifications for that channel.

MP-K maintains a set of handles for both regular FDs

and lwsockets in a red-black tree4 for each channel. Un-

like a per-process file table, each channel is only ac-

cessed by one thread, avoiding data sharing between

threads (thus cores). MP-K identifies a handle by an in-

teger unique to the owning channel. For regular FDs, the

existing integer value is used as an identifier, but for lw-

sockets, an integer of 230 or higher value is issued to dis-

tinguish lwsockets from regular FDs. This range is used

since it is unlikely to conflict with regular FD numbers, as

the POSIX standard allocates the lowest unused integer

for FDs [6].

4It was mainly for ease of implementation, as Linux provides the

template of red-black trees. We have not yet evaluated alternatives, such

as a hash table, which supports O(1) lookup rather than O(logN).

MP-K currently supports the following file types: sock-

ets, pipes, FIFOs, signals (via signalfd), and timers (via

timerfd). MP-K handles asynchronous I/O requests dif-

ferently depending on the file type. For sockets (such as

TCP, UDP, and UNIX domain), MegaPipe utilizes the na-

tive callback interface, which fires upon state changes,

supported by kernel sockets for optimal performance. For

other file types, MP-K internally emulates asynchronous

I/O with epoll and non-blocking VFS operations within

kernel. MP-K currently does not support disk files, since

the Linux file system does not natively support asyn-

chronous or non-blocking disk I/O, unlike other modern

operating systems. To work around this issue, we plan to

adopt a lightweight technique presented in FlexSC [35] to

emulate asynchronous I/O. When a disk I/O operation is

about to block, MP-K can spawn a new thread on demand

while the current thread continues.

Upon receiving batched I/O commands from MP-L

through a channel, MP-K first examines if each request

can be processed immediately (e.g., there is pending data

in the TCP receive queue, or there is free space in the

TCP send queue). If so, MP-K processes the request and

issues a completion notification immediately, without in-

curring the callback registration or epoll overhead. This

idea of opportunistic shortcut is adopted from LAIO [22],

where the authors claim that the 73–86% of I/O opera-

tions are readily available. For I/O commands that are not

readily available, MP-K needs some bookkeeping; it reg-

isters a callback to the socket or declares an epoll interest

for other file types. When MP-K is notified that the I/O

operation has become ready, it processes the operation.

MP-K enqueues I/O completion notifications in the per-

channel event queue. Those notifications are dispatched

in a batch upon the request of MP-L. Each handle main-

tains a linked list to its pending notification events, so that

they can be easily removed when the handle is unregis-

tered (and thus not of interest anymore).

We implemented MP-K in the Linux 3.1.3 kernel with

2,200 lines of code in total. The majority was imple-

mented as a Linux kernel module, such that the mod-

ule can be used for other Linux kernel versions as well.

However, we did have to make three minor modifications

(about 400 lines of code of the 2,200) to the Linux kernel

itself, due to the following issues: i) we modified epoll

to expose its API to not only user space but also to MP-K;

ii) we modified the Linux kernel to allow multiple sock-

ets (partitioned) to listen on the same address/port concur-

rently, which traditionally is not allowed; and iii) we also

enhanced the socket lookup process for incoming TCP

handshake packets to consider cpu_mask when choosing

a destination listening socket among a partitioned set.

User-Level Library: MP-L is essentially a simple wrap-
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Application Total Changed

memcached 9442 602 (6.4%)

nginx 86774 447 (0.5%)

Table 2: Lines of code for application adaptations

per of the kernel module, and it is written in about 400

lines of code. MP-L performs two main roles: i) it trans-

parently provides batching for asynchronous I/O requests

and their completion notifications, ii) it performs commu-

nication with MP-K via the ioctl() system call.

The current implementation uses copying to transfer

commands (24 B for each) and notifications (40 B for

each) between MP-L and MP-K. This copy overhead,

roughly 3–5% of total CPU cycles (depending on work-

loads) in our evaluation, can be eliminated with virtual

memory mapping for the command/notification queues,

as introduced in Mach Port [11]. We leave the implemen-

tation and evaluation of this idea as future work.

4.2 Application Integration

We adapted two popular event-driven servers, memcached

1.4.13 [3] (an in-memory key-value store) and nginx

1.0.15 [37] (a web server), to verify the applicability of

MegaPipe. As quantitatively indicated in Table 2, the code

changes required to use MegaPipe were manageable, on

the order of hundreds of lines of code. However, these two

applications presented different levels of effort during the

adaptation process. We briefly introduce our experiences

here, and show the performance benefits in Section 5.

memcached: memcached uses the libevent [30] frame-

work which is based on the readiness model (e.g., epoll

on Linux). The server consists of a main thread and a col-

lection of worker threads. The main thread accepts new

client connections and distributes them among the worker

threads. The worker threads run event loops which dis-

patch events for client connections.

Modifying memcached to use MegaPipe in place of

libevent involved three steps5:

(1) Decoupling from libevent: We began by removing

libevent-specific data structures from memcached. We

also made the drop-in replacement of mp_dispatch() for

the libevent event dispatch loop.

(2) Parallelizing accept: Rather than having a single

thread that accepts all new connections, we modified

worker threads to accept connections in parallel by par-

titioning the shared listening socket.

(3) State machine adjustment: Finally, we replaced calls

5In addition, we pinned each worker thread to a CPU core for the

MegaPipe adaptation, which is considered a best practice and is neces-

sary for MegaPipe. We made the same modification to stock memcached

for a fair comparison.

1 
2 
4 

8 

16 
32 

64 

128 

1 

2 

3 

4 

5 

6 

7 

8 

1 2 3 4 5 6 7 8 

P
ar

al
le

l 
S

p
ee

d
u
p
 

1 

2 

3 

4 

5 

6 

7 

8 

1 2 3 4 5 6 7 8 

Number of CPU cores 

(a) Baseline (b) MegaPipe 

Figure 3: Comparison of parallel speedup for varying numbers

of transactions per connection (labeled) over a range of CPU

cores (x-axis) with 64 B messages.

to read() with mp_read() and calls to sendmsg() with

mp_writev(). Due to the semantic gap between the

readiness model and the completion notification model,

each state of the memcached state machine that invokes a

MegaPipe function was split into two states: actions prior

to a MegaPipe function call, and actions that follow the

MegaPipe function call and depend on its result. We be-

lieve this additional overhead could be eliminated if mem-

cached did not have the strong assumption of the readiness

model.

nginx: Compared to memcached, nginx modifications

were much more straightforward due to three reasons: i)

the custom event-driven I/O of nginx does not use an ex-

ternal I/O framework that has a strong assumption of the

readiness model, such as libevent [30]; ii) nginx was de-

signed to support not only the readiness model (by default

with epoll in Linux), but also the completion notification

model (for POSIX AIO [6] and signal-based AIO), which

nicely fits with MegaPipe; and iii) all worker processes

already accept new connections in parallel, but from the

shared listening socket.

nginx has an extensible event module architecture,

which enables easy replacement for its underlying event-

driven mechanisms. Under this architecture, we im-

plemented a MegaPipe event module and registered

mp_read() and mp_writev() as the actual I/O func-

tions. We also adapted the worker threads to accept new

connections from the partitioned listening socket.

5 Evaluation

We evaluated the performance gains yielded by MegaPipe

both through a collection of microbenchmarks, akin to

those presented in §2.2, and a collection of application-

level macrobenchmarks. Unless otherwise noted, all

benchmarks were completed with the same experimental

setup (same software versions and hardware platforms as

described in §2.2.
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Number of transactions per connection

1 2 4 8 16 32 64 128

+P 211.6 207.5 181.3 83.5 38.9 29.5 17.2 8.8

P +B 18.8 22.8 72.4 44.6 31.8 30.4 27.3 19.8

PB +L 352.1 230.5 79.3 22.0 9.7 2.9 0.4 0.1

Total 582.4 460.8 333.1 150.1 80.4 62.8 45.0 28.7

Table 3: Accumulation of throughput improvement (%) over

baseline, from three contributions of MegaPipe.

5.1 Microbenchmarks

The purpose of the microbenchmark results is three-fold.

First, utilization of the same benchmark strategy as in §2

allows for direct evaluation of the low-level limitations we

previously highlighted. Figure 1 shows the performance

of MegaPipe measured for the same experiments. Sec-

ond, these microbenchmarks give us the opportunity to

measure an upper-bound on performance, as the mini-

mal benchmark program effectively rules out any com-

plex effects from application-specific behaviors. Third,

microbenchmarks allow us to illuminate the performance

contributions of each of MegaPipe’s individual design

components.

We begin with the impact of MegaPipe on multi-core

scalability. Figure 3 provides a side-by-side comparison

of parallel speedup (compared to the single core case of

each) for a variety of transaction lengths. The baseline

case on the left clearly shows that the scalability highly

depends on the length of connections. For short connec-

tions, the throughput stagnates as core count grows due to

the serialization at the shared accept queue, then suddenly

collapses with more cores. We attribute the performance

collapse to increased cache congestion and non-scalable

locks [21]; note that the connection establishment process

happens more frequently with short flows in our test, in-

creasing the level of contention.

In contrast, the throughput of MegaPipe scales almost

linearly regardless of connection length, showing speedup

of 6.4 (for single-transaction connections) or higher. This

improved scaling behavior of MegaPipe is mostly from

the multi-core related optimizations techniques, namely

partitioning and lwsocket. We observed similar speedup

without batching, which enhances per-core throughput.

In Table 3, we present the incremental improvements

(in percent over baseline) that Partitioning (P), Batching

(B), and lwsocket (L) contribute to overall throughput,

by accumulating each technique in that order. In this ex-

periment, we used all eight cores, with 64 B messages

(1 KiB messages yielded similar results). Both partition-

ing and lwsocket significantly improve the throughput of

short connections, and their performance gain diminishes

for longer connections since the both techniques act only

at the connection establishment stage. For longer connec-
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Figure 5: memcached throughput comparison with eight cores,

by varying the number of requests per connection. ∞ indicates

persistent connections. Lines with "X" markers (-FL) represent

fine-grained-lock-only versions.

tions (not shown in the table), the gain from batching

converged around 15%. Note that the case with partition-

ing alone (+P in the table) can be seen as sockets with

Affinity-Accept [33], as the both address the shared ac-

cept queue and connection affinity issues. lwsocket further

contributes the performance of short connections, helping

to achieve near-linear scalability as shown in Figure 3(b).

Lastly, we examine how the improvement changes

by varying message sizes. Figure 4 depicts the relative

throughput improvement, measured with 10-transaction

connections. For the single-core case, where the improve-

ment comes mostly from batching, MegaPipe outperforms

the baseline case by 15–33%, showing higher effective-

ness for small (≤ 1 KiB) messages. The improvement

goes higher as we have five or more cores, since the base-

line case experiences more expensive off-chip cache and

remote memory access, while MegaPipe effectively miti-

gates them with partitioning and lwsocket. The degrada-

tion of relative improvement from large messages with

many cores reflects that the server was able to saturate the

10 G link. MegaPipe saturated the link with seven, five,

and three cores for 1, 2, and 4 KiB messages, respectively.

The baseline Linux saturated the link with seven and three

cores for 2 and 4 KiB messages, respectively.
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5.2 Macrobenchmark: memcached

We perform application-level macrobenchmarks of mem-

cached, comparing the baseline performance to that of

memcached adapted for MegaPipe as previously de-

scribed. For baseline measurements, we used a patched6

version of the stock memcached 1.4.13 release.

We used the memaslap [12] tool from libmemcached

1.0.6 to perform the benchmarks. We patched memaslap

to accept a parameter designating the maximum number

of requests to issue for a given TCP connection (upon

which it closes the connection and reconnects to the

server). Note that the typical usage of memcached is to

use persistent connections to servers or UDP sockets, so

the performance result from short connections may not be

representative of memcached; rather, it should be inter-

preted as what-if scenarios for event-driven server appli-

cations with non-persistent connections.

The key-value workload used during our tests is the de-

fault memaslap workload: 64 B keys, 1 KiB values, and a

get/set ratio of 9:1. For these benchmarks, each of three

client machines established 256 concurrent connections

to the server. On the server side, we set the memory size

to 4 GiB. We also set the initial hash table size to 2
22

(enough for 4 GiB memory with 1 KiB objects), so that

the server would not exhibit performance fluctuations due

to dynamic hash table expansion during the experiments.

Figure 5 compares the throughput between the baseline

and MegaPipe versions of memcached (we discuss the “-

FL” versions below), measured with all eight cores. We

can see that MegaPipe greatly improves the throughput

for short connections, mostly due to partitioning and lw-

socket as we confirmed with the microbenchmark. How-

ever, the improvement quickly diminishes for longer con-

nections, and for persistent connections, MegaPipe does

not improve the throughput at all. Since the MegaPipe

case shows about 16% higher throughput for the single-

core case (not shown in the graph), it is clear that there is

a performance-limiting bottleneck for the multi-core case.

Profiling reveals that spin-lock contention takes roughly

50% of CPU cycles of the eight cores, highly limiting the

scalability.

In memcached, normal get/set operations involve two

locks: item_locks and a global lock cache_lock. The

fine-grained item_locks (the number is dynamic, 8,192

locks on eight cores) keep the consistency of the object

store from concurrent accesses by worker threads. On the

other hand, the global cache_lock ensures that the hash

table expansion process by the maintenance thread does

not interfere with worker threads. While this global lock

6We discovered a performance bug in the stock memcached release

as a consequence of unfairness towards servicing new connections, and

we corrected this fairness bug.
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Figure 6: 50th and 99th percentile memcached latency.

is inherently not scalable, it is unnecessary for our experi-

ments since we configured the hash table expansion to not

happen by giving a sufficiently large initial size.

We conducted experiments to see what would happen

if we rule out the global lock, thus relying on the fine-

grained locks (item_locks) only. We provide the re-

sults (with the suffix “-FL”) also in Figure 5. Without

the global lock, the both MegaPipe and baseline cases

perform much better for long or persistent connections.

For the persistent connection case, batching improved the

throughput by 15% (note that only batching among tech-

niques in §3 affects the performance of persistent con-

nections). We can conclude two things from these exper-

iments. First, MegaPipe improves the throughput of ap-

plications with short flows, and the improvement is fairly

insensitive to the scalability of applications themselves.

Second, MegaPipe might not be effective for poorly scal-

able applications, especially with long connections.

Lastly, we discuss how MegaPipe affects the latency

of memcached. One potential concern with latency is that

MegaPipe may add additional delay due to batching of I/O

commands and notification events. To study the impact of

MegaPipe on latency, we measured median and tail (99th

percentile) latency observed by the clients, with varying

numbers of persistent connections, and plotted these re-

sults in Figure 6. The results show that MegaPipe does

not adversely affect the median latency. Interestingly, for

the tail latency, MegaPipe slightly increases it with low

concurrency (between 72–264) but greatly reduces it with

high concurrency (≥ 768). We do not fully understand

these tail behaviors yet. One likely explanation for the

latter is that batching becomes more effective with high

concurrency; since that batching exploits parallelism from

independent connections, high concurrency yields larger

batch sizes.

In this paper, we conduct all experiments with the in-

terrupt coalescing feature of the NIC. We briefly describe

the impact of disabling it, to investigate if MegaPipe fa-

vorably or adversely interfere with interrupt coalescing.

When disabled, the server yielded up to 50µs (median)
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Figure 7: Evaluation of nginx throughput for the (a) SpecWeb, (b) Yahoo, and (c) Yahoo/2 workloads.

and 200µs (tail) lower latency with low concurrency (thus

underloaded). On the other hand, beyond near saturation

point, disabling interrupt coalescing incurred significantly

higher latency due to about 30% maximum throughput

degradation, which causes high queueing delay. We ob-

served these behaviors for both MegaPipe and baseline;

we could not find any MegaPipe-specific behavior with

interrupt coalescing in our experiments.

5.3 Macrobenchmark: nginx

Unlike memcached, the architecture of nginx is highly

scalable on multi-core servers. Each worker process has

an independent address space, and nothing is shared by

the workers, so the performance-critical path is com-

pletely lockless. The only potential factor that limits scal-

ability is the interface between the kernel and user, and

we examine how MegaPipe improves the performance of

nginx with such characteristics.

For the nginx HTTP benchmark, we conduct experi-

ments with three workloads with static content, namely

SpecWeb, Yahoo, and Yahoo/2. For all workloads, we

configured nginx to serve files from memory rather

than disks, to avoid disks being a bottleneck. We used

weighttp7 as a workload generator, and we modified it to

support variable number of requests per connection.

SpecWeb: We test the same HTTP workload used in

Affinity-Accept [33]. In this workload, each client con-

nection initiates six HTTP requests. The content size

ranges from 30 to 5,670 B (704 B on average), which is

adopted from the static file set of SpecWeb 2009 Support

Workload [9].

Yahoo: We used the HTTP trace collected from the Ya-

hoo! CDN [13]. In this workload, the number of HTTP

requests per connection ranges between 1 and 1,597. The

distribution is heavily skewed towards short connections

(98% of connections have ten or less requests, 2.3 on av-

erage), following the Zipf-like distribution. Content sizes

range between 1 B and 253 MiB (12.5 KiB on average).

HTTP responses larger than 60 KiB contribute roughly

7http://redmine.lighttpd.net/projects/weighttp/wiki

50% of the total traffic.

Yahoo/2: Due to the large object size of the Yahoo work-

load, MegaPipe with only five cores saturates the two 10G

links we used. For the Yahoo/2 workload, we change the

size of all files by half, to avoid the link bottleneck and

observe the multi-core scalability behavior more clearly.

Web servers can be seen as one of the most promising

applications of MegaPipe, since typical HTTP connec-

tions are short and carry small messages [13]. We present

the measurement result in Figure 7 for each workload.

For all three workloads, MegaPipe significantly improves

the performance of both single-core and multi-core cases.

MegaPipe with the Yahoo/2 workload, for instance, im-

proves the performance by 47% (single core) and 75%

(eight cores), with a better parallel speedup (from 5.4

to 6.5) with eight cores. The small difference of im-

provement between the Yahoo and Yahoo/2 cases, both

of which have the same connection length, shows that

MegaPipe is more beneficial with small message sizes.

6 Related Work

Scaling with Concurrency: Stateless event multiplexing

APIs, such as select() or poll(), scale poorly as the

number of concurrent connections grows since applica-

tions must declare the entire interest set of file descrip-

tors to the kernel repeatedly. Banga et al. address this is-

sue by introducing stateful interest sets with incremental

updates [16], and we follow the same approach in this

work with mp_(un)register(). The idea was realized

with with epoll [8] in Linux (also used as the baseline

in our evaluation) and kqueue [29] in FreeBSD. Note that

this scalability issue in event delivery is orthogonal to the

other scalability issue in the kernel: VFS overhead, which

is addressed by lwsocket in MegaPipe.

Asynchronous I/O: Like MegaPipe, Lazy Asynchronous

I/O (LAIO) [22] provides an interface with completion

notifications, based on “continuation”. LAIO achieves

low overhead by exploiting the fact that most I/O opera-

tions do not block. MegaPipe adopts this idea, by process-

ing non-blocking I/O operations immediately as explained
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in §4.1.

POSIX AIO defines functions for asynchronous I/O in

UNIX [6]. POSIX AIO is not particularly designed for

sockets, but rather, general files. For instance, it does

not have an equivalent of accept() or shutdown().

Interestingly, it also supports a form of I/O batching:

lio_listio() for AIO commands and aio_suspend()

for their completion notifications. This batching must be

explicitly arranged by programmers, while MegaPipe sup-

ports transparent batching.

Event Completion Framework [1] in Solaris and

kqueue [29] in BSD expose similar interfaces (comple-

tion notification through a completion port) to MegaPipe

(through a channel), when they are used in conjunction

with POSIX AIO. These APIs associate individual AIO

operations, not handles, with a channel to be notified. In

contrast, a MegaPipe handle is a member of a particular

channel for explicit partitioning between CPU cores. Win-

dows IOCP [10] also has the concept of completion port

and membership of handles. In IOCP, I/O commands are

not batched, and handles are still shared by all CPU cores,

rather than partitioned as lwsockets.

System Call Batching: While MegaPipe’s batching was

inspired by FlexSC [35, 36], the main focus of MegaPipe

is I/O, not general system calls. FlexSC batches syn-

chronous system call requests via asynchronous channels

(syscall pages), while MegaPipe batches asynchronous

I/O requests via synchronous channels (with traditional

exception-based system calls). Loose coupling between

system call invocation and its execution in FlexSC may

lead poor cache locality on multi-core systems; for exam-

ple, the send() system call invoked from one core may be

executed on another, inducing expensive cache migration

during the copy of the message buffer from user to kernel

space. Compared with FlexSC, MegaPipe explicitly par-

titions cores to make sure that all processing of a flow is

contained within a single core.

netmap [34] extensively use batching to amortize the

cost of system calls, for high-performance, user-level

packet I/O. MegaPipe follows the same approach, but its

focus is generic I/O rather than raw sockets for low-level

packet I/O.

Kernel-Level Network Applications: Some network ap-

plications are partly implemented in the kernel, tightly

coupling performance-critical sections to the TCP/IP

stack [25]. While this improves performance, it comes at a

price of limited security, reliability, programmability, and

portability. MegaPipe gives user applications lightweight

mechanisms to interact with the TCP/IP stack for similar

performance advantages, while retaining the benefits of

user-level programming.

Multi-Core Scalability: Past research has shown that par-

titioning cores is critical for linear scalability of network

I/O on multi-core systems [19,20,33,38]. The main ideas

are to maintain flow affinity and minimize unnecessary

sharing between cores. In §3.4.1, we addressed the simi-

larities and differences between Affinity-Accept [33] and

MegaPipe. In [20], the authors address the scalability is-

sues in VFS, namely inode and dentry, in the general con-

text. We showed in §3.4.2 that the VFS overhead can be

completely bypassed for network sockets in most cases.

The Chronos [26] work explores the case of direct cou-

pling between NIC queues and application threads, in the

context of multi-queue NIC and multi-core CPU envi-

ronments. Unlike MegaPipe, Chronos bypasses the ker-

nel, exposing NIC queues directly to user-space memory.

While this does avoid in-kernel latency/scalability issues,

it also loses the generality of TCP connection handling

which is traditionally provided by the kernel.

Similarities in Abstraction: Common Communication

Interface (CCI) [15] defines a portable interface to sup-

port various transports and network technologies, such as

Infiniband and Cray’s Gemini. While CCI and MegaPipe

have different contexts in mind (user-level message-

passing in HPC vs. general sockets via the kernel net-

work stack), both have very similar interfaces. For ex-

ample, CCI provides the endpoint abstraction as a chan-

nel between a virtual network instance and an applica-

tion. Asynchronous I/O commands and notifications are

passed through the channel with similar API semantics

(e.g., cci_get_event()/cci_send() corresponding to

mp_dispatch()/mp_write()).

The channel abstraction of MegaPipe shares some sim-

ilarities with Mach port [11] and other IPC mechanisms

in microkernel designs, as it forms queues for typed mes-

sages (I/O commands and notifications in MegaPipe) be-

tween subsystems. Especially, Barrelfish [17] leverages

message passing (rather than sharing) based on event-

driven programming model to solve scalability issues,

while its focus is mostly on inter-core communication

rather than strict intra-core communication in MegaPipe.

7 Conclusion

Message-oriented network workloads, where connections

are short and/or message sizes are small, are CPU-

intensive and scale poorly on multi-core systems with the

BSD Socket API. In this paper, we introduced MegaPipe,

a new programming interface for high-performance net-

working I/O. MegaPipe exploits many performance opti-

mization opportunities that were previously hindered by

existing network API semantics, while being still sim-

ple and applicable to existing event-driven servers with

moderate efforts. Evaluation through microbenchmarks,
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memcached, and nginx showed significant improvements,
in terms of both single-core performance and parallel
speedup on an eight-core system.
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